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Abstract—The operations of expansion and refinement on non-
deterministic matrices (Nmatrices) are composed to form a new
operation called rexpansion. Properties of this operation are
investigated, together with their effects on the induced conse-
quence relations. A semantic method for obtaining conservative
extensions of matrix-defined logics is introduced and applied to
fragments of the classical two-valued matrix, as well as to other
well-known many-valued matrices. The central application of
rexpansion that we present is the construction of truth-preserving
paraconsistent conservative extensions of Gödel fuzzy logic.

I. INTRODUCTION

Since its introduction in [8], the framework of non-
deterministic matrices1 (Nmatrices) has proven to be very
useful, since it has almost all the advantages of the framework
of ordinary matrices, while capturing logics that are practically
left out by it. Accordingly, Nmatrices have been widely
investigated and utilized in various areas, like many-valued
logics [17], paraconsistent logics [7], and proof theory [18].

In [2] and [7] two fundamental operations which are pecu-
liar to Nmatrices were introduced: expansion and refinement.
Both of them transform a given Nmatrix (that may be an
ordinary matrix) to another one. In this paper we show that
these operations are most useful when they are combined into
one operation, which we call rexpansion (refined expansion).
We investigate rexpansion as a powerful tool for generating
new Nmatrices from existing ones. Properties of this combined
operation are presented, along with its effects on the conse-
quence relations which are induced by the operated Nmatrices.

The main application of rexpansion in this paper is for the
problem of conservatively extending a given logic L with new
connectives which have some desirable properties. The method
is to apply appropriate rexpansion to a matrix (or an Nmatrix)
that is known to be characteristic for the logic, getting by
this alternative semantics for L for which the addition of
the desired connectives is an easier task. We demonstrate
this method with several examples. The most important of
them provides a new (and as we show, significantly better)
solution for the problem of constructing paraconsistent fuzzy
logics. A first solution to this problem was given in [15],
using a completely different approach. However, we show that
the solution in [15] has some serious drawbacks, which are
overcome in the solution proposed here.

1For a survey of Nmatrices, see [9].

II. PRELIMINARIES

A. Non-deterministic Matrices

A propositional language L consists of a countably infinite
set of atomic variables At = {p1, p2, . . .} and a finite set ♦L
of propositional connectives. The set of all n-ary connectives
of L is denoted by ♦nL, and its set of well-formed formulas by
W(L). We sometimes identify L with its set of connectives
(e.g. when speaking about “the language {∧,∨,¬}”).

A propositional logic is a pair L = 〈L,`L〉 such that L
is a propositional language and `L is a structural (Tarskian)
consequence relation for L.

In what follows, L denotes an arbitrary propositional lan-
guage. We assume that the reader is familiar with the notion
of a matrix for L and the logic induced by it (see e.g. [20]).

Matrices are truth-functional, that is, the truth value of a
compound formula is uniquely determined by the truth values
of its immediate subformulas. Many non-classical logics,
however, do not have effective truth-functional semantics. In
[9], matrices are generalized to allow non-deterministic assign-
ments of truth values to compound formulas. This extended
framework provides effective semantics for many non-classical
logics that are left out in the framework of ordinary matrices:

Definition 1 A non-deterministic matrix (Nmatrix) for L is
a tuple 〈V,D,O〉 such that V is a non-empty set (of truth
values), D is a non-empty proper subset of V (of designated
truth values), and O : ♦L→

⋃∞
i=0(Vi→P+(V)) is a function

assigning a non-deterministic “truth-table” O(�) : Vi→P+(V)
for every connective � of arity i (where P+(V) = P (V)\{∅}).

To be considered as a particular instance of Nmatrices, we
take matrices to be Nmatrices in which O(�)(x1, . . . , xn) is a
singleton for every � ∈ ♦nL and x1, . . . , xn ∈ V . In matrices
mentioned below we freely interchange truth values with their
singletons, whenever there is no danger of confusion.

Nmatrices induce consequence relations in a similar way to
matrices, that is, through the use of valuations. This is formally
defined as follows:

Definition 2 Let M = 〈V,D,O〉 be an Nmatrix for L. An
M-valuation is a function v from W(L) to V such that for
every � ∈ ♦nL and ψ1, . . . , ψn ∈ W(L), v(�(ψ1, . . . , ψn)) ∈
O(�)(v(ψ1), . . . , v(ψn)). v is anM-model of a formula ψ (in
symbols: v �M ψ) if v(ψ) ∈ D. It is anM-model of a set T of



formulas (in symbols: v �M T ) if v �M ψ for every ψ ∈ T .
A formula ψ is anM-consequence of a set T of formulas (in
symbols: T `M ψ) if every M-model of T is an M-model
of ψ. We say that M induces a logic L = 〈L,`L〉 (or that
M is characteristic for L) if `M = `L.

Like matrices, Nmatrices provide an analytic semantic
framework, in the sense that for every Nmatrix M, every
partial M-valuation can be extended to a full M-valuation.2

A useful consequence of this property concerns the notion of
conservative extensions:

Definition 3 A logic L2 = 〈L2,`L2〉 is conservative over a
logic L1 = 〈L1,`L1

〉 (or in other words: L2 is a conservative
extension of L1) if W(L1) ⊆ W(L2), and T `L1

ϕ iff
T `L2

ϕ for every T ⊆ W(L1) and ϕ ∈ W(L1).

The framework of Nmatrices exhibits a modular character,
that that ties the extension of an Nmatrix with the extension
of its induced logic.

Definition 4 Let L1 and L2 be propositional languages such
that W(L1) ⊆ W(L2), and M1 = 〈V1,D1,O1〉 and M2 =
〈V2,D2,O2〉 be Nmatrices for L1 and L2, respectively. M2

is an extension of M1 to L2 if V1 = V2, D1 = D2, and
O1(�) = O2(�) for every � ∈ ♦L1

.

Proposition 1 Let L1 and L2 be propositional languages such
thatW(L1) ⊆ W(L2), andM1 andM2 be Nmatrices for L1

and L2, respectively. IfM1 is an extension ofM2 to L2 then
〈L2,`M2〉 is conservative over 〈L1,`M1〉.
B. Expansions and Refinements

Next we present two basic operations from [2] and [7], that
can be performed on Nmatrices: expansions and refinements.
Loosely speaking, an expansion of an Nmatrix is obtained by
making several distinct copies of each truth value, so that the
new designated values are the copies of the original ones, and
each value in the interpretation of the connectives is replaced
by all of its copies. This is formally defined as follows:

Definition 5 A function F is called an expansion function
if for every x ∈ dom(F ), F (x) is a non-empty set, and
F (x)∩F (y) = ∅ whenever x 6= y. F is an expansion function
for an Nmatrix M = 〈V,D,O〉 for L if dom(F ) = V . For
every y ∈

⋃
Im(F ) we denote by F̃ [y] the unique element

x ∈ dom(F ) such that y ∈ F (x).

Definition 6 Let M = 〈V,D,O〉 be an Nmatrix for L
and F an expansion function for M. The F -expansion of
M is the Nmatrix MF = 〈VF ,DF ,OF 〉, where VF =⋃
x∈V F (x), DF =

⋃
x∈D F (x), and OF (�)(y1, . . . , yn) =⋃

z∈O(�)(F̃ [y1],...,F̃ [yn])
F (z) for every � ∈ ♦nL and

y1, . . . , yn ∈ VF . M2 is an expansion of M1 if it is the
F -expansion of it for some F .

Nothing but uniformly duplicating all truth values is done
in expansions, and hence the consequence relation remains the
same, as was shown in [2]:

2Following [9], we use the term analytic for this property.

Proposition 2 Let M2 be an expansion of M1. Then
`M1

= `M2
.

Example 1 Two Nmatrices are isomorphic to one another if
and only if one is the F -expansion of the other for some
expansion function F (in which F (x) is always a singleton).

Example 2 Consider the usual matrix for classical logic,
where the truth values are t and f . By assigning {t,>} to t and
{f} to f , we obtain an expansion function. The outcome of
this expansion would be a non-deterministic matrix for classi-
cal logic, in which, for example, the interpretation of negation
is O(¬)(t) = O(¬)(>) = {f} and O(¬)(f) = {t,>}.

Example 3 The classical matrix can be further expanded
by assigning [0, 12 ) to f and

[
1
2 , 1
]

to t. The outcome of
this expansion would be another non-deterministic matrix for
classical logic. The interpretation of negation would then be
O(¬)(x) = [0, 12 ) whenever x ≥ 1

2 and O(¬)(x) =
[
1
2 , 1
]

whenever x < 1
2 .

Next, we define the refinement operation on Nmatrices.
Loosely speaking, refining an Nmatrix means dismissing some
of its truth values, and then possibly reducing the amount of
non-determinism. This is formally defined as follows:

Definition 7 Let M1 = 〈V1,D1,O1〉 and M2 =
〈V2,D2,O2〉 be Nmatrices for L. M2 is a refinement of
M1 if V2 ⊆ V1, D2 = V2 ∩ D1, and O2(�)(x1, . . . , xn) ⊆
O1(�)(x1, . . . , xn) for every � ∈ ♦nL and x1, . . . , xn ∈ V2.
M2 is a simple refinement of M1 if in addition, V2 = V1.

Example 4 The infinite characteristic Nmatrix for classical
logic from Example 3 can be (simply) refined by e.g. redefin-
ing O(¬) in the following way: O(¬)(x) = {0} whenever
x ≥ 1

2 and O(¬)(x) = {1} whenever x < 1
2 .

Refining an NmatrixM can reduce the set ofM-valuations,
and so we have the following proposition from [7]:

Proposition 3 Let M2 be a refinement of M1. Then
`M1

⊆ `M2
.

III. REFINED EXPANSIONS

In this section we combine the two basic operations defined
above and obtain refined expansions (in short: rexpansions).
In what follows, L continues to denote a fixed propositional
language, and by an Nmatrix we mean an Nmatrix for L,
unless stated otherwise.

A. Definition and Properties

We start by explicitly defining the combined operation and
exploring its properties.

Definition 8 Let M1 = 〈V1,D1,O1〉 and M2 =
〈V2,D2,O2〉 be Nmatrices and F an expansion function for
M1. M2 is an F -rexpansion of M1 if it is a refinement
of the F -expansion of M1. It is called: (i) simple if it is a
simple refinement of the F -expansion of M1; (ii) preserving
if F (x) ∩ V2 6= ∅ for every x ∈ V1; and (iii) strongly
preserving if it is preserving, and for every x1, . . . , xn ∈ V2,



� ∈ ♦nL, and y ∈ O1(�)(F̃ [x1], . . . , F̃ [xn]), it holds that
F (y) ∩ O2(�)(x1, . . . , xn) 6= ∅. M2 is a rexpansion of M1

if it is an F -rexpansion of it for some F .

If M2 is a rexpansion of M1, we may call M2 “preserv-
ing”, “strongly preserving” or “simple” (without the suffix
“rexpansion of M1”) whenever that is clear from the context.

First, let us elaborate on the connections between the
different properties of rexpansions:

Lemma 1 Every simple rexpansion is preserving, every ex-
pansion is a strongly preserving rexpansion, and every pre-
serving rexpansion of a matrix is strongly preserving.

Proof: We prove the third property. Let M1 be a ma-
trix and M2 a preserving F -rexpansion of M1. For every
x1, . . . , xn ∈ V2, � ∈ ♦nL, and y ∈ O1(�)(F̃ [x1], . . . , F̃ [x1]),
we have O2(�)(x1, . . . , xn) ⊆

⋃
z∈O1(�)(F̃ [x1],...,F̃ [x1])

F (z).
Since M1 is a matrix, O2(�)(x1, . . . , xn) ⊆ F (y), and hence
F (y) ∩ O2(�)(x1, . . . , xn) = O2(�)(x1, . . . , xn) 6= ∅.

Example 5 The Nmatrix from Example 4 is a rexpansion of
the classical matrix, which is simple and strongly preserving.

Next we provide a necessary and sufficient condition for an
Nmatrix to be a rexpansion of another Nmatrix.

Proposition 4 M2 = 〈V2,D2,O2〉 is a rexpansion of M1 =
〈V1,D1,O1〉 iff there exists f : V2→V1 such that: (i) For
every x ∈ V2, x ∈ D2 iff f(x) ∈ D1; and (ii) For every
x1, . . . , xn ∈ V2 and y ∈ O2(�)(x1, . . . , xn), it holds that
f(y) ∈ O1(�)(f(x1), . . . , f(xn)).

Proof: Suppose such a function f exists. Let V be some
set such that V ∩ V2 = ∅ and |V| = |V1|, and let g : V1 → V
be a bijection. Using properties (i) and (ii) of f , it can be
shown that M2 is an F -rexpansion of M1 for

F = λx ∈ V1.

{
f−1 [{x}] x ∈ Im(f)

{g(x)} otherwise
.

For the converse, If M2 is an F -rexpansion of M1, then
the function λx ∈ V2.F̃ [x] satisfies (i) and (ii).

Remark 1 In [9], the term ‘simple refinement’ was reserved
for what is called here ‘refinement’, while the term ‘refine-
ment’ was related to the functions from Proposition 4.

Another useful property of the rexpansion operation is that
it induces some forms of transitivity:

Theorem 1
1) If M2 is a preserving rexpansion of M1 and M3 is a
(preserving) rexpansion of M2, then M3 is a (preserving)
rexpansion of M1.
2) If M2 is a strongly preserving rexpansion of M1 and M3

is a strongly preserving rexpansion of M2, then M3 is a
strongly preserving rexpansion of M1.

Proof Outline: Let F and G be expansion functions
such that M2 is a preserving F -rexpansion of M1 and M3

is a G-rexpansion of M2. For every 1 ≤ i ≤ 3, assume
that Mi = 〈Vi,Di,Oi〉. Consider the function H = λx ∈
V1.
⋃
y∈F (x)∩V2 G(y). Using the fact that M2 is preserving,

it can be shown that H is an expansion function for M1.
Next, one needs to verify that M3 is indeed a H-rexpansion
of M1, and also that the preserving and strongly preserving
conditions survive this construction.

Corollary 1 For every sequence M1, . . . ,Mn of Nmatrices
such that Mi+1 is an expansion or a simple refinement of
Mi, we have that Mn is a preserving rexpansion of M1.

B. Consequence Relations

In this section we investigate the effect rexpansions induce
on semantically defined consequence relations. Our main
theorem is the following:

Theorem 2 IfM2 is a rexpansion ofM1 then `M1 ⊆ `M2 .
Moreover, if M2 is strongly preserving then `M1 = `M2 .

Proof Outline: The first part follows directly from
Propositions 2 and 3 above. Next, suppose M2 is a strongly
preserving F -rexpansion ofM1. We prove that `M2

⊆ `M1
.

For this, it suffices to prove that for every M1-valuation
v there exists an M2-valuation v′ such that v �M1 ψ iff
v′ �M2 ψ for every ψ ∈ W(L). Let c : P (V2) \ {∅}→V2
and suppose that for every X ∈ P (V2) \ {∅}, c(X) ∈ X .3

Let ψ1, ψ2, . . . be an enumeration of W(L) such that if ψi is
a subformula of ψj then i < j.

Now let v be an M1-valuation. For the construction of
v′, we first define a sequence v0, v1, . . . of partial func-
tions from W(L) to V2: v0 is the empty function, and
for every i > 0, vi is defined as follows. For every
ψ ∈ dom(vi−1), vi(ψ) = vi−1(ψ). If ψi /∈ dom(vi−1),
then: (i) If ψi is atomic and F (v(ψi)) ∩ V2 is not
empty, vi(ψi) = c(F (v(ψi)) ∩ V2); and (ii) If ψi has
the form �(ϕ1, . . . , ϕn) for ϕ1, . . . , ϕn ∈ dom(vi−1) and
F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), . . . , vi−1(ϕn)) is not empty,
vi(ψi) = c(F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), . . . , vi−1(ϕn))).

One proves by induction on i that: (i) vi(ψ) ∈ F (v(ψ))
for every ψ ∈ dom(vi); (ii) dom(vi) = {ψ1, . . . , ψi};
and (iii) vi satisfies the conditions induced by M2, that
is: vi(�(ϕ1, . . . , ϕn)) ∈ O2(�)(vi(ϕ1), . . . , vi(ϕn)) whenever
ϕ1, . . . , ϕn and �(ϕ1, . . . , ϕn) are in dom(vi). Next, For
every ψ ∈ W(L), let iψ = ιi ∈ N.ψ = ψi.4 v′ is defined by
v′(ψ) = viψ (ψ). It is left to verify that v′ is anM2-valuation,
and that v �M1 ψ iff v′ �M2 ψ for every formula ψ.

The following corollary immediately follows as a conse-
quence of Lemma 1 and Theorem 2:

Corollary 2 Let M2 be a preserving rexpansion of M1. If
M1 is a matrix then `M2

= `M1
.

An important consequence of Corollary 2 and Proposition 1
(the usefulness of which is demonstrated in Sections IV and V)

3The existence of c relies on the axiom of choice in case V2 is infinite.
4That is, iψ is the index of ψ in the enumeration.



is a general method of providing a given logic with an
alternative new semantics, and then use it for conservatively
augmenting it with new connectives. The following corollary
establishes this application.

Corollary 3 Let L1 and L2 be propositional languages such
that W(L1) ⊆ W(L2), M1 a matrix for L1, and M2 an
extension to L2 of some preserving rexpansion of M1. Then
〈L2,`M2

〉 is conservative over 〈L1,`M1
〉.

We conclude this section with a stronger instance of Corol-
lary 3, that applies only for two-valued matrices:

Corollary 4 Let L1 and L2 be propositional languages such
that W(L1) ⊆ W(L2), M1 = 〈{t, f} , {t} ,O1〉 a matrix for
L1, and M2 an extension to L2 of some rexpansion of M1.
Then 〈L2,`M2〉 is conservative over 〈L1,`M1〉.

Proof: By Definition 1, for every F -rexpansion M′ =
〈V ′,D′,O′〉 ofM1 we must have F (t)∩V ′ 6= ∅ (as otherwise
D′ = ∅) and F (f)∩V ′ 6= ∅ (as otherwise D′ = V ′). The result
then follows from Corollary 3.

IV. SOME BASIC APPLICATIONS

In this section we present some examples of applications of
rexpansion in non-classical logics. This is done by performing
it on fragments of well-known matrices, and thus obtaining
conservative extensions of their induced logics.

Let CL = {¬,∨,∧,⊃,⊥}. Denote the (propositional)
language whose set of connectives is CL by CL. For any
C ⊆ CL, we denote the C-fragment of CL by CLC , the C-
fragment of the classical matrix byMC

CL, and the C-fragment
of classical logic by CLC . We start with a direct consequence
of Corollary 4:

Lemma 2 Let C ⊆ CL. If L is a language such that
W(CLC) ⊆ W(L), and M is an extension to L of some
rexpansion ofMC

CL, then 〈L,`M〉 is conservative over CLC .

Now we use Lemma 2 to present conservative extensions
of fragments of classical logic. Some of the resulting logics
are paraconsistent, that is: unlike classical logic, they tolerate
contradictions. Here is the formal definition from [12]:

Definition 9 A logic L in CL is paraconsistent if: (i) T `L ϕ
only if T `CL ϕ.5; and (ii) ¬p, p 6`L q. It is boldly paraconsis-
tent if, in addition, ¬p, p 6`L ϕ whenever 6`L ϕ and p /∈ At(ϕ).

Example 6 Asenjo–Priest’s three-valued logic of paradox LP
[5] [19] and Kleene’s three-valued logic KL [16] are both
defined by matrices that differ only in the set of designated
values. Consider the set V3 = {t, f, i}, and the interpretation
function O3 that is defined by the following tables:

O3(∧) t f i

t t f i
f f f f
i i f i

O3(∨) t f i

t t t t
f t f i
i t i i

O3(¬)
t f
f t
i i

5We follow [4] and include this requirement, as in practice, most paracon-
sistent logics are sub-classical.

LP is characterized by MLP = 〈V3, {t, i} ,O3〉, and KL
by MKL = 〈V3, {t} ,O3〉. The {∧,∨}-fragments of MLP

and MKL are rexpansions of M{∧,∨}CL , as can be witnessed

by the rexpansion functions λx ∈ {t, f} .

{
{t, i} x = t

{f} x = f
and

λx ∈ {t, f} .

{
{t} x = t

{f, i} x = f
, respectively. By Lemma 2, LP

and KL are conservative over CL{∧,∨}.

Example 6 shows that the converse of Theorem 2 fails:
the {∧,∨}-fragments of MLP and MKL induce the same
logic, and there is no expansion function between them (and
so neither is a strongly preserving rexpansion of the other).

LP is among the three-valued paraconsistent logics from
[4] that we consider in the next example:

Example 7 Theorem 42 of [4] characterises all three-valued
paraconsistent logics in the language {¬,∧,∨,⊃} that ad-
mit some natural properties. These logics coincide with the
{¬,∧,∨,⊃}-fragments of the 8K conservative extensions of
positive classical logic [13]. The three-valued matrices that
induce these logics are all simple refinements of the following
Nmatrix M = 〈{t,>, f} , {t,>} ,O〉, where O is given by:
O(∧) t f >
t {t} {f} {t,>}
f {f} {f} {f}
> {t,>} {f} {t,>}

O(∨) t f >
t {t} {t} {t,>}
f {t} {f} {t,>}
> {t,>} {t,>} {t,>}

O(⊃) t f >
t {t} {f} {t,>}
f {t} {t} {t,>}
> {t,>} {f} {t,>}

O(¬)
t {f}
f {t}
> {t,>}

Now, every simple refinement of M is an extension to
{∧,∨,⊃,¬} of some rexpansion of M{∧,∨,⊃}CL . Indeed, for
F (t) = {t,>} and F (f) = {f}, it is easy to see that
the {∧,∨,⊃}-fragment of M is a simple refinement of
(M{∧,∨,⊃}CL )F = 〈{t,>, f} , {t,>} ,O′〉, where:
O′(∧) t f >

t {t,>} {f} {t,>}
f {f} {f} {f}
> {t,>} {f} {t,>}

O′(∨) t f >
t {t,>} {t,>} {t,>}
f {t,>} {f} {t,>}
> {t,>} {t,>} {t,>}

O′(⊃) t f >
t {t,>} {f} {t,>}
f {t,>} {t,>} {t,>}
> {t,>} {f} {t,>}

The fact that all these logics are conservative over positive
classical logic is then obtained as a consequence of Lemma 2.
Actually, by Corollary 4, all extensions of simple refinements
of (M{∧,∨,⊃}CL )F have this property. In addition, they also have
many of the natural properties demanded in [4].

Example 8 The {∧,∨,⊃,¬}-fragment of the four-valued
logic of billatices from [3] is characterized by the matrix
M4 = 〈{t, f,>,⊥} , {>,⊥} ,O4〉, where O4 is given by:

O4(∧) t f > ⊥
t t f > ⊥
f f f f f
> > f > f
⊥ ⊥ f f ⊥

O4(∨) t f > ⊥
t t t t t
f t f > ⊥
> t > > t
⊥ t ⊥ t ⊥



O4(⊃) t f > ⊥
t t f > ⊥
f t t t t
> t f > ⊥
⊥ t t t t

O4(¬)
t f
f t
> >
⊥ ⊥

By dismissing ⊃, we obtain a matrix for the logic of first-
degree entailment [10]. Define an expansion function F for
M{∧,∨,⊃}CL by F (f) = {f,⊥} and F (t) = {t,>}. It is easy to
see thatM4 is an extension to {∧,∨,⊃,¬} of a simple refine-
ment of (M{∧,∨,⊃}CL )F = 〈{t,>, f,⊥} , {t,>} ,O〉, where

O(∧) t f > ⊥
t {t,>} {f,⊥} {t,>} {f,⊥}
f {f,⊥} {f,⊥} {f,⊥} {f,⊥}
> {t,>} {f,⊥} {t,>} {f,⊥}
⊥ {f,⊥} {f,⊥} {f,⊥} {f,⊥}

O(∨) t f > ⊥
t {t,>} {t,>} {t,>} {t,>}
f {t,>} {f,⊥} {t,>} {f,⊥}
> {t,>} {t,>} {t,>} {t,>}
⊥ {t,>} {f,⊥} {t,>} {f,⊥}

O(⊃) t f > ⊥
t {t,>} {f,⊥} {t,>} {f,⊥}
f {t,>} {t,>} {t,>} {t,>}
> {t,>} {f,⊥} {t,>} {f,⊥}
⊥ {t,>} {t,>} {t,>} {t,>}

[3] provides an analytic sequent calculus for `M4
, and

uses it to prove that it is conservative over CL{∧,∨,⊃} (and
that fde is conservative over CL{∧,∨}). Here we obtain this
result as a simple consequence of Lemma 2, by identifying
the {∧,∨,⊃}-fragment of M4 as a rexpansion of M{∧,∨,⊃}CL .

Example 9 Gödel fuzzy logic G [14] is characterized
by the following matrix MG = 〈VG,DG,OG〉 for
{∧,∨,⊃,⊥}, where VG = [0, 1], DG = {1}, and
OG is given by: OG(⊥) = 0, OG(∨)(a, b) = max {a, b},

OG(∧)(a, b) = min {a, b}, and OG(⊃)(a, b) =

{
1 a ≤ b
b a 6≤ b

.

MG is an extension to {∧,∨,⊃,⊥} of a simple refinement
of the F -expansion of M{∧,∨,⊥}CL , for F (f) = [0, 1) and
F (t) = {1}. By Lemma 2, it is conservative over CL{∧,∨,⊥}.
This argument does not survive the addition of implication:
OG(⊃)(0.5, 0.25) = 0.25, while OCL(⊃)(0, 0) = 1 and
0.25 /∈ F (1). Indeed, G is not conservative over CL{∧,∨,⊃}.

The process described in the above examples need not start
with classical logic, as can be seen by the following example:

Example 10 Consider M = 〈{t, f,>,⊥} , {t} ,O〉, where:

O(∧) t f > ⊥
t t f > ⊥
f f f f f
> > f > ⊥
⊥ ⊥ f ⊥ ⊥

O(∨) t f > ⊥
t t t t t
f t f > ⊥
> t > > >
⊥ t ⊥ > ⊥

Negation is defined by O(¬)(t) = f and O(¬)(x) = t if
x 6= t. ∧ and ∨ are interpreted as minimum and maximum
(respectively), for f ≤ ⊥ ≤ > ≤ t. Its {∧,∨}-fragment is

a simple F -rexpansion of the {∧,∨}-fragment of MKL, for
F (t) = {t}, F (f) = {f,⊥} and F (i) = {>}. By Corollary 3,
the logic it induces is conservative over the {∧,∨}-fragment
of KL. Unlike KL, it has tautologies (e.g. p∨¬p).

V. NEGATIONS FOR GÖDEL LOGIC

In this section we combine two properties of logics that
were discussed in Section IV: paraconsistency and fuzziness.
As an artifact of their definition via matrices with a single
designated value, ordinary fuzzy logics, and in particular,
Gödel logic (Example 9), preserve absolute truth, that is, a
formula follows from a set of formulas if whenever the set is
completely true (i.e. assigned with 1), so is the formula. As
a result, none of the standard fuzzy logics is paraconsistent
(it is well known [4] that at least two designated valued are
required for paraconsistency). In order to develop logics that
are both paraconsistent and fuzzy, it is therefore necessary to
replace this consequence relation by a less strict one.

The paper [15] does exactly this, by considering a recent
approach [11] to fuzzy logic consequence relations, that,
instead of preserving absolute truth, preserves degrees of truth.
In such a consequence relation, a formula ϕ follows from
a set of formulas T if there is a finite subset T ⊆ T
whose minimal truth value is never greater than that of
ϕ. This change in definition allows [15] to add an invo-
lutive negation to standard fuzzy logics and obtain logics
that are both fuzzy and paraconsistent. For example, degree-
preserving Łukasiewicz-logic (that already includes its own
involutive negation) admits the following properties: (i) it
is paraconsistent; (ii) De Morgan laws and double negation
principle are valid: ϕ ≡ ¬¬ϕ, ¬(ϕ∨ψ) ≡ (¬ϕ∧¬ψ) and
¬(ϕ∧ψ) ≡ (¬ϕ∨¬ψ); (iii) natural classically valid rules
for manipulating negation and implication are recovered:
¬(ϕ ⊃ ψ) ⊃ ¬ψ, (ϕ ⊃ ψ) ⊃ (¬(ϕ ⊃ ψ) ⊃ ϕ); and also
(iv) ϕ ⊃ (¬ψ ⊃ ¬(ϕ ⊃ ψ)). However, it does not admit
the following: (v) being boldly paraconsistent; (vi) M.P. for
⊃; (vii) deduction theorem for ⊃; (viii) validity of ϕ∨¬ϕ;
(ix) being conservative over the original truth-preservation
logic. Taking Gödel logic rather than Łukasiewicz logic solves
(v), (vi), (vii), and (ix), but loses (iv).

The method of rexpansions allows us to present a better
approach to the construction of paraconsistent conservative
extensions of Gödel logic, which stays within the framework
of truth-preservation. This is done by relaxing the principle of
truth-functionality, and the preservation of absolute truth. The
former is done by basing our construction on Nmatrices, and
the latter by replacing “completely true” with “true enough”,
that is, taking a larger set of designated truth values:

Definition 10 Let 0 < t ≤ 1. MG
t is the Nma-

trix for {∧,∨,⊃,⊥} obtained from MG by: (i) Taking
[t, 1] as the designated values. (ii) Changing O (⊃) to

O (⊃) (a, b) =

{
[t, 1] a ≤ b or b ≥ t
{b} a > b and b < t

. MG
t
¬ is the exten-

sion ofMG
t to {∧,∨,⊃,⊥,¬}, in which O(¬)(a) = 1−a.6

6This is Łukasiewicz involutive negation.



Theorem 3 Let 0 < t ≤ 1 and let M be a simple refinement
ofMG

t
¬. Then: 1) `M satisfies (ii), (vi), and (ix). 2) If t > 1

2
then `M does not satisfy (i) nor (viii). 3) If t ≤ 1

2 then `M
satisfies (i), (v) and (viii).

Proof: It is straight-forward to verify that MG
t

is a simple F -rexpansion of MG, for F = λx ∈

[0, 1] .

{
[t, 1] x = 1

{t · x} x < 1
. By Corollary 3, every simple refine-

ment of MG
t
¬ induces a logic that is conservative over G.

The other properties are verified in a routine manner.

An interesting simple refinement of MG

1
2¬ is the matrix

for the logic RM⊃ [6], where implication is interpreted

by: O(⊃)(a, b) =

{
{1− a} a ≤ b ≤ 1− a
{b} else

.7 This logic

satisfies all of the properties discussed above. In fact, it can
be shown that it is the only such logic.

The proof of Theorem 3 actually provides another interest-
ing result regarding the Gödel matrix, that it, that the same
logic would result if the designated values were taken to be
any interval of the form [t, 1] for any 0 < t < 1.

Proposition 5 Let 0 < t < 1 and Mt = 〈Vt,Dt,Ot〉, where
Vt = [0, 1], Dt = [t, 1], and Ot = OG. Then `MG

= `Mt .

Proof: Mt is a simple refinement of MG
t, which is a

simple rexpansion of MG. By Corollary 2, `MG
= `Mt .

Finally, we note that other negations can be considered for
G, and rexpansions (and in particular Corollary 2) can be used
in order to prove that the result is conservative over G.

Lemma 3 Let A be a set of axioms in CL. If A is valid
in MG

t
¬ then GA, the axiomatic extension of G with A, is

conservative over G.

Proof: GA cannot cancel any existing consequences in G.
For the converse, any consequence in GA is valid in MG

t
¬,

and therefore also in G.

Note that finding a new semantics for the augmented logic
is not required, as only soundness is needed for the proof.

Example 11 By taking A to consist of the axioms from (ii)
above, we obtain an axiomatic extension of G with a negation
that satisfies the usual double negation and De Morgan rules,
and is conservative over G.

VI. CONCLUSION AND FURTHER RESEARCH

We have investigated rexpansions – compositions of ex-
pansions and refinements. Properties of this operation were
proved, as well as their effects on consequence relations.
Examples of applications of these results were also given,
including the construction of conservative extensions for many
logics from the literature. Theorem 2 provides a sufficient
condition for two Nmatrices to induce the same consequence
relation, while Example 6 shows that this condition is not

7RM⊃ is shown in [6] to be equivalent to the famous Dunn-Meyer semi-
relevant logic RM (see e.g. [1]).

necessary. An interesting direction for further research is to
characterize general cases in which the condition it suggests
is also necessary. Future work would also include more
applications of rexpansions, in the spirit of Sections IV and V.
In particular, Section V should be extended beyond Gödel
logic, to provide a general method for the construction of
paraconsistent fuzzy logics, based on rexpansions.
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V. Verdú, “Logics preserving degrees of truth from varieties of residuated
lattices,” Journal of Logic and Computation, vol. 19, no. 6, pp. 1031–
1069, 2009.

[12] W. Carnielli, M. Coniglio, and J. Marcos, “Logics of formal inconsis-
tency,” in Handbook of Philosophical Logic, D. Gabbay and F. Guenth-
ner, Eds. Springer, 2007, vol. 14, pp. 1–93, second edition.

[13] W. A. Carnielli and J. Marcos, “A taxonomy of C-systems,” in Para-
consistency: The logical way to the inconsistent, ser. Lecture Notes in
Pure and Applied Mathematics, W. A. Carnielli, M. E. Coniglio, and
I. M. L. D’Ottaviano, Eds. Marcel Dekker, 2002, vol. 228, pp. 1–94.

[14] M. Dummett, “A propositional calculus with denumerable matrix,”
Journal of Symbolic Logic, vol. 24, pp. 97–106, 1959.

[15] R. Ertola, F. Esteva, T. Flaminio, L. Godo, and C. Noguera, “Paracon-
sistency properties in degree-preserving fuzzy logics,” Soft Computing,
vol. 19, no. 3, pp. 531–546, 2014.

[16] S. C. Kleene, “On notation for ordinal numbers,” The Journal of
Symbolic Logic, vol. 3, pp. 150–155, Dec. 1938.

[17] P. Kulicki and R. Trypuz, “Doing the right things – trivalence in deontic
action logic,” in Trivalent Logics and their applications, Proceedings of
ESSLLI 2012 Workshop, P. Egre and D. Ripley, Eds., 2012, pp. 53–63.

[18] O. Lahav, “Studying sequent systems via non-deterministic multiple-
valued matrices,” in International Symposium on Multiple-Valued Logic,
vol. 9, 2013, pp. 575–595.

[19] G. Priest, “The logic of paradox,” Journal of Philosophical Logic, vol. 8,
no. 1, pp. 219–241, 1979.

[20] A. Urquhart, “Many-valued logic,” in Handbook of Philosophical Logic,
D. Gabbay and F. Guenthner, Eds. Kluwer, 2001, vol. II, pp. 249–295,
second edition.


