Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, Stefano Ermon. Convolutional Differentiable Logic Gate Networks (Oral Presentation).
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Zou, Stefano Ermon. TFG: Unified Training-Free Guidance for Diffusion Models (Spotlight Presentation).
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
Jiaqi Han, Minkai Xu, Aaron Lou, Haotian Ye, Stefano Ermon. Geometric Trajectory Diffusion Models.
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
Zhuo Zheng, Yanfei Zhong, Liangpei Zhang, Stefano Ermon. Segment Any Change.
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon, Weinan Zhang. MADiff: Offline Multi-agent Learning with Diffusion Models.
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
Gabriel Nobis, Maximilian Springenberg, Marco Aversa, Michael Detzel, Rembert Daems, Roderick Murray-Smith, Shinichi Nakajima, Sebastian Lapuschkin, Stefano Ermon, Tolga Birdal, Manfred Opper, Christoph Knochenhauer, Luis Oala, Wojciech Samek. Generative Fractional Diffusion Models.
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
Felix Petersen, Christian Borgelt, Tobias Sutter, Hilde Kuehne, Oliver Deussen, Stefano Ermon. Fishers and Hessians of Continuous Relaxations.
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
Nemin Wu, Qian Cao, Zhangyu Wang, Zeping Liu, Yanlin Qi, Jielu Zhang, Joshua Ni, X. Angela Yao, Hongxu Ma, Lan Mu, Stefano Ermon, Tanuja Ganu, Akshay Nambi, Ni Lao, Gengchen Mai. TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning.
In Proc. 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024 Datasets and Benchmarks Track).
Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar Azizzadenesheli, Jure Leskovec, Stefano Ermon, Anima Anandkumar. Equivariant Graph Neural Operator for Modeling 3D Dynamics.
In Proc. 41th International Conference on Machine Learning (ICML 2024).
Rohin Manvi, Samar Khanna, Marshall Burke, David B. Lobell, Stefano Ermon. Large Language Models are Geographically Biased.
In Proc. 41th International Conference on Machine Learning (ICML 2024).
Rom Parnichkun, Stefano Massaroli, Alessandro Moro, Michael Poli, Jimmy T.H. Smith, Ramin Hasani, Mathias Lechner, Qi An, Christopher Re, Hajime Asama, Stefano Ermon, Taiji Suzuki, Atsushi Yamashita.
State-Free Inference of State-Space Models: The *Transfer Function* Approach.
In Proc. 41th International Conference on Machine Learning (ICML 2024).
Michael Poli, Armin W Thomas, Eric Nguyen, Stefano Massaroli, Pragaash Ponnusamy, Björn Deiseroth, Kristian Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Re, Ce Zhang. Mechanistic Design and Scaling of Hybrid Architectures.
In Proc. 41th International Conference on Machine Learning (ICML 2024).
Charlotte Nicks, Eric Mitchell, Rafael Rafailov, Archit Sharma, Christopher D Manning, Chelsea Finn, Stefano Ermon. Language Model Detectors Are Easily Optimized Against.
In Proc. 12th International Conference on Learning Representations (ICLR 2024).
Linqi Zhou, Aaron Lou, Samar Khanna, Stefano Ermon. Denoising Diffusion Bridge Models.
In Proc. 12th International Conference on Learning Representations (ICLR 2024).
Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-Hsiang Liao, Yuki Mitsufuji, J. Zico Kolter, Ruslan Salakhutdinov, Stefano Ermon. Manifold Preserving Guided Diffusion.
In Proc. 12th International Conference on Learning Representations (ICLR 2024).
Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari. Parallel Sampling of Diffusion Models.
In Proc. 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023).
Aaron Lou, Minkai Xu, Adam Farris, Stefano Ermon. Scaling Riemannian Diffusion Models.
In Proc. 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023).
Eric Nguyen, Michael Poli, Marjan Faizi, Armin W Thomas, Michael Wornow, Callum Birch-Sykes, Stefano Massaroli, Aman Patel, Clayton M. Rabideau, Yoshua Bengio, Stefano Ermon, Christopher Re, Stephen Baccus. HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution.
In Proc. 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023).
Stefano Massaroli, Michael Poli, Daniel Y Fu, Hermann Kumbong, David W. Romero, Rom Nishijima Parnichkun, Aman Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, Ce Zhang, Christopher Re, Stefano Ermon, Yoshua Bengio. Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions.
In Proc. 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023).
Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi Zhang, Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, Minguk Kang, Taesung Park, Jure Leskovec, Jun-Yan Zhu, Li Fei-Fei, Jiajun Wu, Stefano Ermon, Percy Liang. Holistic Evaluation of Text-to-Image Models.
In Proc. 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023 dataset and benchmark track).
Alexandre Lacoste, Nils Lehmann, Pau Rodriguez, Evan David Sherwin, Hannah Kerner, Björn Lütjens, Jeremy Andrew Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, Mehmet Gunturkun, Gabriel Huang, David Vazquez, Dava Newman, Yoshua Bengio, Stefano Ermon, Xiao Xiang Zhu. GEO-Bench: Toward Foundation Models for Earth Monitoring.
In Proc. 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023 dataset and benchmark track).
Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, Christopher Re. Hyena Hierarchy: Towards Larger Convolutional Language Models.
In Proc. 40th International Conference on Machine Learning (ICML 2023).
Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On Distillation of Guided Diffusion Models.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2023). Best Paper Award Nomination.
Benedikt Boecking, Nicholas Roberts, Willie Neiswanger, Stefano Ermon, Frederic Sala, Artur Dubrawski. Generative Modeling Helps Weak Supervision (and Vice Versa).
In Proc. 11th International Conference on Learning Representations (ICLR 2023).
Divyansh Garg, Joey Hejna, Matthieu Geist, Stefano Ermon. Extreme Q-Learning: MaxEnt RL without Entropy.
In Proc. 11th International Conference on Learning Representations (ICLR 2023).
Michael Poli, Stefano Massaroli, Stefano Ermon, Bryan Wilder, Eric Horvitz. Ideal Abstractions for Decision-Focused Learning.
In Proc. 26th International Conference on Artificial Intelligence and Statistics, (AISTATS 2023).
Michael Poli, Stefano Massaroli, Federico Berto, Jinkyoo Park, Tri Dao, Christopher Ré, Stefano Ermon. Transform Once: Efficient Operator Learning in Frequency Domain.
In Proc. 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022).
Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song. Denoising Diffusion Restoration Models.
In Proc. 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022).
Charles Marx, Shengjia Zhao, Willie Neiswanger, Stefano Ermon. Modular Conformal Calibration.
In Proc. 39th International Conference on Machine Learning (ICML 2022).
Lantao Yu, Jiaming Song, Yang Song, Stefano Ermon. Pseudo-Spherical Contrastive Divergence.
In Proc. 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021).
Roshni Sahoo, Shengjia Zhao, Alyssa Chen, Stefano Ermon. Reliable Decisions with Threshold Calibration.
In Proc. 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021).
Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, Stefano Ermon. IQ-Learn: Inverse soft-Q Learning for Imitation (Spotlight Presentation).
In Proc. 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021).
Kuno Kim, Akshat Jindal, Yang Song, Jiaming Song, Yanan Sui, Stefano Ermon. Imitation with Neural Density Models.
In Proc. 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021).
Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke, David Lobell, Stefano Ermon. Geography-Aware Self-Supervised Learning.
In Proc. 18th International Conference on Computer Vision, (ICCV 2021).
Kristy Choi, Madeline Liao, Stefano Ermon. Featurized Density Ratio Estimation.
In Proc. 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).
Jihyeon Lee, Nina Brooks, Fahim Tajwar, Marshall Burke, Stefano Ermon, David Lobell, Debashish Biswas, Stephen Luby. Scalable Deep Learning to Identify Brick Kilns and Aid Regulatory Capacity.
In Proceedings of the National Academy of Sciences (PNAS), 27 Apr 2021, 118 (17). DOI: 10.1073/pnas.2018863118.
Jiaming Song, Chenlin Meng, Stefano Ermon. Denoising Diffusion Implicit Models.
In Proc. 9th International Conference on Learning Representations (ICLR 2021).
Abhishek Sinha, Kumar Ayush, Jiaming Song, Burak Uzkent, Hongxia Jin, Stefano Ermon. Negative Data Augmentation.
In Proc. 9th International Conference on Learning Representations (ICLR 2021).
Jiaming Song, Stefano Ermon. Multi-label Contrastive Predictive Coding (Oral Presentation).
In Proc. 34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020).
Jonathan Kuck, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish Sabharwal, Stefano Ermon. Belief Propagation Neural Networks.
In Proc. 34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020).
Chenlin Meng, Lantao Yu, Yang Song, Jiaming Song, Stefano Ermon. Autoregressive Score Matching.
In Proc. 34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020).
Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, Christopher Ré. HiPPO: Recurrent Memory with Optimal Polynomial Projections (Spotlight Presentation).
In Proc. 34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020).
Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, Tengyu Ma MOPO: Model-based Offline Policy Optimization.
In Proc. 34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020).
Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, Stefano Ermon. Domain Adaptive Imitation Learning.
In Proc. 37th International Conference on Machine Learning (ICML 2020).
Kristy Choi, Aditya Grover, Trisha Singh, Rui Shu, Stefano Ermon. Fair Generative Modeling via Weak Supervision.
In Proc. 37th International Conference on Machine Learning (ICML 2020).
Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad Ghavamzadeh, Stefano Ermon, Hung Bui. Predictive Coding for Locally-Linear Control.
In Proc. 37th International Conference on Machine Learning (ICML 2020).
Peter M. Attia, Aditya Grover, Norman Jin, Kristen A. Severson, Todor M. Markov, Yang-Hung Liao, Michael H. Chen, Bryan Cheong, Nicholas Perkins, Zi Yang, Patrick K. Herring, Muratahan Aykol, Stephen J. Harris, Richard D. Braatz, Stefano Ermon, William C. Chueh. Closed-loop Optimization of Fast-Charging Protocols for Batteries with Machine Learning.
In Nature, 578, 397-402, 2020. [News]
Joseph Duris, Dylan Kennedy, Adi Hanuka, Jane Shtalenkova, Auralee Edelen, Panagiotis Baxevanis, Adam Egger, Tyler Cope, Mitchell McIntire, Stefano Ermon, Daniel Ratner. Bayesian Optimization of a Free-Electron Laser.
In Physical Review Letters, 124, 124801, 2020.
Chenlin Meng, Yang Song, Jiaming Song, Stefano Ermon. Gaussianization Flows.
In Proc. 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020).
Carla Gomes, Thomas Dietterich, Christopher Barrett, Jon Conrad, Bistra Dilkina, Stefano Ermon, Fei Fang, Andrew Farnsworth, Alan Fern, Xiaoli Fern, Daniel Fink, Douglas Fisher, Alexander Flecker, Daniel Freund, Angela Fuller, John Gregoire, John Hopcroft, Steve Kelling, Zico Kolter, Warren Powell, Nicole Sintov, John Selker, Bart Selman, Daniel Sheldon, David Shmoys, Milind Tambe, Weng-Keen Wong, Christopher Wood, Xiaojian Wu, Yexiang Xue, Amulya Yadav, Abdul-Aziz Yakubu, Mary Lou Zeeman. Computational Sustainability: Computing for a Better World and a Sustainable Future.
In Communications of the ACM, September 2019, Volume 62, Issue 9, pp. 56-65.
Jonathan Kuck, Tri Dao, Shengjia Zhao, Burak Bartan, Ashish Sabharwal, Stefano Ermon. Adaptive Hashing for Model Counting. [Code]
In Proc. 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), Tel Aviv, Israel.
Burak Uzkent, Evan Sheehan, Chenlin Meng, Zhongyi Tang, David Lobell, Marshall Burke, Stefano Ermon. Learning to Interpret Satellite Images using Wikipedia. [Code]
In Proc. 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macau, China.
Evan Sheehan, Chenlin Meng, Matthew Tan, Burak Uzkent, Neal Jean, David Lobell, Marshall Burke, Stefano Ermon. Predicting Economic Development using Geolocated Wikipedia Articles. [Code]
In Proc. 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2019), Alaska, USA.
Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy Weissman, Stefano Ermon. Neural Joint-Source Channel Coding. [Code]
In Proc. 36th International Conference on Machine Learning (ICML 2019), Long Beach, USA.
Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, Stefano Ermon. Calibrated Model-Based Deep Reinforcement Learning. [Code]
In Proc. 36th International Conference on Machine Learning (ICML 2019), Long Beach, USA.
Stephan Eissman, Daniel Levy, Rui Shu, Stefan Bartzsch, Stefano Ermon. Bayesian Optimization and Attribute Adjustment.
In Proc. 34th Conference on Uncertainty in Artificial Intelligence (UAI 2018), Monterey, CA, USA.
Hongyu Ren, Russell Stewart, Jiaming Song, Volodymyr Kuleshov, Stefano Ermon. Adversarial Constraint Learning for Structured Prediction. [Code]
In Proc. 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden.
Aditya Grover, Ramki Gummadi, Miguel Lazaro-Gredilla, Dale Schuurmans, Stefano Ermon. Variational Rejection Sampling.
In Proc. 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018).
Aditya Grover, Todor Markov, Norman Jin, Peter Attia, Nick Perkins, Bryan Cheong, Michael Chen, Zi Yang, Stephen Harris, William Chueh, Stefano Ermon. Best Arm Identification in Multi-Armed Bandits with Delayed and Partial Feedback.
In Proc. 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018).
William Gent, Kipil Lim, Yufeng Liang, Qinghao Li, Taylor Barnes, Sung-Jin Ahn, Kevin Stone, Mitchell McIntire, Jihyun Hong, Jay Hyok Song, Yiyang Li, Apurva Mehta, Stefano Ermon, Tolek Tyliszczak, Arthur Kilcoyne, David Vine, Jin-Hwan Park, Seok-Gwang Doo, Michael Toney, Wanli Yang, David Prendergast, and William Chueh. Coupling Between Oxygen Redox and Cation Migration Explains Unusual Electrochemistry in Lithium-Rich Layered Oxides.
In Nature Communications, 12 Dec 2017, DOI: 10.1038/s41467-017-02041-x.
Jiaming Song, Shengjia Zhao, Stefano Ermon. A-NICE-MC: Adversarial Training for MCMC. [Code]
In Proc. 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, USA.
Jonathan Ho, Stefano Ermon. Generative Adversarial Imitation Learning.
In Proc. 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
Aditya Grover, Stefano Ermon. Variational Bayes on Monte Carlo Steroids.
In Proc. 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
Yexiang Xue, Stefano Ermon, Ronan Le Bras, Carla Gomes, Bart Selman. Variable Elimination in the Fourier Domain.
In Proc. 33rd International Conference on Machine Learning (ICML 2016), New York, USA.
Stefano Ermon, Ronan Le Bras, Carla Gomes, Bart Selman, Bruce van Dover. SMT-Aided Combinatorial Materials Discovery.
In Proc. 15th International Conference on Theory and Applications of Satisfiability Testing (SAT 2012), Trento, Italy.
Stefano Ermon, Carla Gomes, Bart Selman. Computing the Density of States of Boolean Formulas. [Slides]
In Proc. 16th International Conference on Principles and Practice of Constraint Programming (CP 2010), St. Andrews, Scotland.
Best student paper award.