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Abstract

Random constraint satisfaction problems (CSPs) have been
widely studied both in AI and complexity theory. Empirically
and theoretically, many random CSPs have been shown to ex-
hibit a phase transition. As the ratio of constraints to variables
passes certain thresholds, they transition from being almost
certainly satisfiable to unsatisfiable. The exact location of this
threshold has been thoroughly investigated, but only for cer-
tain common classes of constraints.
In this paper, we present new bounds for the location of these
thresholds in boolean CSPs. Our main contribution is that our
bounds are fully general, and apply to any fixed constraint
function that could be used to generate an ensemble of ran-
dom CSPs. These bounds rely on a novel Fourier analysis and
can be easily computed from the Fourier spectrum of a con-
straint function. Our bounds are within a constant factor of the
exact threshold location for many well-studied random CSPs.
We demonstrate that our bounds can be easily instantiated to
obtain thresholds for many constraint functions that had not
been previously studied, and evaluate them experimentally.

1 Introduction
Constraint satisfaction problems (CSPs) are widely used in
AI, with applications in optimization, control, and planning
(Russell et al. 2003). While many classes of CSPs are in-
tractable in the worst case (Cook 1971), many real-world
CSP instances are easy to solve in practice (Vardi 2014). As
a result, there has been significant interest in understanding
the average-case complexity of CSPs from multiple commu-
nities, such as AI, theoretical computer science, physics, and
combinatorics (Biere, Heule, and van Maaren 2009).

Random CSPs are an important model for studying the
average-case complexity of CSPs. Past works have pro-
posed several distributional models for random CSPs (Mol-
loy 2003; Creignou and Daudé 2003). An interesting feature
arising from many models is a phase transition phenomenon
that occurs as one changes the ratio of number of constraints,
m, to the number of variables, n. Empirical results (Mitchell,
Selman, and Levesque 1992) show that for many classes
of CSPs, randomly generated instances are satisfiable with
probability near 1 when m/n is below a certain threshold.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For m/n larger than a threshold, the probability of satisfia-
bility is close to 0. The statistical physics, computer science,
and mathematics communities have focused much attention
on identifying these threshold locations (Achlioptas, Naor,
and Peres 2005; Biere, Heule, and van Maaren 2009).

Phase transitions for common classes of CSPs such as k-
SAT and k-XORSAT are very well-studied. For k-SAT, re-
searchers struggled to find tight lower bounds on the satisfi-
ability threshold until the breakthrough work of Achlioptas
and Moore, which provided lower bounds a constant factor
away from the upper bounds. Later works closed this gap
for k-SAT (Coja-Oghlan and Panagiotou 2013; 2016). More
recently, Dudek, Meel, and Vardi (2016) also studied the sat-
isfiability threshold for a more general CSP class, namely k-
CNF-XOR, where both k-SAT and k-XORSAT constraints
can be used. The results and analyses from these works,
however, are all specific to the constraint classes studied.

In this paper, we provide new lower bounds on the lo-
cation of the satisfiability threshold that hold for general
boolean CSP classes. We focus on the setting where CSPs
are generated by a single constraint type, though our analysis
can extend to the setting with uniform mixtures of different
constraint functions. We extend techniques from (Achlioptas
and Peres 2004) and build on (Creignou and Daudé 2003),
which proposes a distributional model for generating CSPs
and provides lower bounds on the satisfiability threshold
for these models. The significance of our work is that our
bounds hold for all functions that could be used to generate
random CSP instances. The lower bounds from (Creignou
and Daudé 2003) are also broadly applicable, but they are
looser than ours because they do not depend on constraint-
specific properties. Our lower bounds are often tight (within
a constant factor of upper bounds for many CSP classes)
because they depend on specific properties of the Fourier
spectrum of the function used to generate the random CSPs.
Since these properties are simple to compute for any con-
straint function, our lower bounds are broadly applicable
too.

The Fourier analysis of boolean functions (O’Donnell
2014) will be vital for obtaining our main results. Express-
ing functions in the Fourier basis allows for clean anal-
yses of random constraints (Friedgut and Bourgain 1999;
Barak et al. 2015; Achim, Sabharwal, and Ermon 2016). Our
use of Fourier analysis is inspired by the work of Achim,
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Sabharwal, and Ermon (2016), who analyze the Fourier
spectra of random hash functions used as constraints in CSP-
based model counting. We show that the Fourier spectrum
of our constraint-generating function controls the level of
spatial correlation in the set of satisfying assignments to the
random CSP. If the Fourier spectrum is concentrated on first
and second order coefficients (corresponding to “low fre-
quencies”), this correlation will be very high, roughly in-
creasing the variance of the number of solutions to a ran-
dom CSP and decreasing the probability of satisfiability. In
related work, Montanari, Restrepo, and Tetali (2011) also
use Fourier analysis to provide tight thresholds in the case
where odd Fourier coefficients are all zero.

2 Notation and Preliminaries
In this section, we will introduce the preliminaries necessary
for presenting our main theorem. First, we formally define
our distribution for generating random CSPs, inspired from
(Creignou and Daudé 2003).

We will use n and m to denote the number of variables
and number of constraints in our CSPs, respectively. We will
also let f : {−1, 1}k → {0, 1} denote a binary function and
refer to f as our constraint function. Often we use the term
“solution set of f” to refer to the set {u : f(u) = 1}. Using
the constraint function f , we create constraints by applying
f to a signed subset of k variables.

Definition 1 (Constraint). Let I = (i1, . . . , ik) be an or-
dered tuple of k indices in [n], and let s be a sign vector
from {−1, 1}k. Given a vector σ ∈ {−1, 1}n, we will define
the vector σI,s of size k as follows:

σI,s = (s1σi1 , . . . , skσik) (1)

Now we can denote the application of f to these indices by
fI,s(σ) = f(σI,s). We call fI,s a constraint, and we say that
σ ∈ {−1, 1}n satisfies the constraint fI,s if fI,s(σ) = 1.

The definition of a CSP generated from f follows.

Definition 2 (CSP generated from f ). We will repre-
sent a CSP with m constraints and n variables gener-
ated from f as a collection of constraints Cf (n,m) =
{fI1,s1 , . . . , fIm,sm}. Then σ ∈ {−1, 1}n satisfies
Cf (n,m) if σ satisfies fIj ,sj for j = 1, . . . ,m.

Example 1 (3-SAT). Let f : {−1, 1}3 → {1, 0} where
f(u) = 0 for u = (−1,−1,−1) and f(u) = 1 for all other
u. Then f is the constraint function for the 3-SAT problem.

With these basic definitions in place, we are ready to in-
troduce the model for random CSPs.

2.1 Random CSPs
We discuss our model for randomly generating Cf (n,m),
and formally define a “satisfiability threshold.”

To generate instances of Cf (n,m), we simply choose
I1, . . . , Im and s1, . . . , sm uniformly at random. For com-
pleteness, we sample without replacement, i.e. there are no
repeated variables in a constraint, and no duplicate con-
straints. However, sampling with replacement does not af-
fect final results. For the rest of this paper we abuse notation

and letCf (n,m) denote a randomly generated CSP instance
following this model.

Now we formally discuss satisfiability thresholds. We let
r = m/n. For many constraint functions f , there exist
thresholds rf,sat and rf,unsat such that

lim
n→∞

Pr[Cf (n, rn) is satisfiable] =
{
1 if r < rf,sat

0 if r > rf,unsat

In general, it is unknown whether rf,sat = rf,unsat, but for
some problems such as k-SAT (for large k) and k-XORSAT,
affirmative results exist (Ding, Sly, and Sun 2015; Pittel and
Sorkin 2016). If rf,sat = rf,unsat, then we say that the random
CSP Cf (n,m) exhibits a sharp threshold in m/n.

We are concerned with finding lower bounds rf,low on
rf,unsat such that there exists a constant C > 0 independent
of n so that for sufficiently large n,

Pr[Cf (n, rn) is satisfiable] > C for all r < rf,low (2)

For CSP classes with a sharp threshold, (2) implies that

lim
n→∞

Pr[Cf (n, rn) is satisfiable] = 1 for all r < rf,low

We also wish to find upper bounds rf,up such that

lim
n→∞

Pr[Cf (n, rn) is satisfiable] = 0 for all r > rf,up

For an example of these quantities instantiated on a concrete
example, refer to the experiments in Section 5.

We provide a value for rf,up which was derived earlier in
(Creignou and Daudé 2003). Dubois (2001) and Creignou,
Daudé, and Dubois (2007) provide methods for obtaining
tighter upper bounds, but the looser values that we use are
sufficient for showing that rf,low is on the same asymptotic
order as rf,unsat for many choices of f .

The bound rf,low depends on both the symmetry and size
of the solution set of f . The more assignments u ∈ {−1, 1}k
such that f(u) = 1, the more likely it is that each con-
straint is satisfied. Increased symmetry reduces the variance
in the number of solutions to Cf (n, rn), so solutions are
more spread out among possible CSPs in our class and the
probability that Cf (n, rn) will have a solution is higher. We
will formally quantify this symmetry in terms of the Fourier
spectrum of f , which we introduce next.

2.2 Fourier Expansion of Boolean Functions
We discuss basics of Fourier analysis of boolean func-
tions. For a detailed review, refer to (O’Donnell 2014).
We define the vector space Fk of all functions mapping
{−1, 1}k to R. The set Fk has the inner product 〈f1, f2〉 =∑
u∈{−1,1}k f1(u)f2(u)/2

k for any f1, f2 ∈ Fk.
This inner product space has orthonormal basis vectors

χS , where the parity functions χS follow χS(u) =
∏
i∈S ui

for all S ⊆ [k], subsets of the k indices. Because (χS)S⊆[k]
forms an orthonormal basis, if we write

f̂(S) = 〈f, χS〉 =
1

2k

∑
u∈{−1,1}k

f(u)χS(u) (3)

then we can write f as a linear combination of these vectors:
f =

∑
S⊆[k] f̂(S)χS . We note that when S = ∅, the empty



set, f̂(∅) is simply the average of f over {−1, 1}k. We will
refer to the coefficients (f̂(S))S⊆[k] as the Fourier spectrum
of f . Since these coefficients are well-studied in theoretical
computer science (O’Donnell 2014), the Fourier coefficients
of many boolean functions are easily obtained.

Example 2 (3-SAT). For 3-SAT, f̂(∅) = 7/8. f̂({1}) =

f̂({2}) = f̂({3}) = 1/8, and f̂({1, 2}) = f̂({2, 3}) =

f̂({1, 3}) = −1/8.
Representing f in the Fourier bases will facilitate our

proofs, providing a simple way to express expectations over
our random CSPs. The Fourier spectrum can also provide a
measure of “symmetry” in f - if some values of f̂(S) are
high where |S| = 1, then satisfying assignments to f are
more skewed in the variable corresponding to S. We will
show how this impacts satisfiability in Section 3.2.

3 Main Results
We provide simple formula for rf,up. A similar result is in
(Creignou and Daudé 2003), and the full proof is in the ap-
pendix.
Proposition 1. For all constraint functions f , let

rf,up =
log 2

log 1/f̂(∅)
<

log 2

1− f̂(∅)
If r ≥ rf,up, limn→∞ Pr[Cf (n, rn) is satisfiable] = 0.

Proof Sketch. We compute the expected solution count for
Cf (n, rn). The expected solution count will scale with f̂(∅),
since 2kf̂(∅) is simply the number of u ∈ {−1, 1}k where
f(u) = 1 and therefore governs how easily each constraint
will be satisfied. If r > rf,up, the expected solution count
converges to 0 as n → ∞, so Markov’s inequality implies
that the probability that a solution exists goes to 0.

Next, we will present our value for rf,low. First, some no-
tation: let U = {u ∈ {−1, 1}k : f(u) = 1}, and let A be
the k×|U |matrix whose columns are the elements of u. We
will use A+ to denote the Moore-Penrose pseudoinverse of
A. For a reference on this, see (Barata and Hussein 2012).
Finally, let 1 be the |U |-dimensional vector of 1’s.
Example 3 (3-SAT). For 3-SAT, k = 3 and |U | = 7, and we
can write A as follows (up to permutation of its columns):

A =

[
1 1 1 1 −1 −1 −1
1 1 −1 −1 1 1 −1
1 −1 1 −1 1 −1 1

]
where columns of A satisfy the 3-SAT constraint function.

The following main theorem provides the first computable
equation for obtaining lower bounds that are specific to the
constraint-generating function f .
Theorem 1. For all constraint functions f , let

rf,low =
1

2

c

1− c
where c = f̂(∅)− 1TA+A1

2k

If r < rf,low, then there exists a constant C > 0 such that
limn→∞ Pr[Cf (n, rn) is satisfiable] > C.

The lower bound rf,low is an increasing function of c
which is dependent on two quantities. First, with higher val-
ues of f̂(∅), Cf (n, rn) will have more satisfying assign-
ments on average, so c and the threshold value will be higher.
Second, c depends on the level of symmetry in the solution
set of f , which we will show is connected to the Fourier
spectrum of f . We explain this dependence in Section 3.2.

In comparison, Creignou and Daudé (2003) obtain lower
bounds which depend only on the arity of f . While we can-
not make an exact comparison because Creignou and Daudé
use a different random CSP ensemble, for reference, they
provide the general lower bound of 1/(kek − k) expected
constraints per variable for functions of arity k. Our bounds
are much tighter because of their specificity while remain-
ing simple to compute. To demonstrate, we instantiate our
bounds for some example constraint functions in Figure 1.
Whereas their bounds are exponentially decreasing in k, our
bounds are constant or increasing in k for the functions
shown.

3.1 Constraint Functions in Figure 1
We define the constraint functions in Figure 1. Unless spec-
ified otherwise, they will be in the form f : {−1, 1}k →
{0, 1}.

1. k-SAT: f(u) = 0 if u is the all negative ones vector, and
f(u) = 1 otherwise.

2. k-XORSAT: f(u) = 1(χ[k](u) = −1)
3. k-NAESAT: f(u) = 0 if u is the all negative ones or all

ones vector, and f(u) = 1 otherwise.
4. k-MAJORITY: Defined when k is odd, f(u) = 1 if more

than half of the variables of u are 1.
5. a-MAJ ⊗ 3-MAJ: Defined when a is odd, where f :
{−1, 1}3a → {0, 1}. Defined as the composition of a-
MAJORITY on a groups of 3-MAJORITY, as follows:

f(u1, . . . , u3a) =

fa−MAJ(f3−MAJ(u1, u2, u3), . . . ,

f3−MAJ(u3a−2, u3a−1, u3a))

6. k-MOD-3: f(u) = 1 when the number of 1’s in u is di-
visible by 3, and 0 otherwise.

7. ORb⊗ XORa: In this case, f : {−1, 1}ab → {0, 1}, and
f is the composition of a OR over b groups of XORs over
a variables, as follows:

f(u1, . . . , uab) =

fORb(fXORa(u1, . . . , ua), . . . ,

fXORa(uab−a+1, . . . , uab))

While the last four constraint functions have not been ana-
lyzed much in the existing CSP literature, these types of gen-
eral constraints are of practical interest because of (Achim,
Sabharwal, and Ermon 2016), which performs probabilis-
tic inference by solving CSPs based on arbitrary hash func-
tions. For example, Achim, Sabharwal, and Ermon (2016)
show that MAJORITY constraints are effective in practice
for solving probabilistic inference problems.



CSP class (f ) Best lower bound on rf,unsat Our bound rf,low Upper bound rf,up

k-XORSAT 1 1
2 1

k-SAT 2k ln 2− 1+ln 2
2 − ok(1) 2k−1 −O(k) 2k ln 2

k-NAESAT 2k−1 ln 2− ln 2
2 −

1
4 − ok(1) 2k−2 − 1

2 2k−1 ln 2

k-MAJORITY ?
1
2−k(

k−1
k−1
2
)
2
2−2k+1

1+k(
k−1
k−1
2
)
2
2−2k+2

= 0.111− oa(1) 1

a-MAJ ⊗3-MAJ ?
1
2−3a(

a−1
a−1
2
)
2
2−2a−1

1+3a(
a−1
a−1
2
)
2
2−2a−2

= 0.177− oa(1) 1

k-MOD-3 ? 1
4 − ok(1)

ln 2
ln 3 + ok(1)

ORb⊗ XORa ? 2b−1 − 1/2 2b−1 ln 2

Figure 1: We compare the best known lower bounds on the satisfiability threshold to our lower and upper bounds. For k-
XORSAT (Pittel and Sorkin 2016), k-SAT (Ding, Sly, and Sun 2015), and k-NAESAT (Coja-Oglan and Panagiotou 2012), the
numbers listed are known as exact sharp threshold locations. For the last four, we do not know of existing lower bounds. ⊗ is
the composition operator for boolean functions, and we define these functions in Section 3.1.

3.2 Connecting Bounds with Fourier Spectrum
We explain how the Fourier spectrum can help us interpret
Theorem 1. We first show the connection between c and the
Fourier spectrum. Let f̂S:|S|=1 be the k-dimensional vector
whose entries are Fourier coefficients of f for size 1 sets.
Let B be the k × k matrix with diagonal entries Bii = f̂(∅)
and off-diagonal entries Bij = f̂({i, j}) for i 6= j.
Example 4 (3-SAT). Following the coefficients in Example
2, for 3-SAT, f̂S:|S|=1 = (1/8, 1/8, 1/8) and

B =

[
7/8 −1/8 −1/8
−1/8 7/8 −1/8
−1/8 −1/8 7/8

]
Lemma 1. When the rows of A are linearly independent,
c = f̂(∅)− f̂TS:|S|=1B

−1f̂S:|S|=1.

From this lemma, we see that larger values of c corre-
spond to smaller f̂S:|S|=1. These terms will measure the
amount of “symmetry” in the solution set for f . The matrix
B and vectors f̂S:|S|=1 are easily obtained for many f since
Fourier coefficients are well-studied (O’Donnell 2014).

Figure 1 shows how f̂(∅) − c and f relate. Since k-
SAT has a mostly symmetric solution set, f̂k−SAT(∅) − c =
O(k/22k) since c = 1 − 2−k − O(k/22k), which is small
compared to f̂k−SAT(∅). The solution set of k-NAESAT
is completely symmetric as if fk−NAESAT(x) = 1, then
fk−NAESAT(−x) = 1. Thus, fk−NAESAT has 0 weight on
Fourier coefficients for sets with odd size so we can compute
that f̂k−NAESAT(∅)− c = 0. k-MAJORITY, however, is less
symmetric, as shown by larger first order coefficients. Here,
the bound in Figure 1 gives limk→∞ f̂k−MAJORITY(∅)− c =
1/π, which is large compared to f̂k−MAJORITY(∅) ≈ 1/2.

4 Proof Strategy
Our proof relies on the second moment method, which has
been applied with great success to achieve lower bounds for

problems such as k-SAT (Achlioptas and Peres 2004) and
k-XORSAT (Dubois and Mandler 2002). The second mo-
ment method is based on the following lemma, which can
be derived using the Cauchy-Schwarz inequality:

Lemma 2. LetX be any real-valued random variable. Then

Pr[X 6= 0] = Pr[|X| 6= 0] ≥ E[|X|]2

E[X2]
≥ E[X]2

E[X2]
(4)

If X is only nonzero when Cf (n, rn) has a solution, we
obtain lower bounds on the probability that a solution exists
by upper bounding E[X2]. For example, we could let X be
the number of solutions to Cf (n, rn). However, as shown in
(Achlioptas and Peres 2004), this choice of X fails in most
cases. Whether two different assignments satisfy Cf (n, rn)
is correlated: if the assignments are close in Hamming dis-
tance and one assignment is satisfying, it is more likely that
the other is satisfying as well. This will make E[X2] much
larger than E[X]2, so (4) will not provide useful information.
Figure 2a demonstrates this failure for k-SAT. Achlioptas
and Peres (2004) show formally that the ratio E[X]2/E[X2]
will decrease exponentially (albeit at a slow rate). On the
other hand, k-NAESAT is “symmetric”, so the second mo-
ment method works directly here. In the plot, E[X]2/E[X2]
for 3-NAESAT stays above a constant. This also follows for-
mally from our main theorem as well as (Achlioptas and
Moore 2002). We formally define our requirements on sym-
metry in (13).

We circumvent this issue by weighting solutions to reduce
correlations before applying the second moment method. As
in (Achlioptas and Peres 2004), we use a weighting which
factors over constraints in Cf (n, rn) and apply the second
moment method to the random variable

X =
∑

σ∈{−1,1}n

∏
c∈Cf (n,rn)

w(σ, c) (5)

where Cf (n, rn) is a collection of constraints
{fI1,s1 , . . . , fIm,sm} and the randomness in X comes



over the choices of Ij , sj . Now we can restrict our attention
to constraint weightings of the form w(σ, fI,s) = w(σI,s).
In the special case where w(σI,s) = f(σI,s), X will simply
represent the number of solutions to Cf (n, rn). In general,
we require w(σI,s) = 0 whenever f(σI,s) = 0. This way, if
X 6= 0, then Cf (n, rn) must have a solution.

For convenience, we assume that the index sets I1, . . . , Im
are sampled with replacement. They are chosen uniformly
from [n]k. We also allow constraints to be identical. In the
appendix, we justify why proofs in this setting carry over
to the without-replacement setting in Section 2.1 and also
provide full proofs to the lemmas presented below.

In this setting, we will compute the first and second mo-
ments of the X chosen in (5) in terms of the Fourier spec-
trum of w.

Lemma 3. The squared first moment of X is given by

E[X]2 = 22n(ŵ(∅)2)rn (6)

Proof. We can expand E[X] as follows:

E[X] =
∑

σ∈{−1,1}n
E

 rn∏
j=1

w(σIj ,sj )


=

∑
σ∈{−1,1}n

E[w(σI,s)]rn (7)

where we used the fact that constraints are chosen indepen-
dently. Now we claim that for any u ∈ {−1, 1}k,

Pr[σI,s = u] =
1

2k

This follows from the fact that we choose s uniformly over
{−1, 1}k and our definition of σI,s in (1). Thus,

E[w(σI,s)] =
∑

u∈{−1,1}k
w(u) Pr[σI,s = u]

=
1

2k

∑
u∈{−1,1}k

w(u)

= ŵ(∅)

Plugging back into (7) gives the desired result.

Next, we will compute the second moment E[X2].

Lemma 4. Let gw(α) =
∑
S⊆[k](2α − 1)|S|ŵ(S)2. The

second moment of X is given by

E[X2] = 2n
n∑
j=0

(
n

j

)
gw(j/n)

rn (8)

The function gw(α) is similar to the noise sensitivity of a
boolean function (O’Donnell 2003) and measures the corre-
lation in the value of w between two assignments σ, τ which
overlap at α(σ, τ)n locations. As a visual example, Figure
2b shows how gw(α) changes for k-XORSAT with varying
k. The key of our proof is showing that E[w(σI,s)w(τI,s)] =
gw(α(σ, τ)) for a random constraint fI,s.

We will now write E[X]2 in terms of gw. Since gw(1/2) =
ŵ(∅)2, plugging this into (6) gives us

E[X]2 = 22ngw(1/2)
rn (9)

This motivates us to apply the following lemma from
(Achlioptas and Peres 2004), which will allow us to trans-
late bounds on gw(α) into bounds on E[X]2/E[X2]:
Lemma 5. Let φ be any real, positive, twice-differentiable
function on [0, 1] and let

Sn =

n∑
j=0

(
n

j

)
φ(j/n)n

Define ψ on [0, 1] as ψ(α) = φ(α)
αα(1−α)1−α . If there exists

αmax ∈ (0, 1) such that ψ(αmax) > ψ(α) for all α 6= αmax,
and ψ′′(αmax) < 0, then there exist constants B,C > 0
such that for all sufficiently large n,

Bψ(αmax)
n ≤ Sn ≤ Cψ(αmax)

n (10)

To apply the lemma, we can define φr(α) = gw(α)
r and

ψr(α) =
φr(α)

αα(1−α)1−α . Then from (9), we note that

ψr(1/2)
n = 2n(gw(1/2)

r)n = E[X]2/2n (11)

On the other hand, from (8),
n∑
j=0

(
n

j

)
φr(j/n)

n = E[X2]/2n (12)

so if the conditions of Lemma 5 hold for αmax = 1/2, we
recover that E[X]2/E[X2] ≥ C for some constant C > 0.

One requirement for ψr(α) to be maximized at α =
1/2 is that ψ′r(1/2) = 0. Expanding ψ′r(1/2) gives
2gw(1/2)

r−1(rg′w(1/2)) = 0. Since gw(1/2) = ŵ(∅)2 >
0, we thus require

g′w(1/2) = 2
∑

S⊆[k]:|S|=1

ŵ(S)2 = 0 (13)

In order to satisfy (13), we need ŵ(S) = 0 for all S ⊆ [k]
where |S| = 1. To use Lemma 5, we would like to choose
w such that (13) holds. We discuss how to choose w to opti-
mize our lower bounds in the appendix. In the next section,
we will provide r so that the conditions of Lemma 5 hold at
α = 1/2 for arbitrary w when (13) is satisfied.

4.1 Bounding the Second Moment For Fixed w
We give a general bound on r in terms of our weight function
w so that the conditions of Lemma 5 are satisfied for α =
1/2. For now, the only constraint we place on w is that (13)
holds. The next lemma lets us consider only α ∈ [1/2, 1].
Lemma 6. Let α ≥ 1/2. Then gw(α) ≥ gw(1− α).

This lemma follows because gw(α) is a polynomial in
(2α − 1) with nonnegative coefficients, and (2α − 1) > 0
for α > 1/2.

Now we can bound ψr(α) for α ∈ [1/2, 1]. Combined
with Lemma 6, the next lemma will give conditions on r
such that ψr(1/2) > ψr(α) for all α ∈ [0, 1].



(a) E[X]2/E[X2] vs. n for 3-SAT and 3-
NAESAT. X is the solution count, r =
1.

(b) gw(α) when f is k-XORSAT and
w = f .

(c) ψr(α) with f as 5-NAESAT and
w = f .

Figure 2: For concreteness, we provide sample plots of the relevant quantities in our proofs.

Lemma 7. Let the weight function w satisfy (13). If

r ≤ 1

2

ŵ(∅)2∑
S:|S|≥2 ŵ(S)

2
(14)

ψr(1/2) > ψr(α) for α ∈ [0, 1] and ψ′′r (1/2) < 0.
Figure 2c shows how r controls the shape of the function

ψr(α). As r increases, ψ′′r (1/2) becomes positive and ψr(α)
will no longer attain a local maximum in that region. The key
step in proving Lemma 7 is rearranging ψr(1/2) > ψr(α)
and simplify calculations by using approximations for the
logarithmic terms that appear.

Our bound on r compares the average of w over {−1, 1}k
with the correlations between w and the Fourier basis func-
tions. If w has strong correlations with the other Fourier ba-
sis functions, two assignments which are equal at αn vari-
ables will likely either be both satisfying or both not satisfy-
ing as α approaches 1. This increases E[X2] but not E[X]2

and makes Lemma 2 provide a trivial bound if r is too large.
Thus, if w has strong correlations with the Fourier basis
functions, we must choose smaller r as reflected by (14).

To get the tightest bounds, we wish to maximize the ex-
pression in (14). Although we prove our lemma for general
w requiring only (13), we also need w(u) = 0 whenever
f(u) = 0 to apply our lemma to satisfiability. Recalling our
definition of X in (5), this condition ensures that Cf (n, rn)
has a solution whenever X 6= 0. Thus,

w(u) = λ(u)f(u) (15)

for some λ : {−1, 1}k → R. If we disregard (13), choosing
λ(u) = 1 would maximize the bound on r in (14). The ad-
ditional requirement of (13) for the second moment method
to succeed can be viewed as a “symmetrization penalty” on
r. In the appendix, we discuss how to choose w to optimize
our bound on r while satisfying (13) and (15).

4.2 Proving the Main Theorem
We will combine our lemmas to prove Theorem 1.

Proof of Theorem 1. We wish to apply the second moment
method on X defined in (5), where w is a function we
use to weigh assignments to individual constraints. We
choose w as described in the full version of the paper,
which satisfies both (13) and (15). Since w satisfies (15),
Pr[Cf (n, rn) is satisfiable] ≥ Pr[X 6= 0] ≥ E[X]2/E[X2]
by Lemma 2. Now we will use Lemma 7 to show that the
conditions for Lemma 5 are satisfied for φr = gw(α)

r and
r satisfying (14). For our choice of w, it follows from the
derivations in the appendix that the RHS of (14) becomes

r < rf,low =
1

2

c

1− c
where c = f̂(∅)− 1TA+A1

2k

where A is defined in Section 3. There is a slight technical-
ity in directly applying Lemma 5 because φr might not be
nonnegative for α < 1/2; we discuss this in the appendix.
Now using (11) and (12), and applying Lemma 5, we can
conclude that there exists C > 0 such that

Pr[Cf (n, rn) is satisfiable] ≥ E[X]2/E[X2] ≥ C

for sufficiently large n and all r < rf,low.

There remains a question of what rf,low we can hope
achieve using a second moment method proof where X is
defined as in (5). The following lemma provides some intu-
ition for this:
Lemma 8. In order for the conditions of Lemma 5 to hold
at αmax = 1/2 for X in the form of (5) and any choice of w
satisfying (15), we require

r < log 2/ log
1

f̂(∅)− 1TA+A1
2k

≤ rf,up =
log 2

log 1
f̂(∅)

(16)

The difference of 1TA+A1/2k in the lower logarithm
compared to rf,up can be viewed as a “symmetrization
penalty” necessary for our proof to work. While Lemma
8 does not preclude applications of the second moment
method that do not rely on Lemma 5, consider what happens



(a) a = 2, b = 4 (b) a = 2, b = 5

Figure 3: Proportion of CSPs satisfiable out of 50 trials vs. r for tribes functions. We show our bounds for reference.

for r that do not satisfy (16). For these r, the function ψr(α)
must obtain a maximum at some α∗ ∈ [0, 1], α∗ 6= 1/2. If it
also happens that φr(α) is nonnegative and twice differen-
tiable on [0, 1], and ψ′′r (α

∗) < 0, then conditions of Lemma
5 hold, and applying it to αmax = α∗ along with (10), (11),
and (12) will actually imply that

E[X]2

E[X2]
≤ 1

B

(
ψr(1/2)

ψr(α∗)

)n
for some constant B > 0, which gives us an exponentially
decreasing, and therefore trivial lower bound for the second
moment method. Therefore, we believe that (16) is near the
best lower bound on rf,unsat that we can achieve by applying
the second moment method on X in the form of (5).

5 Experimental Verification of Bounds
We empirically test our bounds with the goal of examin-
ing their tightness. For our constraint functions, we will use
tribes functions. The tribes function takes the disjunction of
b groups of a variables and evaluates to 1 or 0 based on
whether the following formula is true:

TRIBESa,b(x1, . . . , xab) = ∨b−1i=0

(
∧aj=1xia+j

)
where +1 denotes true and −1 denotes false. For our ex-
periments, we randomly generate CSP formulas based on
TRIBESa,b. We use the Dimetheus1 random CSP solver to
solve these formulas, or report if no solution exists. We show
our results in Figure 3. As expected, our values for lower
bounds rf,low are looser than the upper bounds rf,up.

6 Conclusion
Using Fourier analysis and the second moment method, we
have shown general bounds on m/n, the ratio of constraints
to variables; for m/n below these bounds, there is constant
probability that a random CSP is satisfiable. We demonstrate
that our bounds are easily instantiated and can be applied
to obtain novel estimates of the satisfiability threshold for

1https://www.gableske.net/dimetheus

many classes of CSPs. Our bounds depend on how easy it
is to symmetrize solutions to the constraint function. We
provide a heuristic argument to approximate the best pos-
sible lower bounds that our application of the second mo-
ment method can achieve; these bounds differ from upper
bounds on the satisfiability threshold by a “symmetrization
penalty.” Thus, an interesting direction of future research is
to determine whether we can provide tighter upper bounds
that account for symmetrization, or whether symmetrization
terms are an artificial product of the second moment method.

7 Acknowledgements
This work was supported by the Future of Life Institute
(grant 2016-158687) and by the National Science Founda-
tion (grant 1649208).

References
Achim, T.; Sabharwal, A.; and Ermon, S. 2016. Beyond par-
ity constraints: Fourier analysis of hash functions for infer-
ence. In Proceedings of The 33rd International Conference
on Machine Learning, 2254–2262.
Achlioptas, D., and Moore, C. 2002. The asymptotic order
of the random k-SAT threshold. In Foundations of Computer
Science, 2002. Proceedings. The 43rd Annual IEEE Sympo-
sium on, 779–788. IEEE.
Achlioptas, D., and Peres, Y. 2004. The threshold for
random-SAT is 2k log 2 − O(k). Journal of the American
Mathematical Society 17(4):947–973.
Achlioptas, D.; Naor, A.; and Peres, Y. 2005. Rigorous
location of phase transitions in hard optimization problems.
Nature 435(7043):759–764.
Barak, B.; Moitra, A.; O’Donnell, R.; Raghavendra, P.;
Regev, O.; Steurer, D.; Trevisan, L.; Vijayaraghavan, A.;
Witmer, D.; and Wright, J. 2015. Beating the random assign-
ment on constraint satisfaction problems of bounded degree.
arXiv preprint arXiv:1505.03424.
Barata, J. C. A., and Hussein, M. S. 2012. The moore–



penrose pseudoinverse: A tutorial review of the theory.
Brazilian Journal of Physics 42(1-2):146–165.
Biere, A.; Heule, M.; and van Maaren, H. 2009. Handbook
of satisfiability, volume 185. ios press.
Coja-Oghlan, A., and Panagiotou, K. 2013. Going after the
k-SAT threshold. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, 705–714. ACM.
Coja-Oghlan, A., and Panagiotou, K. 2016. The asymptotic
k-SAT threshold. Advances in Mathematics 288:985–1068.
Coja-Oglan, A., and Panagiotou, K. 2012. Catching the
k-NAESAT threshold. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing, 899–908.
ACM.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In Proceedings of the third annual ACM symposium
on Theory of computing, 151–158. ACM.
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8 Appendix: Optimizing w
Recall that we wish to choosew, our function used to weight
solutions to the constraints in Cf (n, rn) so that ŵ(∅) is as
close as possible to f̂(∅), where f is our constraint func-
tion. We require that (13) and (15) hold, and we wish to
maximize the bound in Lemma 7. For convenience, we let
ŵ = (ŵ(S))S⊆[k], the vector of 2k Fourier coefficients ofw.
The bound in (14) depends only on ŵ(∅)2/(‖ŵ‖22− ŵ(∅)2),
so we can write the following optimization problem:

Maximize ŵ(∅)2

Subject to ‖ŵ‖2 = 1

ŵS:|S|=1 = 0

w(u) = λ(u)f(u) for all u ∈ {−1, 1}k

(17)

The combination of the objective and the first constraint
ensures that we maximize ŵ(∅)2/(‖ŵ‖22 − ŵ(∅)2). To see
this, we note that we can scale w so ‖w‖22 = 1 without
changing the value of ŵ(∅)2/(‖ŵ‖22 − ŵ(∅)2). The second
constraint ensures that (13) holds, and the third constraint is
(15). In this section, we will derive the solution to this opti-
mization problem.

Recalling that (15) asserts thatw(u) = λ(u)f(u), we will
express the Fourier coefficients ofw in terms of λ and f . For
convenience, we will let U = {u ∈ {−1, 1}k : f(u) = 1}.
We note that from (3), for any subset S ⊆ [k]

ŵ(S) =
1

2k

∑
u∈{−1,1}k

λ(u)f(u)χS(u)

=
1

2k

∑
u∈U

λ(u)χS(u)

(18)

We formulate this as a matrix-vector product. Overload-
ing notation, we define the 2k-dimensional vector χ(u) =
(χS(u))S⊆[k]. Define the 2k×|U |matrixM whose columns
are the vectors χ(u) for all u ∈ U , i.e. the matrix whose
columns are the Fourier basis functions evaluated at solu-
tions of f . Finally, we let λ be the |U |-dimensional vector
whose entries correspond to λ(u), arranged in the same or-
der as the columns of M . Then from (18), Mλ = 2kŵ. Us-
ing this, we will transform the optimization problem in (17)
into a problem over λ.

First, the condition that ŵS:|S|=1 = 0 becomes the con-
dition that Aλ = 0, where A = MS:|S|=1, the submatrix
of M consisting of all rows corresponding to size 1 subsets
of [k]. Let A+ denote the Moore-Penrose pseudoinverse of
A. Since λ is in the null space of A, we can write it as the
projection of any arbitrary vector β ∈ R|U | as follows:

λ = (I −A+A)β (19)

where I − A+A is a symmetric, idempotent projection ma-
trix (Barata and Hussein 2012). The following example il-
lustrates our notation.

Example 5 (3-MAJORITY). In the case of 3-MAJORITY,
we can instantiate M as follows, up to permutation of the
columns. The submatrix A consists of the second to fourth

rows of M . We label rows by which basis function they cor-
respond to.

M =

χ∅
χ{1}
χ{2}
χ{3}
χ{1,2}
χ{1,3}
χ{2,3}
χ{1,2,3}



1 1 1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1


Now we opt to write our constraint and objective in terms

of β. We note that

‖w‖22 =
1

22k
λTMTMλ

=
1

2k
λTλ

because the columns of M are orthogonal to each other.
Plugging in our expression from (19) and using the fact that
I −A+A is symmetric and idempotent, we get

‖w‖22 =
1

2k
βT (I −A+A)β

which gives us the transformed constraint

βT (I −A+A)β = 2k (20)

Next, we transform our objective. Since ŵ(∅) = 1Tλ/2k,
plugging in (19) and including the constraint (20), we get
the final optimization problem

Maximize 1T (I −A+A)β

Subject to βT (I −A+A)β = 2k
(21)

The following lemma gives us the optimal solution to this
problem:

Lemma 9. The (not necessarily unique) optimal β for this
optimization problem occurs at

β =

√
2k

1T (I −A+A)1
· 1

for which the corresponding value of ŵ(∅) is

ŵ(∅) =

√
1T (I −A+A)1

2k

Proof. Since I − A+A is idempotent and symmetric, an
equivalent optimization problem as (21) is

Maximize 1T (I −A+A)T (I −A+A)β

Subject to βT (I −A+A)T (I −A+A)β = 2k

From this, it is clear that the direction of (I−A+A)β which
maximizes the objective occurs when (I−A+A)β = ρ(I−
A+A)1, in which case we can choose β = ρ1 for some
ρ ∈ R. Solving for ρ gives us the desired result.



If we plug this value for ŵ(∅) into the bound in Lemma 7,
we will get the value of rf,low described in Theorem 1.

Lemma 9 does not only give us the maximum value of the
bound in Lemma 7; it also gives us a sense of the best rf,low
we can achieve using our proof techniques. We can use it to
prove Lemma 8:

Proof of Lemma 8. First, recall that in order for Lemma 5 to
hold at αmax = 1/2, we require (13) to be true. Now for
any w, we also require ψr(1/2) > ψr(1) if the lemma is to
apply for αmax = 1/2. Expanding this condition, we get

2gw(1/2)
r > gw(1)

r

=⇒ log 2 > r log
gw(1)

gw(1/2)

Since gw(1)/gw(1/2) > 1, the logarithm is positive so we
can divide both sides and expand to get

r <
log 2

log
(∑

S⊆[k] ŵ(S)2

ŵ(∅)2

)
<

log 2

log 2k

1T (I−A+A)1

We obtained the last line by maximizing the RHS over all w
that satisfy (13) and (15) and noting that we can apply our
solution from Lemma 9 here.

9 Appendix: Proofs and Loose Ends
9.1 Proofs
Proof of Lemma 1. In the case where the rows of A are lin-
early independent, a property of the pseudoinverse tells us
that A+ = AT (AAT )−1 (Barata and Hussein 2012). Then
by noting that A1 = 2kf̂S:|S|=1 and AAT = 2kB,

c = f̂(∅)− 1TAT (AAT )−1A1

2k

= f̂(∅)− f̂TS:|S|=1B
−1f̂S:|S|=1

Proof of Lemma 4. As before, we will expand E[X2] as fol-
lows:

E[X2] =
∑

σ,τ∈{−1,1}n
E

 rn∏
j=1

w(σIj ,sj )w(τIj ,sj )


=

∑
σ,τ∈{−1,1}n

E[w(σI,s)w(τI,s)]rn (22)

Now we can compute E[w(σI,s)τ(σI,s)] based on the num-
ber of indices i where σi = τi which we will denote as
α(σ, τ)n. First, we claim that for any u, v ∈ {−1, 1}k,

Pr[σI,s = u, τI,s = v] =

1

2k

k∏
j=1

α(σ, τ)1(uj=vj)(1− α(σ, τ))1(uj 6=vj)
(23)

This holds since we can compute (23) by first computing
the probability that σijτij = ujvj for all ij ∈ I and then
the probability that sjσij and sjτij actually match uj and vj
given that the former is true. We can compute the probabil-
ity of the former by noting that if ujvj = 1, then ij must
correspond to one of the α(σ, τ) indices where σij = τij .
The probability of the latter is simply 1/2k since s is chosen
uniformly from {−1, 1}k. Now note that

E[w(σI,s)w(τI,s)] =
∑

u,v∈{−1,1}k
w(u)w(v)·

Pr[σI,s = u, τI,s = v]

Expanding the probability using (23) and writing w in terms
of its Fourier expansion, we get

E[w(σI,s)τ(σI,s)] =∑
u,v∈{−1,1}k

∑
S⊆[k]

ŵ(S)χS(u)

∑
T⊆[k]

ŵ(T )χT (v)

 ·
1

2k

k∏
i=1

α(σ, τ)1(ui=vi)(1− α(σ, τ))ui 6=vi =

1

2k

∑
S,T⊆[k]

ŵ(S)ŵ(T )

 ∑
u,v∈{−1,1}k

χS(u)χT (v)·

k∏
i=1

α(σ, τ)1(ui=vi)(1− α(σ, τ))1(ui 6=vi)
) (24)

We can factorize the inner part of the summation as follows:

∑
u,v∈{−1,1}k

χS(u)χT (v)

k∏
i=1

α(σ, τ)1(ui=vi)·

(1− α(σ, τ))1(ui 6=vi) =∏
i∈S∩T

(4α(σ, τ)− 2)
∏

i∈S\T

0
∏

i∈T\S

0
∏

i∈[k]\(S∪T )

2

Thus, terms where S 6= T cancel to 0, so plugging the result
back into (24) gives

E[w(σI,s)τ(σI,s)] =
∑
S⊆[k]

(2α(σ, τ)− 1)|S|ŵ(S)2

= gw(α(σ, τ))

Plugging this expression back into (22), we get that

E[X2] =
∑

σ,τ∈{−1,1}n
gw(α(σ, τ))

Now for every σ and j = 0, . . . , n, there are exactly
(
n
j

)
choices of τ for which α(σ, τ) = j/n. Thus, combining
terms this way finally gives us the expression in (8).



Proof of Lemma 6. We have

gw(α)− gw(1− α) =∑
S⊆[k]

ŵ(S)2
[
(2α− 1)|S| − (1− 2α)|S|

]
=

∑
S⊆[k]

ŵ(S)2(2α− 1)|S|(1− (−1)|S|)

Since 2α − 1 ≥ 0 for α ≥ 1/2, all terms in the sum will be
positive so gw(α) ≥ gw(1− α).

Proof of Lemma 7. We first show that ψr(α) takes its maxi-
mum at α = 1/2. For all α ∈ [1/2, 1], we wish to prove

gw(α)
r

αα(1− α)1−α
< 2gw(1/2)

r = ψr(1/2)

Rearranging and taking the logarithm of both sides gives

r log
gw(α)

gw(1/2)
< log 2 + α logα+ (1− α) log(1− α)

Since gw(α) > ŵ(∅)2 = gw(1/2) for α > 1/2, log gw(α)
gw(1/2)

is nonnegative so we can divide it from both sides. Thus, it
suffices to have

r <
log 2 + α logα+ (1− α) log(1− α)

log gw(α)
gw(1/2)

(25)

By using the rule log(1 + x) ≤ x, we obtain

log
gw(α)

gw(1/2)
≤ gw(α)− gw(1/2)

gw(1/2)

≤
(2α− 1)2

∑
S:|S|≥2 ŵ(S)

2(2α− 1)|S|−2

ŵ(∅)2

We got to the second line by expanding and applying the
fact that (13) holds. Plugging this into (25) shows that it is
sufficient for

r <
log 2 + α logα+ (1− α) log(1− α)

(2α− 1)2
·

ŵ(∅)2∑
S:|S|≥2 ŵ(S)

2(2α− 1)|S|−2

(26)

We can check that the function

h(α) =
log 2 + α logα+ (1− α) log(1− α)

(2α− 1)2

is increasing on the interval [1/2, 1], and in addition
limα→1/2 h(α) = 1/2. Meanwhile,

min
α∈[1/2,1]

ŵ(1/2)2∑
S:|S|≥2 ŵ(S)

2(2α− 1)|S|−2
=

ŵ(∅)2∑
S:|S|≥2 ŵ(S)

2

at α = 1. Therefore, for all α ∈ [1/2, 1], the RHS of (26) is
lower bounded by

1

2

ŵ(∅)2∑
S:|S|≥2 ŵ(S)

2

which is precisely our condition on r in (14). Thus, if (14)
holds, then (26) must hold for α ∈ [1/2, 1], which implies
that ψr(α) is maximized at α = 1/2. Now we check that
ψ′′r (1/2) < 0. We can first compute the first derivative as

ψ′r(α) =

gw(α)
r−1(rg′w(α) + gw(α)(log(1− α)− log(α))

αα(1− α)1−α

Since g′w(1/2) = 0 from (13), ψ′′(1/2) < 0 if the derivative
of

rg′w(α) + gw(α)(log(1− α)− log(α))

is negative. We can compute this derivative as

rg′′w(α) + g′w(α) log
1− α
α
− gw(α)

(
1

α
+

1

1− α

)
Plugging in α = 1/2, the expression simplifies to

rg′′w(1/2)− 4gw(1/2)

Thus, if (14) holds,

r <
ŵ(∅)2

2
∑
S:|S|=2 ŵ(S)

2
=

4gw(1/2)

g′′w(1/2)

which means that ψ′′r (1/2) is also satisfied.

Using the lemmas developed earlier regarding the mo-
ments of X , we can complete the proof of Proposition 1.

Proof of Proposition 1. We letX be the number of solutions
toCf (n, rn). This corresponds to the choice ofw = f . Then
Lemma 3 tells us that

E[X] = (2f̂(∅)r)n

With

r > rf,up =
log 2

log 1/f̂(∅)

we get 2f̂(∅)r < 1. Therefore, limn→∞ E[X] = 0. By
Markov’s inequality,

lim
n→∞

Pr[X ≥ 1] ≤ lim
n→∞

E[X] = 0

as desired.

Next, we justify our application of Lemma 5 from Section
4.2 in greater detail.

Detailed application of Lemma 5. We see that we cannot
apply Lemma 5 directly to φr(α) = gw(α)

r, as φr(α) may
be negative for α < 1/2 if w can take on negative values.
Instead, we define

φ∗r(α) =

{
gw(α)

r if α ≥ 1/2

gw(1− α)r if α < 1/2

The idea is to apply Lemma 5 to φ∗r(α) instead. The ben-
efit of doing this is that φ∗r(α) > 0 for all α ∈ [0, 1], as
gw(α) > 0 if α ≥ 1/2. We will also check that φ∗r(α) is



twice differentiable on [0, 1]. For α 6= 1/2, this is clear. Now
we note that

dgw(1− α)r

dα
= −rgw(1− α)r−1g′w(1− α)

At α = 1/2, this evaluates to 0 because of (13). Likewise,
the derivative of gw(α)r at α = 1/2 is also 0. Thus, φ∗r(α)
is first-order differentiable on [0, 1]. To show that the second
derivative exists at α = 1/2, we note that

d2gw(1− α)r

dα2
=r(r − 1)gw(1− α)r−2 · g′w(1− α)2+

rgw(1− α)r−1 · g′′w(1− α)

If we compute the same expression for the second derivative
of gw(α)r, we see that the two expressions have identical
terms at α = 1/2. Thus, second derivatives match, so φ∗r(α)
is twice-differentiable on [0, 1].

Now we can apply Lemma 5 to φ∗r . Define

ψ∗r =
φ∗r

αα(1− α)1−α

Since αα(1 − α)1−α is symmetric around 1/2, Lemma
7 implies that for r satisfying (14), ψ∗r (1/2) > ψ∗r (α)
for all α ∈ [0, 1] where α 6= 1/2. Furthermore, since
(ψ∗r )

′′(1/2) = ψ′′r (1/2) < 0 by symmetry around 1/2, the
conditions for Lemma 5 are satisfied so

E[X]2

2n
∑n
j=0

(
n
j

)
φ∗r(j/n)

> C (27)

for some constant C > 0 and sufficiently large n. Finally,
we note that from (8),

E[X2] = 2n
n∑
j=0

(
n

j

)
φr(j/n)

≤ 2n
n∑
j=0

(
n

j

)
φ∗r(j/n)

because φr(α) ≤ φ∗r(α) for α < 1/2, as a consequence of
Lemma 6. Plugging this result into (27) finally gives us

E[X]2

E[X2]
≥ E[X]2

2n
∑n
j=0

(
n
j

)
φ∗r(j/n)

> C

9.2 Sampling With vs. Without Replacement
We will provide an explanation for why we can assume that
we can sample constraints and constraint indices with re-
placement when proving our main theorem. This explana-
tion is due to Section 3 of (Achlioptas and Peres 2004) for
k-SAT, and applies directly to our more general setting.

We call a constraint fI,s improper if I contains repeated
variables or fI,s is itself repeated. The probability that a
constraint contains repeated variables is bounded above by
k2/n, so with high probability there are o(n) constraints
with repeated variables. Likewise, with high probability
there are o(n) repeated clauses, so there are o(n) improper

constraints with high probability. Furthermore, the distribu-
tion over proper constraints remains uniform in the with-
replacement setting. Thus, if Cf (n, rn) is satisfiable with
constant probability in the with-replacement setting form =
rn, then it will be satisfiable with constant probability in the
without-replacement setting for m = rn− o(n) constraints.
Since we only subtract a o(n) factor, we retain the same ratio
r.


