William Bokui Shen 沈博魁

willshen at cs dot stanford dot edu [Github] [Google Scholar] [LinkedIn]

About me

I am a Ph.D. student in CS at Stanford University, advised by Prof. Silvio Savarese in SVL (formerly CVGL). My research interests lie in computer vision and robot learning. I received a B.S. in computer science, with Departmental Honor and University Distinction, from Stanford University. I'm supported by Qualcomm Innovation Fellowship.

News:

  • 2019.07 Paper accepted at ICCV2019 (Situational Fusion of Visual Representation for Visual Navigation)

  • 2019.06 Winner of Qualcomm Innovation Fellowship 2019

  • 2018.06 Taskonomy Received CVPR 2018 Best Paper Award !

  • 2018.06 Received a B.S. in computer science with Departmental Honor and University Distinction

  • 2018.03 Received Frederick Emmons Terman Engineering Scholastic Award (Top 5% of entire Stanford Engineering School)

  • 2018.02 Paper accepted as Oral at CVPR2018 (Taskonomy: Disentangling Task Transfer Learning) [website]

Education

Sep. 2018 - Present, Department of Computer Science, Stanford University,

PhD in CS

IEEE-CVPR 2018 Best Paper Award, Qualcomm Innovation Fellowship

Sep. 2014 - Jun. 2018, Department of Computer Science, Stanford University,

Undergraduate Student. GPA: 4.01/4.00

Terman Award, CS Department Honor, University Distinction

Advised by Prof. Silvio Savarese

Publications

  • William B. Shen, Danfei Xu, Yuke Zhu, Leonidas Guibas, Li Fei-Fei, Silvio Savarese.
    Situational Fusion of Visual Representation for Visual Navigation
    IEEE International Conference on Computer Vision (ICCV), 2019.

    We propose to train an agent to fuse a large set of visual representations that correspond to diverse visual perception abilities. We propose action-level fusion scheme and inter-task affinity regularization, which leads to a significantly improved performance in novel environments over ImageNet-pretrained baseline and other fusion methods.

  • Amir R. Zamir, William B. Shen*, Alexander Sax*, Leonidas Guibas, Jitendra Malik, Silvio Savarese. (*equal)
    Taskonomy: Disentangling Task Transfer Learning [project] [code] [Blog Post in Chinese (知乎)]
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Best Paper 2018

    Research on visual task space’s structure; leveraging task space structure to optimize supervision policy of a set of tasks, the models learned using recommended transfers achieve much better performance than the models trained from scratch and come close to models that are trained with an order of magnitude more data with full-supervision.

  • Kuo-Hao Zeng, William B. Shen, De-An Huang, Min Sun, Juan Carlos Niebles.
    Visual Forecasting by Imitating Dynamics in Natural Sequences [arxiv]
    IEEE International Conference on Computer Vision (ICCV), Spotlight 2017.

    Research on a general framework for visual forecasting, which directly imitates visual sequences by formulating visual forecasting as an inverse reinforcement learning (IRL) problem.

  • Amir R. Zamir*, Te-lin Wu*, Lin Sun, William B. Shen, Jitendra Malik, Silvio Savarese.
    Feedback networks [project] [code]
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

    Research on novel feedback network paradigm that offers advantages including early prediction, taxonomic compliance and curriculum-based learning over traditional feedforward counterpart.

(*Equally contributed to the project and alphabetically listed)

Honors and Awards

  • Winner of Qualcomm Innovation Fellowship 2019
  • IEEE-CVPR 2018 Best Paper Award : Taskonomy: Disentangling Task Transfer Learning
  • Frederick Emmons Terman Engineering Scholastic Award : top 5% of entire engineering graduating class
  • Stanford University Computer Science Departmental Honor : undergraduate honor thesis advised by Prof. Silvio Savarese and Prof. Leo Guibas
  • Stanford University Distinction
  • Stanford Tau Beta Pi Engineering Society
  • Stanford CS106A Graphics Contest Champion (Prof. Mehran Sahami, Autumn 2014)

Work Experience

Jun. 2018 - Aug. 2018, Aibee,

Multi-target Tracking

Mentor: Amir Sadeghian

Jun. 2016 - Sep. 2016, Project Fi, Google Inc.,

Real time phone call transcription service

Mentor: Madhu R. Adupala

Aug. 2016 - Sep. 2016, Google Brain, Google Inc.,

Measuring Gradient Descend Batch Variance

Mentor: Alex Davies

Projects

  • CS231A Course Project: William B. Shen, Song Han, Zuozhen Liu. Drone Human Tracking Using Faster RCNN and KCF. [report]

    Course project on implementing Faster-RCNN to detect human and KCF to track human on drones. Heavy optimization with frame-rate using TX1/TK1.

  • Stanford CS106A Graphics Contest Winner (Prof. Mehran Sahami, Autumn 2014)

    Probably the nerdest thing I have done...
    A weird mash-up of Mario, Galagal, Pacman, Star War, RPG.

Photography

    Favorite

© William Shen 2017