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Abstract

Arising from many applications at the intersection of decision-making and machine
learning, Marginal Maximum A Posteriori (Marginal MAP) problems unify the
two main classes of inference, namely maximization (optimization) and marginal
inference (counting), and are believed to have higher complexity than both of
them. We propose XOR_MMAP, a novel approach to solve the Marginal MAP
problem, which represents the intractable counting subproblem with queries to
NP oracles, subject to additional parity constraints. XOR_MMAP provides a constant
factor approximation to the Marginal MAP problem, by encoding it as a single
optimization in a polynomial size of the original problem. We evaluate our approach
in several machine learning and decision-making applications, and show that our
approach outperforms several state-of-the-art Marginal MAP solvers.

1 Introduction

Typical inference queries to make predictions and learn probabilistic models from data include the
maximum a posteriori (MAP) inference task, which computes the most likely assignment of a set
of variables, as well as the marginal inference task, which computes the probability of an event
according to the model. Another common query is the Marginal MAP (MMAP) problem, which
involves both maximization (optimization over a set of variables) and marginal inference (averaging
over another set of variables).

Marginal MAP problems arise naturally in many machine learning applications. For example, learning
latent variable models can be formulated as a MMAP inference problem, where the goal is to optimize
over the model’s parameters while marginalizing all the hidden variables. MMAP problems also arise
naturally in the context of decision-making under uncertainty, where the goal is to find a decision
(optimization) that performs well on average across multiple probabilistic scenarios (averaging).

The Marginal MAP problem is known to be NPPP-complete [18], which is commonly believed to be
harder than both MAP inference (NP-hard) and marginal inference (#P-complete). As supporting
evidence, MMAP problems are NP-hard even on tree structured probabilistic graphical models
[13]. Aside from attempts to solve MMAP problems exactly [17, 15, 14, 16], previous approximate
approaches fall into two categories, in general. The core idea of approaches in both categories is
∗This research was done when Zhiyuan Li was an exchange student at Cornell University.
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to effectively approximate the intractable marginalization, which often involves averaging over an
exponentially large number of scenarios. One class of approaches [13, 11, 19, 12] use variational
forms to represent the intractable sum. Then the entire problem can be solved with message passing
algorithms, which correspond to searching for the best variational approximation in an iterative
manner. As another family of approaches, Sample Average Approximation (SAA) [20, 21] uses a
fixed set of samples to represent the intractable sum, which then transforms the entire problem into
a restricted optimization, only considering a finite number of samples. Both approaches treat the
optimization and marginalizing components separately. However, we will show that by solving these
two tasks in an integrated manner, we can obtain significant computational benefits.

Ermon et al. [8, 9] recently proposed an alternative approach to approximate intractable counting
problems. Their key idea is a mechanism to transform a counting problem into a series of optimization
problems, each corresponding to the original problem subject to randomly generated XOR constraints.
Based on this mechanism, they developed an algorithm providing a constant-factor approximation to
the counting (marginalization) problem.

We propose a novel algorithm, called XOR_MMAP, which approximates the intractable sum with a
series of optimization problems, which in turn are folded into the global optimization task. Therefore,
we effectively reduce the original MMAP inference to a single joint optimization of polynomial size
of the original problem.

We show that XOR_MMAP provides a constant factor approximation to the Marginal MAP problem.
Our approach also provides upper and lower bounds on the final result. The quality of the bounds can
be improved incrementally with increased computational effort.

We evaluate our algorithm on unweighted SAT instances and on weighted Markov Random Field
models, comparing our algorithm with variational methods, as well as sample average approximation.
We also show the effectiveness of our algorithm on applications in computer vision with deep neural
networks and in computational sustainability. Our sustainability application shows how MMAP
problems are also found in scenarios of searching for optimal policy interventions to maximize the
outcomes of probabilistic models. As a first example, we consider a network design application to
maximize the spread of cascades [20], which include modeling animal movements or information
diffusion in social networks. In this setting, the marginals of a probabilistic decision model represent
the probabilities for a cascade to reach certain target states (averaging), and the overall network
design problem is to make optimal policy interventions on the network structure to maximize the
spread of the cascade (optimization). As a second example, in a crowdsourcing domain, probabilistic
models are used to model people’s behavior. The organizer would like to find an optimal incentive
mechanism (optimization) to steer people’s effort towards crucial tasks, taking into account the
probabilistic behavioral model (averaging) [22].

We show that XOR_MMAP is able to find considerably better solutions than those found by previous
methods, as well as provide tighter bounds.

2 Preliminaries

Problem Definition Let A = {0, 1}m be the set of all possible assignments to binary variables
a1, . . . , am and X = {0, 1}n be the set of assignments to binary variables x1, . . . , xn. Let w(x, a) :
X ×A → R+ be a function that maps every assignment to a non-negative value. Typical queries over
a probabilistic model include the maximization task, which requires the computation of maxa∈A w(a),
and the marginal inference task

∑
x∈X w(x), which sums over X .

Arising naturally from many machine learning applications, the following Marginal Maximum A
Posteriori (Marginal MAP) problem is a joint inference task, which combines the two aforementioned
inference tasks:

max
a∈A

∑
x∈X

w(x, a). (1)

We consider the case where the counting problem
∑
x∈X w(x, a) and the maximization problem

maxa∈A#w(a) are defined over sets of exponential size, therefore both are intractable in general.

Counting by Hashing and Optimization Our approach is based on a recent theoretical result that
transforms a counting problem to a series of optimization problems [8, 9, 2, 1]. A family of functions
H = {h : {0, 1}n → {0, 1}k} is said to be pairwise independent if the following two conditions
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Algorithm 1: XOR_Binary(w : A×X → {0, 1}, a0, k)

Sample function hk : X → {0, 1}k from a pair-wise independent function family;
Query an NP Oracle on whether

W(a0, hk) = {x ∈ X : w(a0, x) = 1, hk(x) = 0} is empty;
Return true ifW(a0, hk) 6= ∅, otherwise return false.

hold for any function h randomly chosen from the familyH: (1) ∀x ∈ {0, 1}n, the random variable
h(x) is uniformly distributed in {0, 1}k and (2) ∀x1, x2 ∈ {0, 1}n, x1 6= x2, the random variables
h(x1) and h(x2) are independent.

We sample matrices A ∈ {0, 1}k×n and vector b ∈ {0, 1}k uniformly at random to form the
function family HA,b = {hA,b : hA,b(x) = Ax + b mod 2}. It is possible to show that HA,b
is pairwise independent [8, 9]. Notice that in this case, each function hA,b(x) = Ax + b mod 2
corresponds to k parity constraints. One useful way to think about pairwise independent functions
is to imagine them as functions that randomly project elements in {0, 1}n into 2k buckets. Define
Bh(g) = {x ∈ {0, 1}n : hA,b(x) = g} to be a “bucket” that includes all elements in {0, 1}n whose
mapped value hA,b(x) is vector g (g ∈ {0, 1}k). Intuitively, if we randomly sample a function hA,b
from a pairwise independent family, then we get the following: x ∈ {0, 1}n has an equal probability
to be in any bucket B(g), and the bucket locations of any two different elements x, y are independent.

3 XOR_MMAP Algorithm

3.1 Binary Case

We first solve the Marginal MAP problem for the binary case, in which the function w : A×X →
{0, 1} outputs either 0 or 1. We will extend the result to the weighted case in the next section.
Since a ∈ A often represent decision variables when MMAP problems are used in decision making,
we call a fixed assignment to vector a = a0 a “solution strategy”. To simplify the notation, we
use W(a0) to represent the set {x ∈ X : w(a0, x) = 1}, and use W(a0, hk) to represent the set
{x ∈ X : w(a0, x) = 1 and hk(x) = 0}, in which hk is sampled from a pairwise independent
function family that maps X to {0, 1}k. We write #w(a0) as shorthand for the count |{x ∈ X :
w(a0, x) = 1}| =∑x∈X w(a0, x). Our algorithm depends on the following result:

Theorem 3.1. (Ermon et. al.[8]) For a fixed solution strategy a0 ∈ A,

• Suppose #w(a0) ≥ 2k0 , then for any k ≤ k0, with probability 1 − 2c

(2c−1)2 , Algorithm
XOR_Binary(w, a0, k − c)=true.

• Suppose #w(a0) < 2k0 , then for any k ≥ k0, with probability 1 − 2c

(2c−1)2 , Algorithm
XOR_Binary(w, a0, k + c)=false.

To understand Theorem 3.1 intuitively, we can think of hk as a function that maps every element in
setW(a0) into 2k buckets. Because hk comes from a pairwise independent function family, each
element inW(a0) will have an equal probability to be in any one of the 2k buckets, and the buckets
in which any two elements end up are mutually independent. Suppose the count of solutions for a
fixed strategy #w(a0) is 2k0 , then with high probability, there will be at least one element located
in a randomly selected bucket if the number of buckets 2k is less than 2k0 . Otherwise, with high
probability there will be no element in a randomly selected bucket.

Theorem 3.1 provides us with a way to obtain a rough count on #w(a0) via a series of tests on
whetherW(a0, hk) is empty, subject to extra parity functions hk. This transforms a counting problem
to a series of NP queries, which can also be thought of as optimization queries. This transformation
is extremely helpful for the Marginal MAP problem. As noted earlier, the main challenge for the
marginal MAP problem is the intractable sum embedded in the maximization. Nevertheless, the
whole problem can be re-written as a single optimization if the intractable sum can be approximated
well by solving an optimization problem over the same domain.

We therefore design Algorithm XOR_MMAP, which is able to provide a constant factor approximation
to the Marginal MAP problem. The whole algorithm is shown in Algorithm 3. In its main procedure
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Algorithm 2: XOR_K(w : A×X → {0, 1}, k, T )
Sample T pair-wise independent hash functions

h
(1)
k , h

(2)
k , . . . , h

(T )
k : X → {0, 1}k;

Query Oracle

max
a∈A,x(i)∈X

T∑
i=1

w(a, x(i))

s.t. h
(i)
k (x(i)) = 0, i = 1, . . . , T.

(2)

Return true if the max value is larger than dT/2e,
otherwise return false.

Algorithm 3: XOR_MMAP(w : A × X →
{0, 1},n = log2 |X |,m = log2 |A|,T )
k = n;
while k > 0 do

if XOR_K(w, k, T ) then
Return 2k;

end
k ← k − 1;

end
Return 1;

XOR_K, the algorithm transforms the Marginal MAP problem into an optimization over the sum of T
replicates of the original function w. Here, x(i) ∈ X is a replicate of the original x, and w(a, x(i)) is
the original function w but takes x(i) as one of the inputs. All replicates share common input a. In
addition, each replicate is subject to an independent set of parity constraints on x(i). Theorem 3.2
states that XOR_MMAP provides a constant-factor approximation to the Marginal MAP problem:

Theorem 3.2. For T ≥ m ln 2+ln(n/δ)
α∗(c) , with probability 1 − δ, XOR_MMAP(w, log2 |X |, log2 |A|, T )

outputs a 22c-approximation to the Marginal MAP problem: maxa∈A#w(a). α∗(c) is a constant.

Let us first understand the theorem in an intuitive way. Without losing generality, suppose the
optimal value maxa∈A#w(a) = 2k0 . Denote a∗ as the optimal solution, ie, #w(a∗) = 2k0 .
According to Theorem 3.1, the set W(a∗, hk) has a high probability to be non-empty, for any
function hk that contains k < k0 parity constraints. In this case, the optimization problem
max

x(i)∈X ,h(i)
k (x(i))=0

w(a∗, x(i)) for one replicate x(i) almost always returns 1. Because h(i)k
(i = 1 . . . T ) are sampled independently, the sum

∑T
i=1 w(a

∗, x(i)) is likely to be larger than dT/2e,
since each term in the sum is likely to be 1 (under the fixed a∗). Furthermore, since XOR_K maximizes
this sum over all possible strategies a ∈ A, the sum it finds will be at least as good as the one attained
at a∗, which is already over dT/2e. Therefore, we conclude that when k < k0, XOR_K will return
true with high probability.

We can develop similar arguments to conclude that XOR_K will return false with high probability
when more than k0 XOR constraints are added. Notice that replications and an additional union bound
argument are necessary to establish the probabilistic guarantee in this case. As a counter-example,
suppose function w(x, a) = 1 if and only if x = a, otherwise w(x, a) = 0 (m = n in this case). If
we set the number of replicates T = 1, then XOR_K will almost always return 1 when k < n, which
suggests that there are 2n solutions to the MMAP problem. Nevertheless, in this case the true optimal
value of maxx#w(x, a) is 1, which is far away from 2n. This suggests that at least two replicates
are needed.
Lemma 3.3. For T ≥ ln 2·m+ln(n/δ)

α∗(c) , procedure XOR_K(w,k) satisfies:

• Suppose ∃a∗ ∈ A, s.t. #w(a∗) ≥ 2k, then with probability 1− δ
n2m , XOR_K(w, k − c, T )

returns true.

• Suppose ∀a0 ∈ A, s.t. #w(a0) < 2k, then with probability 1 − δ
n , XOR_K(w, k + c, T )

returns false.

Proof. Claim 1: If there exists such a∗ satisfying #w(a∗) ≥ 2k, pick a0 = a∗. Let X(i)(a0) =
max

x(i)∈X ,h(i)
k−c(x

(i))=0
w(a0, x

(i)), for i = 1 . . . , T . From Theorem 3.1, X(i)(a0) = 1 holds with

probability 1− 2c

(2c−1)2 . Let α∗(c) = D( 12‖ 2c

(2c−1)2 ). By Chernoff bound, we have

Pr

[
max
a∈A

T∑
i=1

X(i)(a) ≤ T/2

]
≤ Pr

[
T∑
i=1

X(i)(a0) ≤ T/2

]
≤ e
−D( 1

2
‖ 2c

(2c−1)2
)T

= e−α
∗(c)T , (3)

where

D

(
1

2
‖ 2c

(2c − 1)2

)
= 2 ln(2c − 1)− ln 2− 1

2
ln(2c)− 1

2
ln((2c − 1)2 − 2c) ≥ (

c

2
− 2) ln 2.
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For T ≥ ln 2·m+ln(n/δ)
α∗(c) , we have e−α

∗(c)T ≤ δ
n2m . Thus, with probability 1 − δ

n2m , we have

max
a∈A

∑T
i=1X

(i)(a) > T/2, which implies that XOR_K(w, k − c, T ) returns true.

Claim 2: The proof is almost the same as Claim 1, except that we need to use a union bound to let
the property hold for all a ∈ A simultaneously. As a result, the success probability will be 1 − δ

n

instead of 1− δ
n2m . The proof is left to supplementary materials.

Proof. (Theorem 3.2) With probability 1 − n δn = 1 − δ, the output of n calls of XOR_K(w, k, T )
(with different k = 1 . . . n) all satisfy the two claims in Lemma 3.3 simultaneously. Suppose
max
a∈A

#w(a) ∈ [2k0 , 2k0+1), we have (i) ∀k ≥ k0 + c + 1, XOR_K(w, k, T ) returns false, (ii)

∀k ≤ k0 − c, XOR_K(w, k, T ) returns true. Therefore, with probability 1 − δ, the output of
XOR_MMAP is guaranteed to be among 2k0−c and 2k0+c.

The approximation bound in Theorem 3.2 is a worst-case guarantee. We can obtain a tight bound (e.g.
16-approx) with a large number of T replicates. Nevertheless, we keep a small T , therefore a loose
bound, in our experiments, after trading between the formal guarantee and the empirical complexity.
In practice, our method performs well, even with loose bounds. Moreover, XOR_K procedures with
different input k are not uniformly hard. We therefore can run them in parallel. We can obtain a looser
bound at any given time, based on all completed XOR_K procedures. Finally, if we have access to a
polynomial approximation algorithm for the optimization problem in XOR_K, we can propagate this
bound through the analysis, and again get a guaranteed bound, albeit looser for the MMAP problem.

Reduce the Number of Replicates We further develop a few variants of XOR_MMAP in the supple-
mentary materials to reduce the number of replicates, as well as the number of calls to the XOR_K
procedure, while preserving the same approximation bound.

Implementation We solve the optimization problem in XOR_K using Mixed Integer Programming
(MIP). Without losing generality, we assume w(a, x) is an indicator variable, which is 1 iff (a, x)
satisfies constraints represented in Conjunctive Normal Form (CNF). We introduce extra variables
to represent the sum

∑
i w(a, x

(i)) which is left in the supplementary materials. The XORs in
Equation 2 are encoded as MIP constraints using the Yannakakis encoding, similar as in [7].

3.2 Extension to the Weighted Case

In this section, we study the more general case, where w(a, x) takes non-negative real numbers
instead of integers in {0, 1}. Unlike in [8], we choose to build our proof from the unweighted case
because it can effectively avoid modeling the median of an array of numbers [6], which is difficult
to encode in integer programming. We noticed recent work [4]. It is related but different from our
approach. Let w : A×X → R+, and M = maxa,x w(a, x).

Definition 3.4. We define the embedding Sa(w, l) of X in X × {0, 1}l as:

Sa(w, l) =
{
(x, y)|∀1 ≤ i ≤ l, w(a, x)

M
≤ 2i−1

2l
⇒ yi = 0

}
. (4)

Lemma 3.5. Let w′l(a, x, y) be an indicator variable which is 1 if and only if (x, y) is in Sa(w, l),
i.e., w′l(a, x, y) = 1(x,y)∈Sa(w,l). We claim that

max
a

∑
x

w(a, x) ≤ M

2l
max
a

∑
(x,y)

w′l(a, x, y) ≤ 2max
a

∑
x

w(a, x) +M2n−l.2 (5)

Proof. Define Sa(w, l, x0) as the set of (x, y) pairs within the set Sa(w, l) and x = x0, ie,
Sa(w, l, x0) = {(x, y) ∈ Sa(w, l) : x = x0}. It is not hard to see that

∑
(x,y) w

′
l(a, x, y) =∑

x |Sa(w, l, x)|. In the following, first we are going to establish the relationship between
|Sa(w, l, x)| and w(a, x). Then we use the result to show the relationship between

∑
x |Sa(w, l, x)|

2 If w satisfy the property that mina,x w(a, x) ≥ 2−l−1M , we don’t have the M2n−l term.
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and
∑
x w(x, a). Case (i): If w(a, x) is sandwiched between two exponential levels: M

2l
2i−1 <

w(a, x) ≤ M
2l
2i for i ∈ {0, 1, . . . , l}, according to Definition 3.4, for any (x, y) ∈ Sa(w, l, x), we

have yi+1 = yi+2 = . . . = yl = 0. This makes |Sa(w, l, x)| = 2i, which further implies that

M

2l
· |Sa(w, l, x)|

2
< w(a, x) ≤ M

2l
· |Sa(w, l, x)|, (6)

or equivalently,

w(a, x) ≤ M

2l
· |Sa(w, l, x)| < 2w(a, x). (7)

Case (ii): If w(a, x) ≤ M
2l+1 , we have |Sa(w, l, x)| = 1. In other words,

w(a, x) ≤ 2w(a, x) ≤ 2
M

2l+1
|Sa(w, l, x)| =

M

2l
|Sa(w, l, x)|. (8)

Also, M2−l|Sa(w, l, x)| =M2−l ≤ 2w(a, x) +M2−l. Hence, the following bound holds in both
cases (i) and (ii):

w(a, x) ≤ M

2l
|Sa(w, l, x)| ≤ 2w(a, x) +M2−l. (9)

The lemma holds by summing up over X and maximizing over A on all sides of Inequality 9.

With the result of Lemma 3.5, we are ready to prove the following approximation result:
Theorem 3.6. Suppose there is an algorithm that gives a c-approximation to solve the unweighted
problem: maxa

∑
(x,y) w

′
l(a, x, y), then we have a 3c-approximation algorithm to solve the weighted

Marginal MAP problem maxa
∑
x w(a, x).

Proof. Let l = n in Lemma 3.5. By definition M = maxa,x w(a, x) ≤ maxa
∑
x w(a, x), we have:

max
a

∑
x

w(a, x) ≤ M

2l
max
a

∑
(x,y)

w′l(a, x, y) ≤ 2max
a

∑
x

w(a, x) +M ≤ 3max
a

∑
x

w(a, x).

This is equivalent to:
1

3
· M
2l

max
a

∑
(x,y)

w′l(a, x, y) ≤ max
a

∑
x

w(a, x) ≤ M

2l
max
a

∑
(x,y)

w′l(a, x, y).

4 Experiments

We evaluate our proposed algorithm XOR_MMAP against two baselines – the Sample Average Ap-
proximation (SAA) [20] and the Mixed Loopy Belief Propagation (Mixed LBP) [13]. These two
baselines are selected to represent the two most widely used classes of methods that approximate the
embedded sum in MMAP problems in two different ways. SAA approximates the intractable sum
with a finite number of samples, while the Mixed LBP uses a variational approximation. We obtained
the Mixed LBP implementation from the author of [13] and we use their default parameter settings.
Since Marginal MAP problems are in general very hard and there is currently no exact solver that
scales to reasonably large instances, our main comparison is on the relative optimality gap: we first
obtain the solution amethod for each approach. Then we compare the difference in objective function
log
∑
x∈X w(amethod, x) − log

∑
x∈X w(abest, x), in which abest is the best solution among the

three methods. Clearly a better algorithm will find a vector a which yields a larger objective function.
The counting problem under a fixed solution a is solved using an exact counter ACE [5], which is
only used for comparing the results of different MMAP solvers.

Our first experiment is on unweighted random 2-SAT instances. Here, w(a, x) is an indicator variable
on whether the 2-SAT instance is satisfiable. The SAT instances have 60 variables, 20 of which are
randomly selected to form set A, and the remaining ones form set X . The number of clauses varies
from 1 to 70. For a fixed number of clauses, we randomly generate 20 instances, and the left panel of
Figure 1 shows the median objective function

∑
x∈X w(amethod, x) of the solutions found by the

three approaches. We tune the constants of our XOR_MMAP so it gives a 210 = 1024-approximation
(2−5 · sol ≤ OPT ≤ 25 · sol, δ = 10−3). The upper and lower bounds are shown in dashed lines.
SAA uses 10,000 samples. On average, the running time of our algorithm is reasonable. When
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Figure 1: (Left) On median case, the solutions a0 found by the proposed Algorithm XOR_MMAP have
higher objective

∑
x∈X w(a0, x) than the solutions found by SAA and Mixed LBP, on random 2-SAT

instances with 60 variables and various number of clauses. Dashed lines represent the proved bounds
from XOR_MMAP. (Right) The percentage of instances that each algorithm can find a solution that is at
least 1/8 value of the best solutions among 3 algorithms, with different number of clauses.
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Figure 2: On median case, the solutions a0 found by the proposed Algorithm XOR_MMAP are better
than the solutions found by SAA and Mixed LBP, on weighted 12-by-12 Ising models with mixed
coupling strength. (Up) Field strength 0.01. (Down) Field strength 0.1. (Left) 20% variables are
randomly selected for maximization. (Mid) 50% for maximization. (Right) 80% for maximization.

enforcing the 1024-approximation bound, the median time for a single XOR_k procedure is in seconds,
although we occasionally have long runs (no more than 30-minute timeout).

As we can see from the left panel of Figure 1, both Mixed LBP and SAA match the performance
of our proposed XOR_MMAP on easy instances. However, as the number of clauses increases, their
performance quickly deteriorates. In fact, for instances with more than 20 (60) clauses, typically the
a vectors returned by Mixed LBP (SAA) do not yield non-zero solution values. Therefore we are not
able to plot their performance beyond the two values. At the same time, our algorithm XOR_MMAP can
still find a vector a yielding over 220 solutions on larger instances with more than 60 clauses, while
providing a 1024-approximation.

Next, we look at the performance of the three algorithms on weighted instances. Here, we set the
number of replicates T = 3 for our algorithm XOR_MMAP, and we repeatedly start the algorithm with
an increasing number of XOR constraints k, until it completes for all k or times out in an hour. For
SAA, we use 1,000 samples, which is the largest we can use within the memory limit. All algorithms
are given a one-hour time and a 4G memory limit.

The solutions found by XOR_MMAP are considerably better than the ones found by Mixed LBP and
SAA on weighted instances. Figure 2 shows the performance of the three algorithms on 12-by-12
Ising models with mixed coupling strength, different field strengths and number of variables to form
set A. All values in the figure are median values across 20 instances (in log10). In all 6 cases in
Figure 2, our algorithm XOR_MMAP is the best among the three approximate algorithms. In general,
the difference in performance increases as the coupling strength increases. These instances are
challenging for the state-of-the-art complete solvers. For example, the state-of-the-art exact solver
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Figure 3: (Left) The image completion task. Solvers are given digits of the upper part as shown in the
first row. Solvers need to complete the digits based on a two-layer deep belief network and the upper
part. (2nd Row) completion given by XOR_MMAP. (3rd Row) SAA. (4th Row) Mixed Loopy Belief
Propagation. (Middle) Graphical illustration of the network cascade problem. Red circles are nodes
to purchase. Lines represent cascade probabilities. See main text. (Right) Our XOR_MMAP performs
better than SAA on a set of network cascade benchmarks, with different budgets.

AOBB with mini-bucket heuristics and moment matching [14] runs out of 4G memory on 60% of
instances with 20% variables randomly selected as max variables. We also notice that the solution
found by our XOR_MMAP is already close to the ground-truth. On smaller 10-by-10 Ising models
which the exact AOBB solver can complete within the memory limit, the median difference between
the log10 count of the solutions found by XOR_MMAP and those found by the exact solver is 0.3, while
the differences between the solution values of XOR_MMAP against those of the Mixed BP or SAA are
on the order of 10.

We also apply the Marginal MAP solver to an image completion task. We first learn a two-layer deep
belief network [3, 10] from a 14-by-14 MNIST dataset. Then for a binary image that only contains
the upper part of a digit, we ask the solver to complete the lower part, based on the learned model.
This is a Marginal MAP task, since one needs to integrate over the states of the hidden variables, and
query the most likely states of the lower part of the image. Figure 3 shows the result of a few digits.
As we can see, SAA performs poorly. In most cases, it only manages to come up with a light dot for
all 10 different digits. Mixed Loopy Belief Propagation and our proposed XOR_MMAP perform well.
The good performance of Mixed LBP may be due to the fact that the weights on pairwise factors in
the learned deep belief network are not very combinatorial.

Finally, we consider an application that applies decision-making into machine learning models. This
network design application maximizes the spread of cascades in networks, which is important in
the domain of social networks and computational sustainability. In this application, we are given a
stochastic graph, in which the source node at time t = 0 is affected. For a node v at time t, it will
be affected if one of its ancestor nodes at time t − 1 is affected, and the configuration of the edge
connecting the two nodes is “on”. An edge connecting node u and v has probability pu,v to be turned
on. A node will not be affected if it is not purchased. Our goal is to purchase a set of nodes within a
finite budget, so as to maximize the probability that the target node is affected. We refer the reader to
[20] for more background knowledge. This application cannot be captured by graphical models due
to global constraints. Therefore, we are not able to run mixed LBP on this problem. We consider a
set of synthetic networks, and compare the performance of SAA and our XOR_MMAP with different
budgets. As we can see from the right panel of Figure 3, the nodes that our XOR_MMAP decides to
purchase result in higher probabilities of the target node being affected, compared to SAA. Each dot
in the figure is the median value over 30 networks generated in a similar way.

5 Conclusion
We propose XOR_MMAP, a novel constant approximation algorithm to solve the Marginal MAP
problem. Our approach represents the intractable counting subproblem with queries to NP oracles,
subject to additional parity constraints. In our algorithm, the entire problem can be solved by a
single optimization. We evaluate our approach on several machine learning and decision-making
applications. We are able to show that XOR_MMAP outperforms several state-of-the-art Marginal MAP
solvers. XOR_MMAP provides a new angle to solving the Marginal MAP problem, opening the door to
new research directions and applications in real world domains.
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