Modal extension of ideal paraconsistent four-valued logic and its subsystem

Norihiro Kamidea, Yoni Zoharb

aTeikyo University, Faculty of Science and Engineering, Department of Information and Electronic Engineering, Toyosatodai 1-1, Utsunomiya-shi, Tochigi 320-8551, Japan.
bStanford University, Computer Science Department, 353 Serra Mall, Stanford, CA 94305, USA.

Abstract

This study aims to introduce a modal extension M4CC of Arieli, Avron, and Zamansky’s ideal paraconsistent four-valued logic \(4\text{CC}\) as a Gentzen-type sequent calculus and prove the Kripke-completeness and cut-elimination theorems for M4CC. The logic M4CC is also shown to be decidable and embeddable into the normal modal logic S4. Furthermore, a subsystem of M4CC, which has some characteristic properties that do not hold for M4CC, is introduced and the Kripke-completeness and cut-elimination theorems for this subsystem are proved. This subsystem is also shown to be decidable and embeddable into S4.

Keywords: Ideal paraconsistent four-valued logic, Gentzen-type sequent calculus, Kripke-completeness theorem, Cut-elimination theorem, Embedding theorem

1. Introduction

In this study, a modal extension M4CC of Arieli, Avron, and Zamansky’s ideal paraconsistent four-valued logic, known as 4CC \([5, 6, 7]\), is introduced. We prove theorems for syntactically and semantically embedding M4CC into the normal modal logic S4. We prove the Kripke-completeness and cut-elimination theorems for M4CC using these embedding theorems. We also obtain the
decidability result of M4CC and the finite model property for M4CC using these embedding theorems. Furthermore, we introduce a subsystem M4CC* of M4CC and prove theorems for syntactically and semantically embedding M4CC* into S4 and vice versa. Similarly, we prove the Kripke-completeness and cut-elimination theorems for M4CC* as well as the decidability result of M4CC* and the finite model property for M4CC* using these embedding theorems.

The proposed logic M4CC is introduced as a Gentzen-type sequent calculus and is a modal extension of the Gentzen-type sequent calculus EPL, which was introduced by us in [20, 23]. The calculus EPL was shown in [23] to be theorem-equivalent to Arieli and Avron’s original Gentzen-type sequent calculus G_{4CC} [5, 6] for 4CC. Another proposed logic, M4CC*, is obtained from M4CC by deleting some initial sequents, which correspond to the principle \((\sim \alpha \land \neg \alpha) \rightarrow \beta\) of quasi-explosion and the law \(\sim \alpha \lor \neg \alpha\) of quasi-excluded middle, where \(\sim\) and – are a paraconsistent negation connective and conflation connective, respectively. The logic M4CC* is a modal extension of the Gentzen-type sequent calculus PL, which was introduced by us in [20, 23], as an embeddable subsystem of 4CC.

The original non-modal logic 4CC is an extension of Belnap and Dunn’s useful four-valued logic (also called first-degree entailment logic) [8, 9, 12], and is a variant of the logic of logical bilattices [3, 4]. The logic 4CC is also a specific type of paraconsistent logics [35] with multiple names: they are called pardefinite logics by Arieli and Avron [5, 6], non-alethic logics by da Costa, and paranormal logics by Béziau [10]. Regardless of their names, paraconsistent logics incorporate the properties of both paraconsistency, which rejects the principle \((\alpha \land \sim \alpha) \rightarrow \beta\) of explosion, and paracompleteness, which rejects the law \(\alpha \lor \sim \alpha\) of excluded middle. By these properties, paraconsistent logics are known to be appropriate for handling inconsistent and incomplete information [5].

Moreover, 4CC is known to be one of the most important ideal paraconsistent (or pardefinite) logics that have natural many-valued semantics. The logic 4CC is maximal relative to classical logic, which means that any attempt to add to it a tautology of classical logic, which is not provable in 4CC, should necessary
result in classical logic. The exact definition and motivation for introducing this property was described in [7]. The logic 4CC is also related to connexive logics [2, 26, 43] because its Hilbert-style axiom system contains a characteristic axiom scheme corresponding to Boethius' theses. For more information on the relation between 4CC and connexive logics, see [23].

Although 4CC is an important ideal paraconsistent (or paraconsistent) logic, a modal extension of 4CC, which is suitable for actual applications concerning, for example, some additional situations on knowledge (belief) and/or time (any time in the future), has not been studied yet. Therefore, this study aims to propose the modal extension M4CC of 4CC and show the completeness theorem with respect to a Kripke semantics for M4CC as well as the finite model property for M4CC. Since adding S4-type modality allows one to formulate naturally both Gentzen-type sequent calculus and Kripke semantics for the resulting system that can also suitably handle knowledge and/or time, we develop M4CC as a system combining 4CC with S4. However, we can also combine 4CC and one of the other normal modal logics such as K. By imposing some appropriate modifications, a similar method of proof can also be used to show the Kripke-completeness, cut-elimination, and finite model property for such extensions.

It was argued in [20, 23] that the embedding-based proof method used in [20, 23] for proving the completeness and cut-elimination theorems for another propositional non-modal paraconsistent logic, PL, seems insufficient for 4CC because it is unclear how a translation function can be defined for 4CC. However, in the present paper, we have shown that this argument is not true. Namely, we can use the embedding-based proof method for proving the completeness and cut-elimination theorems for M4CC and hence for the subsystem 4CC.

This work is regarded as a continuation of the previous work [23]. In [23], an alternative Gentzen-type sequent calculus (called EPL) for 4CC and its subsystem (called PL) were introduced. The proposed logics, i.e., M4CC and M4CC*, are also regarded as modal extensions of EPL and PL, respectively. The differences between PL and EPL are explained as follows. The logic EPL (i.e., 4CC) has the negative symmetry property, which represents a type of symmetry
between $-$ and \sim, but PL has no such property. Similarly, the extended logic M4CC has this property, but M4CC* has no such property. On the contrary, PL has the quasi-paracoherence and quasi-paracompleteness properties that reject the law of quasi-explosion and the law of quasi-excluded middle, but EPL has no such properties (i.e., EPL has these axioms). Similarly, the logic M4CC* has these properties, but M4CC has no such properties. In other words, the S4-type modalities in M4CC and M4CC* are formalized on the basis of preserving these characteristic properties.

The logic PL was introduced to obtain a good paraconsistent logic that can simulate classical logic. Such logic is required in application areas that use both paraconsistent and classical negations. Some paraconsistent logics that can simulate classical logic were studied in [21, 23], where it was shown that some bidirectional embeddings (i.e., embeddings from the underlying paraconsistent logic into classical logic and vice versa) characterize such logic. We believe that the existence of such bidirectional embeddings is important in formalizing good paraconsistent logic because such bidirectional embeddings are regarded as an analogue of the concept “bisimulation” (i.e., ones can simulate each other) which is known as an important concept in the concurrency theory in computer science. Thus, our motivation for introducing M4CC*, which is another aim of this study, is to extend this idea to also apply to modal logic. Although we have obtained such extended bidirectional embeddings from M4CC* into S4 and vice versa, we have not yet obtained extended bidirectional embeddings from M4CC into S4 and vice versa. We have only obtained single-directional embeddings from M4CC into S4. Nevertheless, using such extended bidirectional and single-directional embeddings, we can easily prove the Kripke-completeness and cut-elimination theorems for M4CC* and M4CC as well as the decidabilities and finite model properties of M4CC* and M4CC. The finite model property of a slightly different version of M4CC was presented by us in [24] using a direct proof method. However, the proof in [24] had a gap, and hence, such a finite model property has not yet been proved.

The structure of this paper is summarized as follows.
In Section 2, we introduce M4CC, M4CC*, and a Gentzen-type sequent calculus GS4 for S4 and define Kripke semantics for these systems. We also obtain some basic propositions for these systems and semantics and discuss some of their properties. These systems introduced in this section have the box modal operator \Box as an explicit modal operator (i.e., \Box is introduced by some logical inference rules). In these systems, the diamond modal operator \Diamond is also handled as an implicit modal operator (i.e., \Diamond is handled as an abbreviation of a combination of \Box and negations).

In Section 3, we prove some main theorems for M4CC and M4CC*. First, we prove several theorems for syntactically embedding M4CC* into (a Gentzen-type sequent calculus GS4 for) S4 and vice versa. Using such a syntactical embedding theorem, we show the cut-elimination theorem for M4CC* and the decidability of M4CC*. Then, as corollaries of the cut-elimination theorem, we obtain quasi-paraconsistency and quasi-paracompleteness for M4CC*. Next, we prove several theorems for semantically embedding M4CC* into S4 and vice versa. Using such a semantical embedding theorem, we prove the Kripke-completeness theorem for M4CC* and the finite model property of M4CC*. Similarly, we prove several syntactical and semantical embeddings of M4CC* into (a Gentzen-type sequent calculus GS4 for) S4. But, these embedding theorems are single-directional. Using these embedding theorems, we show the cut-elimination and Kripke-completeness theorems for M4CC and the decidability and finite model property of M4CC. Then, as a corollary of the cut-elimination theorem, we obtain the negative symmetry property for M4CC.

In Section 4, we introduce other versions M4CC\Diamond, M4CC*\Diamond, and GS4\Diamond and define Kripke semantics for them. These systems are extensions of M4CC, M4CC*, and GS4 by adding the diamond modal operator \Diamond as an explicit modal operator (i.e., \Diamond is introduced by some logical inference rules). Using a similar embedding-based method, we show that the same main theorems (except the finite model property) as those for M4CC and M4CC* also hold for M4CC\Diamond and M4CC*\Diamond. The finite model property does seem to hold for these systems as well (even if it is not proved in this paper).
In Section 5, we present the conclusion of this paper, some remarks on K-type modal extensions, which are based on the normal modal logic K, and related works on modal extensions of many-valued logics.

2. Modal extensions

2.1. Sequent calculi

Formulas of modal extensions of ideal paraconsistent four-valued logic and its relatives are constructed from countably many propositional variables by the logical connectives ∧ (conjunction), ∨ (disjunction), → (implication), ~ (paraconsistent negation) and − (confutation), and □ (box). We use the symbol ◻ (diamond) to denote the abbreviation of ~−□~−, where, as will shown later, ~− is considered to be the classical negation connective (i.e., the classical negated formulas of the form ¬α can be defined as ~−α). In what follows, we use small letters p, q,... to denote propositional variables, Greek small letters α, β,... to denote formulas, and Greek capital letters Γ, ∆,... to represent finite (possibly empty) sets of formulas. Let A be a set of symbols (i.e., alphabet). Then, the notation A* is used to represent the set of all words of finite length of the alphabet A. For any w ∈ {~, −, □}*, we use an expression wΓ to denote the set {wψ | ψ ∈ Γ}. We use the symbol Φ to denote the set of all propositional variables, the symbol Φ* to denote the set of all formulas, and the symbols Φ~ and Φ− to denote the sets {~p | p ∈ Φ} and {−p | p ∈ Φ}, respectively. We use the symbol ≡ to denote the equality of symbols. A sequent is an expression of the form Γ ⇒ ∆. We use an expression α ⇔ β to represent the abbreviation of the sequents α ⇒ β and β ⇒ α. An expression L ⊢ S means that a sequent S is provable in a sequent calculus L. If L of L ⊢ S is clear from the context, we omit L in it. We say that two sequent calculi L1 and L2 are theorem-equivalent if {S | L ⊢ S} = {S | L2 ⊢ S}. A rule R of inference is said to be admissible in a sequent calculus L if the following condition is satisfied: For any instance

\[
\frac{S_1 \cdots S_n}{S}
\]
of \(R \), if \(L \vdash S_i \) for all \(i \), then \(L \vdash S \). Moreover, \(R \) is said to be derivable in \(L \) if there is a derivation from \(S_1, \ldots, S_n \) to \(S \) in \(L \). Note that a rule \(R \) of inference is admissible in a sequent calculus \(L \) if and only if two sequent calculi \(L \) and \(L + R \) are theorem-equivalent.

A Gentzen-type sequent calculus \(\text{M4CC} \) for a modal extension of the ideal paraconsistent four-valued logic \(4\text{CC} \) is defined as follows.

Definition 2.1 (M4CC). The initial sequents of \(\text{M4CC} \) are of the following form, for any propositional variable \(p \),

\[
p \Rightarrow p \quad \neg p \Rightarrow \neg p \quad \neg p, \neg p \Rightarrow \Rightarrow \neg p, \neg p.
\]

The structural inference rules of \(\text{M4CC} \) are of the form:

\[
\frac{\Gamma \Rightarrow \Delta, \alpha, \Sigma \Rightarrow \Pi}{\alpha, \Gamma \Rightarrow \Delta, \Sigma \Rightarrow \Delta, \Pi} \quad (\text{cut}) \quad \frac{\Gamma \Rightarrow \Delta, \alpha, \Sigma \Rightarrow \Pi}{\alpha, \Gamma \Rightarrow \Delta} \quad (\text{we-left}) \quad \frac{\Gamma \Rightarrow \Delta, \alpha}{\Gamma \Rightarrow \Delta, \alpha} \quad (\text{we-right}).
\]

The non-negated logical inference rules of \(\text{M4CC} \) are of the form:

\[
\frac{\alpha, \beta, \Gamma \Rightarrow \Delta}{\alpha \land \beta, \Gamma \Rightarrow \Delta} \quad (\land\text{left}) \quad \frac{\alpha, \Gamma \Rightarrow \Delta, \alpha}{\Gamma \Rightarrow \Delta, \alpha \land \beta} \quad (\land\text{right})
\]

\[
\frac{\alpha, \beta, \Gamma \Rightarrow \Delta}{\alpha \lor \beta, \Gamma \Rightarrow \Delta} \quad (\lor\text{left}) \quad \frac{\alpha, \beta, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \alpha \lor \beta} \quad (\lor\text{right})
\]

\[
\frac{\alpha, \Gamma \Rightarrow \Delta}{\square \alpha, \Gamma \Rightarrow \Delta} \quad (\square\text{left}) \quad \frac{\square \alpha, \Gamma \Rightarrow \Delta, \alpha}{\square \Gamma, \square \alpha, \Gamma \Rightarrow \Delta} \quad (\square\text{right}).
\]

The negated logical inference rules of \(\text{M4CC} \) are of the form:

\[
\frac{\alpha, \Gamma \Rightarrow \Delta}{\neg \neg \alpha, \Gamma \Rightarrow \Delta} \quad (\neg\neg\text{left}) \quad \frac{\Gamma \Rightarrow \Delta, \alpha}{\neg \neg \alpha, \Gamma \Rightarrow \Delta} \quad (\neg\neg\text{right})
\]

\[
\frac{\Gamma \Rightarrow \Delta, \alpha}{\neg \neg \neg \alpha, \Gamma \Rightarrow \Delta} \quad (\neg\neg\text{right}) \quad \frac{\alpha, \Gamma \Rightarrow \Delta}{\neg \neg \neg \neg \alpha, \Gamma \Rightarrow \Delta} \quad (\neg\neg\neg\neg\text{right})
\]

\[
\frac{\neg \neg \neg \alpha, \Gamma \Rightarrow \Delta}{\neg \neg \neg \neg \alpha, \Gamma \Rightarrow \Delta} \quad (\neg\neg\neg\neg\text{left}) \quad \frac{\neg \neg \neg \neg \neg \alpha, \Gamma \Rightarrow \Delta}{\neg \neg \neg \neg \neg \neg \neg \neg \neg \alpha, \Gamma \Rightarrow \Delta} \quad (\nega
\[\alpha, \neg \beta, \Gamma \Rightarrow \Delta \quad (\sim \rightarrow \text{left}) \quad \Gamma \Rightarrow \Delta, \alpha \quad \Gamma \Rightarrow \Delta, \neg \beta \quad (\sim \rightarrow \text{right})\]
\[\neg \alpha, \Pi \Rightarrow \Delta \quad (\sim \bigtriangleup \text{left}) \quad \Box \Gamma, \sim \bigtriangleup \Sigma, \neg \Box \Pi \Rightarrow \neg \alpha \quad (\sim \bigtriangleup \text{right})\]

The conflated logical inference rules of M4CC are of the form:

\[\alpha, \Gamma \Rightarrow \Delta \quad (\sim \bigtriangleup \text{left}) \quad \Gamma \Rightarrow \Delta, \alpha \quad (\sim \bigtriangleup \text{right})\]
\[\neg \alpha, \Gamma \Rightarrow \Delta \quad (\sim \bigtriangleup \text{left}) \quad \Gamma \Rightarrow \Delta, \neg \alpha \quad (\sim \bigtriangleup \text{right})\]

A Gentzen-type sequent calculus M4CC for a modal paradefinite logic, which is a subsystem of M4CC, is defined as follows.

Definition 2.2 (M4CC\(^\star\)). M4CC\(^\star\) is obtained from M4CC by deleting the initial sequents of the following form, for any propositional variable \(p\),

\[\sim p, -p \Rightarrow \sim p, -p.\]

Remark 2.3.

1. \((\sim \rightarrow \text{left})\) and \((\sim \rightarrow \text{right})\) correspond to the Hilbert-style axiom scheme
\[-(\alpha \rightarrow \beta) \leftrightarrow \alpha \rightarrow \neg \beta,\] which is a characteristic axiom scheme for connexive logics [2, 26, 43].

2. Based on the use of \((\sim \leftarrow \text{left}), (\sim \leftarrow \text{right}), (\sim \rightarrow \text{left}), (\sim \rightarrow \text{right})\), we can define the classical negation \(\neg \alpha\) (i.e., the negation of classical logic) by
\[\sim \neg \alpha\ or \sim \neg \alpha.\ In \ the \ later \ section, \ we \ will \ also \ use \ the \ symbol \ \neg \ \ to \ denote \ \sim \neg .\]
3. The □-free fragment of M4CC is theorem-equivalent to the Gentzen-type sequent calculus G_{4CC} which was originally introduced by Arieli and Avron in [5, 6] for the ideal paraconsistent logic 4CC [5, 6, 7]. See [23] for the detail of the equivalence among related systems.

4. G_{4CC} [5, 6] is obtained from the □-free fragment of M4CC by replacing (p \Rightarrow p), (∼p \Rightarrow ∼p), (¬p \Rightarrow ¬p), (⇒ ∼p, ¬p), (¬∧left), (¬∧right), (¬∨left), (¬∨right), (¬→left), (¬→right), (¬left), (¬right), (¬¬left) and (¬¬right) with α ⇒ α, (¬left) and (¬right).

5. The □-free fragment of M4CC is theorem-equivalent to the system which is obtained from G_{4CC} by adding (∼α, ¬α ⇒), (⇒ ∼α, ¬α), (¬left) and (¬right).

6. The rules (□right), (∼◊right) and (¬□right) are just generalizations of the standard S4-type rule (□right\text{S4}). Indeed, the sequents ∼◊α ⇔ □∼α and ¬□α ⇔ □¬α are provable in cut-free M4CC. Hence, the context □Γ, ∼◊Σ, ¬□Π in these rules can be interpreted as □Γ, ∼◊Σ, □¬Π, revealing thus its structure as a genuine generalization of □Γ to formulas with ∼ and ¬.

Proposition 2.4. Let L be M4CC or M4CC*. Then, the following sequents are provable in cut-free L for any formulas α and β:

1. α ⇒ α,
2. ∼∼α ⇔ α,
3. ∼¬α ⇔ ¬∼α,
4. ∼(α ∧ β) ⇔ ∼α ∨ ∼β,
5. ∼(α ∨ β) ⇔ ∼α ∧ ∼β,
6. ∼(α→β) ⇔ α ∧ ∼β,
7. ¬¬α ⇔ α,
8. (¬α ∧ β) ⇔ ¬α ∧ ¬β,
9. (¬α ∨ β) ⇔ ¬α ∨ ¬β,
10. (¬α→β) ⇔ α→¬β.
Proof. Straightforward. One can prove 1 by induction on α. Q.E.D.

Proposition 2.5. The following sequents are provable in cut-free M4CC for any formulas α and β:

1. $\sim\alpha, -\alpha \Rightarrow$,
2. $\Rightarrow \sim\alpha, -\alpha$,
3. $\sim\alpha \land -\alpha \Rightarrow \beta$ (the principle of quasi-explosion),
4. $\Rightarrow \sim\alpha \lor -\alpha$ (the law of quasi-excluded middle).

Proof. Straightforward. We can prove 1 and 2 by induction on α. Q.E.D.

Proposition 2.6. Let $\Diamond\alpha$ be the abbreviation of $\sim -\Box\sim$. The following sequents are provable in cut-free M4CC for any formulas α and β:

1. $\sim\Diamond\alpha \Leftrightarrow \Box\sim\alpha$,
2. $-\Box\sim\alpha \Leftrightarrow \Box\sim\alpha$.

Proof. We show only (1) below.

Proof. Straightforward. We show only the derivability of $\sim\left(\sim\right)$ as follows.

Proposition 2.7. The following rules are derivable in M4CC using (cut):

- $\Gamma \Rightarrow \Delta, \sim\alpha$ ($\sim\left(\sim\right)$)
- $\sim\alpha, \Gamma \Rightarrow \Delta$ ($\sim\left(-\right)$)
- $\sim\alpha, \Gamma \Rightarrow \sim\alpha$ ($\sim\left(\sim\right)$)
- $\sim\alpha, \Gamma \Rightarrow \Delta$ ($\sim\left(-\right)$)
- $\sim\alpha, \Gamma \Rightarrow \sim\alpha$ ($\sim\left(-\right)$)
- $\sim\alpha, \Gamma \Rightarrow \Delta$ ($\sim\left(-\right)$)
- $\sim\alpha, \Gamma \Rightarrow \sim\alpha$ ($\sim\left(-\right)$)
- $\sim\alpha, \Gamma \Rightarrow \Delta$ ($\sim\left(-\right)$)
- $\sim\alpha, \Gamma \Rightarrow \sim\alpha$ ($\sim\left(-\right)$)
- $\sim\alpha, \Gamma \Rightarrow \Delta$ ($\sim\left(-\right)$)

Proof. Straightforward. We show only the derivability of $\sim\left(\sim\right)$ as follows.

Proof. Straightforward. We show only the derivability of $\sim\left(\sim\right)$ as follows.

Q.E.D.
Remark 2.8. Proposition 2.7 will be used to show the negative symmetry property for $M4CC$. Proposition 2.7 can also be strengthened to the cut-free version after showing the cut-elimination theorem for $M4CC$ (i.e., these rules are indeed admissible in cut-free $M4CC$).

In order to show some syntactical embedding theorems, we introduce a Gentzen-type sequent calculus GS4 for the normal modal logic S4. Formulas of GS4 are constructed from countably many propositional variables by logical connectives $\land, \lor, \to, \Box, \neg$ (classical negation). We use the symbol \Diamond in GS4 to denote the abbreviation of $\neg\Box
eg\neg$ (i.e., $\Diamond \alpha$ is the abbreviation of $\neg\Box
eg\neg \alpha$).

Definition 2.9 (GS4). The system GS4 is obtained from the $\{\sim, -\}$-free part of $M4CC^\ast$ by adding the modal inference rule of the form:

$\Box \Gamma \Rightarrow \alpha, \Box \Gamma \Rightarrow \Box \alpha \tag{\Box \text{right}^S4}$

and adding the classical negation inference rules of the form:

$\Gamma \Rightarrow \Delta, \alpha \tag{\neg \text{left}}$

$\alpha, \Gamma \Rightarrow \Delta \tag{\neg \text{right}}$

$\neg \alpha, \Gamma \Rightarrow \Delta \tag{\neg \text{right}}$

$\Gamma \Rightarrow \Delta, \neg \alpha \tag{\neg \text{right}}$

Note that the modal inference rule $(\Box \text{left})$ in $M4CC^\ast$ is also included in GS4.

Remark 2.10. We have the following well-known theorems for GS4. See e.g., [33, 34, 42].

1. (Cut-elimination for GS4): The rule (cut) is admissible in cut-free GS4.

2. (Decidability for GS4): The system GS4 is decidable.

2.2. Kripke semantics

In what follows, we use the symbol \neg to denote $\sim\neg$. We assume the commutativity of \land or \lor. We have the following fact: for any formulas $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$,

$\vdash \alpha_1, \ldots, \alpha_m \Rightarrow \beta_1, \ldots, \beta_n$ iff $\vdash \alpha_1 \land \cdots \land \alpha_m \Rightarrow \beta_1 \lor \cdots \lor \beta_n$.

Let Γ be a set $\{\alpha_1, \ldots, \alpha_m\}$ ($m \geq 0$). Then, we use an expression Γ^\ast to denote $\alpha_1 \lor \cdots \lor \alpha_m$ if $m \geq 1$, or otherwise $\neg(p \to p)$ where p is a fixed propositional
variable. We also use an expression Γ_{α} to denote $\alpha_1 \land \cdots \land \alpha_m$ if $m \geq 1$, or otherwise $p \rightarrow p$ where p is a fixed propositional variable.

We now introduce Kripke semantics for M4CC and M4CC*.

Definition 2.11 (Kripke frame). A structure (M, R) is called a Kripke frame if

1. M is a non-empty set,
2. R is a transitive and reflexive binary relation on M.

Definition 2.12 (Paraconsistent M4CC-valuation). A paraconsistent M4CC-valuation $|\subseteq^* \subseteq$ on a Kripke frame (M, R) is a mapping from the set $\Phi \cup \Phi^\sim \cup \Phi^\neg$ to the power set 2^M of M such that

$$(*) \ x \in \models^* (\neg p) \mbox{ iff } x \notin \models^* (\neg p).$$

We will write $x \models^* p$, $x \models^* \sim p$, and $x \models^* \neg p$ for $x \in \models^* (p)$, $x \in \models^* (\neg p)$, and $x \in \models^* (\sim p)$, respectively. We will also use the same notation as $x \models^* \alpha$ for an extended paraconsistent M4CC-valuation for any formula α. The paraconsistent M4CC-valuation $|\subseteq^*$ is extended to the mapping from the set Φ^* of all formulas to 2^M by:

1. $x \models^* \alpha \land \beta$ iff $x \models^* \alpha$ and $x \models^* \beta$,
2. $x \models^* \alpha \lor \beta$ iff $x \models^* \alpha$ or $x \models^* \beta$,
3. $x \models^* \alpha \rightarrow \beta$ iff $x \models^* \alpha$ implies $x \models^* \beta$,
4. $x \models^* \Box \alpha$ iff $\forall y \in M \ [xRy \ implies \ y \models^* \alpha]$,
5. $x \models^* \sim \sim \alpha$ iff $x \models^* \alpha$,
6. $x \models^* \sim \neg \alpha$ iff $x \not\models^* \alpha$,
7. $x \models^* \sim (\alpha \land \beta)$ iff $x \models^* \sim \alpha$ or $x \models^* \sim \beta$,
8. $x \models^* \sim (\alpha \lor \beta)$ iff $x \models^* \sim \alpha$ and $x \models^* \sim \beta$,
9. $x \models^* \sim (\alpha \rightarrow \beta)$ iff $x \models^* \alpha$ and $x \models^* \sim \beta$,
10. $x \models^* \sim \Box \alpha$ iff $\exists y \in M \ [xRy \ and \ y \models^* \sim \alpha]$,
11. $x \models^* \sim \neg \alpha$ iff $x \models^* \alpha$,
12. $x \models^* \sim \neg \alpha$ iff $x \not\models^* \alpha$,

12
13. $x \models^* - (\alpha \land \beta)$ iff $x \models^* - \alpha$ and $x \models^* - \beta,$
14. $x \models^* - (\alpha \lor \beta)$ iff $x \models^* - \alpha$ or $x \models^* - \beta,$
15. $x \models^* - (\alpha \rightarrow \beta)$ iff $x \models^* \alpha$ implies $x \models^* - \beta,$
16. $x \models^* - \Box \alpha$ iff $\forall y \in M \ [x R y$ implies $y \models^* - \alpha].$

Definition 2.13 (Paraconsistent M4CC*-valuation). A paraconsistent M4CC*-valuation \models^* on a Kripke frame $\langle M, R \rangle$ is a mapping from $\Phi \cup \Phi^\sim \cup \Phi^-$ to $2^M.$

Note that a paraconsistent M4CC*-valuation has no condition (*) in Definition 2.12. The paraconsistent M4CC*-valuation \models^* is extended to the mapping from Φ^* to 2^M by the clauses 1–16 in Definition 2.12.

Definition 2.14 (Paraconsistent Kripke M4CC- and M4CC*-models).

Let L be M4CC or M4CC*. A paraconsistent Kripke L-model is a structure $\langle M, R, \models^* \rangle$ such that

1. $\langle M, R \rangle$ is a Kripke frame,
2. \models^* is a paraconsistent L-valuation on $\langle M, R \rangle.$

A formula α is true in a paraconsistent Kripke L-model $\langle M, R, \models^* \rangle$ iff $x \models^* \alpha$ for any $x \in M,$ and is L-valid (in a Kripke frame) iff it is true for every paraconsistent L-valuation \models^* (on the Kripke frame). A sequent $\Gamma \Rightarrow \Delta$ is called L-valid (denoted as $L \models \Gamma \Rightarrow \Delta$) iff the formula $\Gamma, \models^* \Rightarrow \Delta^*$ is L-valid.

Next, we show a characteristic theorem for the paraconsistent M4CC-valuation.

Theorem 2.15. In Definition 2.12, the requirement (*), together with clauses 11–16, can be replaced with the following single requirement:

\[(**) \quad x \models^* - \alpha \text{ iff } x \not\models^* \sim \alpha. \]

Proof.

(\implies): We prove that $(**)$ holds in every paraconsistent M4CC-valuation \models^* on every Kripke frame $\langle M, R \rangle,$ every $x \in M$ and every formula $\alpha.$ We do so by induction on $\alpha,$ and show some cases. We show only some cases for the first condition of $(**).$ The cases for the second condition of $(**)$ can be shown similarly.

13
1. Case $\alpha \equiv p \in \Phi$: If α is a propositional variable, then (***) directly follows from (*).

2. Case $\alpha \equiv \alpha_1 \land \alpha_2$: If $\alpha \equiv \alpha_1 \land \alpha_2$, then by clause 13 we have $x \models^* \neg \alpha$ iff both $x \models^* \neg \alpha_1$ and $x \models^* \neg \alpha_2$. By the induction hypothesis, the latter holds iff $x \not\models^* \sim \alpha_1$ and $x \not\models^* \sim \alpha_2$, which by clause 7 holds iff $x \not\models^* \sim \alpha$.

3. Case $\alpha \equiv \neg \beta$: If $\alpha \equiv \neg \beta$, then by clause 12 we have $x \models^* \neg \alpha$ iff $x \not\models^* \sim \beta$, which, by clause 6 holds iff $x \not\models^* \not\sim \beta \equiv \sim \alpha$.

4. Case $\alpha \equiv \neg \beta$: If $\alpha \equiv \neg \beta$, then by clause 11 we have that $x \models^* \neg \alpha$ iff $x \models^* \beta$, which by clause 6 holds iff $x \not\models^* \sim \beta \equiv \sim \alpha$.

5. Case $\alpha \equiv \Box \beta$: If $\alpha \equiv \Box \beta$, then by clause 16 we have $x \models^* \neg \alpha$ iff for every $y \in M$, xRy implies $y \models^* \neg \beta$. By the induction hypothesis, the latter holds iff for every $y \in M$, xRy implies $y \not\models^* \sim \beta$. By clause 10, this holds iff $x \not\models^* \sim \Box \beta \equiv \sim \alpha$.

\Rightarrow : We prove that in every paraconsistent M4CC-valuation \models^* on every Kripke frame (M, R), every $x \in M$ and every formula α, clauses (**) and 11–16 hold, provided that (***) holds. We explicitly show (*), 11, 12, 13, and 16, leaving the rest to the reader.

(*) : (*) is a particular instance of (***) for the case of propositional variables.

(11): Using (**) and 6, $x \models^* \neg \alpha$ iff $x \not\models^* \sim \alpha$ iff $x \models^* \alpha$.

(12): Using (**) and 5, $x \models^* \sim \alpha$ iff $x \not\models^* \sim \alpha$ iff $x \not\models^* \alpha$.

(13): Using (**) and 7, $x \models^* \neg (\alpha_1 \land \alpha_2)$ iff $x \not\models^* \sim (\alpha_1 \land \alpha_2)$ iff $x \not\models^* \sim \alpha_1$ and $x \not\models^* \sim \alpha_2$.

(16): Using (**) and 10, $x \models^* \neg \Box \alpha$ iff $x \not\models^* \sim \Box \alpha$ iff $y \not\models^* \sim \alpha$ for every $y \in M$ such that xRy, iff $y \models^* \neg \alpha$ for every $y \in M$ such that xRy. Q.E.D.

In particular, we have the following corollary.

Corollary 2.16. For any paraconsistent M4CC-valuation \models^* on a Kripke frame (M, R), any $x \in M$, and any formula α,

1. $x \models^* \sim \alpha$ iff $x \not\models^* \neg \alpha$,
2. $\models^* (\sim \alpha) \cap \models^* (\neg \alpha) = \emptyset$.

14
We can also obtain the following proposition.

Proposition 2.17. The following formulas are $M4CC$-valid for any formulas α and β:

1. $(\neg \alpha \land \neg \alpha) \rightarrow \beta$ (the principle of quasi-explosion),
2. $\neg \alpha \lor \neg \alpha$ (the law of quasi-excluded middle).

Proof. By using Corollary 2.16. \[\text{Q.E.D.} \]

In order to show some semantical embedding theorems, we introduce the standard Kripke semantics for GS4.

Definition 2.18 (Valuation for GS4). A valuation $|=_{\Phi}$ on a Kripke frame $\langle M, R \rangle$ is a mapping from Φ to 2^M. We will write $x|= p$ for $x \in |= (p)$.

The valuation $|=_{\Phi}$ is extended to a mapping from Φ^* to 2^M by:

1. $x|=\alpha \land \beta$ iff $x|=\alpha$ and $x|=\beta$,
2. $x|=\alpha \lor \beta$ iff $x|=\alpha$ or $x|=\beta$,
3. $x|=\alpha \rightarrow \beta$ iff $x|=\alpha$ implies $x|=\beta$,
4. $x|=\neg \alpha$ iff $x|\neq \alpha$,
5. $x|=\Box \alpha$ iff $\forall y \in M \ [xRy \ implies \ y|= \alpha]$.

Proposition 2.19. The following condition holds for $|=_{\Phi}$:

6. $x|=\Diamond \alpha$ iff $\exists y \in M \ [xRy \ and \ y|= \alpha]$.

Proof. Straightforward. \[\text{Q.E.D.} \]

Definition 2.20 (Kripke model for GS4). A Kripke model is a structure $\langle M, R, |=_{\Phi} \rangle$ such that

1. $\langle M, R \rangle$ is a Kripke frame,
2. $|=_{\Phi}$ is a valuation on $\langle M, R \rangle$.

15
A formula α is true in a Kripke model $\langle M, R, \models \rangle$ iff $x \models \alpha$ for any $x \in M$, and is GS4-valid in a Kripke frame $\langle M, R \rangle$ iff it is true for every valuation \models on the Kripke frame. A sequent $\Gamma \Rightarrow \Delta$ is called GS4-valid (denoted as $\text{GS4} \models \Gamma \Rightarrow \Delta$) iff the formula $\Gamma \ast \Rightarrow \Delta \ast$ is GS4-valid.

Remark 2.21. We have the following well-known theorems for GS4. See e.g., [25, 18].

1. (Completeness for GS4): The following completeness theorem holds for GS4 for any sequent $\Gamma \Rightarrow \Delta$: $\text{GS4} \vdash \Gamma \Rightarrow \Delta$ iff $\text{GS4} \models \Gamma \Rightarrow \Delta$.
2. (Finite model property for GS4): The following finite model property holds for GS4 for any sequent $\Gamma \Rightarrow \Delta$: $\Gamma \Rightarrow \Delta$ is GS4-valid in any finite Kripke frame iff $\text{GS4} \vdash \Gamma \Rightarrow \Delta$.

3. Main theorems

3.1. Syntactical embedding and cut-elimination theorems for M4CC^*

Next, we introduce a GS4-translation function for formulas of M4CC^*, and by using this translation, we show several theorems for embedding M4CC^* into GS4.

Definition 3.1. We fix a set Φ of propositional variables, and define the sets $\Phi^\ast := \{ p^\ast \mid p \in \Phi \}$ and $\Phi^c := \{ p^c \mid p \in \Phi \}$ of propositional variables. The language $\mathcal{L}_{\text{M4CC}^*}$ of M4CC^* is defined using Φ, $\&$, \lor, \rightarrow, \lozenge, \neg, and \neg. The language \mathcal{L}_{GS4} of GS4 is defined using Φ, Φ^\ast, Φ^c, $\&$, \lor, \rightarrow, \lozenge, and \neg. A mapping f from $\mathcal{L}_{\text{M4CC}^*}$ to \mathcal{L}_{GS4} is defined inductively by:

1. For any $p \in \Phi$, $f(p) := p$, $f(\neg p) := p^\ast \in \Phi^\ast$ and $f(\neg p) := p^c \in \Phi^c$,
2. $f(\alpha \& \beta) := f(\alpha) \& f(\beta)$,
3. $f(\alpha \lor \beta) := f(\alpha) \lor f(\beta)$,
4. $f(\alpha \rightarrow \beta) := f(\alpha) \rightarrow f(\beta)$,
5. $f(\lozenge \alpha) := \lozenge f(\alpha)$,
6. $f(\neg(\alpha \& \beta)) := f(\neg \alpha) \lor f(\neg \beta)$,
7. \(f(\sim(\alpha \lor \beta)) := f(\sim\alpha) \land f(\sim\beta), \)
8. \(f(\sim(\alpha \rightarrow \beta)) := f(\alpha) \land f(\sim\beta), \)
9. \(f(\sim\alpha) := f(\alpha), \)
10. \(f(\sim\sim\alpha) := f(\sim\alpha), \)
11. \(f(\sim\sim\alpha) := \neg f(\alpha), \)
12. \(f(\sim\square\alpha) := \diamond f(\sim\alpha), \)
13. \(f(\neg(\alpha \land \beta)) := f(\neg\alpha) \land f(\neg\beta), \)
14. \(f(\neg(\alpha \lor \beta)) := f(\neg\alpha) \lor f(\neg\beta), \)
15. \(f(\neg(\alpha \rightarrow \beta)) := f(\alpha) \rightarrow f(\neg\beta), \)
16. \(f(\neg\alpha) := f(\alpha), \)
17. \(f(\neg\sim\sim\alpha) := f(\neg\alpha), \)
18. \(f(\neg\sim\alpha) := \neg f(\alpha), \)
19. \(f(\neg\square\alpha) := \square f(\neg\alpha). \)

An expression \(f(\Gamma) \) denotes the result of replacing every occurrence of a formula \(\alpha \) in \(\Gamma \) by an occurrence of \(f(\alpha) \). Analogous notation is used for the other mapping \(g \) discussed later.

Remark 3.2. A similar translation has been used by Gurevich [17], Rautenberg [37], and Vorob’ev [41] to embed Nelson’s constructive logic [1, 27] into intuitionistic logic. Some similar translations have also recently been used, for example, in [21, 22, 23] to embed some paraconsistent logics into classical logic.

Proposition 3.3. Let \(\diamond \) in M4CC* be the abbreviation of \(\sim\neg\square\sim\sim\sim \). Then, the following condition holds for \(f \):

\[
f(\sim\diamond\alpha) := \square f(\sim\alpha).
\]

Proof. We show this proposition as follows. \(f(\sim\diamond\alpha) = f(\sim\sim\sim\neg\square\sim\sim\sim\alpha) = f(\neg\square\sim\sim\sim\neg\alpha) = \square f(\neg\sim\sim\sim\neg\alpha) = \square \neg f(\sim\sim\sim\neg\alpha) = \square f(\sim\sim\sim\neg\alpha) = \square f(\sim\alpha). \) Note that the last equivalence is derived from condition 10 of \(f \). \(\text{Q.E.D.} \)

We now show a weak theorem for syntactically embedding M4CC* into GS4.
Theorem 3.4 (Weak syntactical embedding from M4CC⋆ into GS4).

Let \(\Gamma, \Delta \) be sets of formulas in \(\mathcal{L}_{M4CC^*} \), and \(f \) be the mapping defined in Definition 3.1.

1. If \(M4CC^* \vdash \Gamma \Rightarrow \Delta \), then \(GS4 \vdash f(\Gamma) \Rightarrow f(\Delta) \).
2. If \(GS4 - (\text{cut}) \vdash f(\Gamma) \Rightarrow f(\Delta) \), then \(M4CC^* - (\text{cut}) \vdash \Gamma \Rightarrow \Delta \).

Proof. • (1): By induction on the proofs \(P \) of \(\Gamma \Rightarrow \Delta \) in \(M4CC^* \). We distinguish the cases according to the last inference of \(P \), and show some cases.

1. Case \(\neg p \Rightarrow \neg p \): The last inference of \(P \) is of the form: \(\neg p \Rightarrow \neg p \) for any \(p \in \Phi \). In this case, we obtain \(GS4 \vdash f(\neg p) \Rightarrow f(\neg p) \), i.e., \(GS4 \vdash p^n \Rightarrow p^n \) \((p^n \in \Phi^n) \), by the definition of \(f \).

2. Case \((\neg\leftarrow) \): The last inference of \(P \) is of the form:

\[
\frac{}{\Gamma \Rightarrow \Delta, \alpha \quad \neg \alpha, \Gamma \Rightarrow \Delta} \quad (\neg\leftarrow).
\]

By induction hypothesis, we have \(GS4 \vdash f(\Gamma) \Rightarrow f(\Delta), f(\alpha) \). Then, we obtain the required fact:

\[
\vdots \frac{f(\Gamma) \Rightarrow f(\Delta), f(\alpha)}{-f(\alpha), f(\Gamma) \Rightarrow f(\Delta)} \quad (-\leftarrow)
\]

where \(-f(\alpha) \) coincides with \(f(\neg\alpha) \) by the definition of \(f \).

3. Case \((\rightarrow\leftarrow) \): The last inference of \(P \) is of the form:

\[
\frac{}{\Gamma \Rightarrow \Delta, \alpha \quad -\beta, \Sigma \Rightarrow \Pi} \quad (-\rightarrow\leftarrow).
\]

By induction hypothesis, we have \(GS4 \vdash f(\Gamma) \Rightarrow f(\Delta), f(\alpha) \) and \(GS4 \vdash f(-\beta), f(\Sigma) \Rightarrow f(\Pi) \). Then, we obtain the required fact:

\[
\vdots \frac{f(\Gamma) \Rightarrow f(\Delta), f(\alpha) \quad f(-\beta), f(\Sigma) \Rightarrow f(\Pi)}{-f(\alpha) \Rightarrow f(-\beta), f(\Gamma), f(\Sigma) \Rightarrow f(\Delta), f(\Pi)} \quad (-\rightarrow\leftarrow)
\]

where \(-f(\alpha) \Rightarrow f(-\beta) \) coincides with \(f(\neg(\alpha \rightarrow \beta)) \) by the definition of \(f \).
4. Case (□right): The last inference of P is of the form:

\[
\begin{align*}
\Box \Gamma, \neg \Diamond \Sigma, \neg \Box \Pi & \Rightarrow \alpha \\
\Box \Gamma, \neg \Diamond \Sigma, \neg \Box \Pi & \Rightarrow \Box \alpha \quad (\Box \text{right}).
\end{align*}
\]

By induction hypothesis, we have $\text{GS4} \vdash f(\Box \Gamma), f(\neg \Diamond \Sigma), f(\neg \Box \Pi) \Rightarrow f(\alpha)$ where $f(\Box \Gamma), f(\neg \Diamond \Sigma)$ and $f(\neg \Box \Pi)$ coincide with $\Box f(\Gamma), \Box f(\neg \Sigma)$ and $\Box f(\neg \Pi)$, respectively, by the definition of f and Proposition 3.3. Then, we obtain the required fact:

\[
\begin{align*}
\Box f(\Gamma), \Box f(\neg \Sigma), \Box f(\neg \Pi) & \Rightarrow f(\alpha) \\
\Box f(\Gamma), \Box f(\neg \Sigma), \Box f(\neg \Pi) & \Rightarrow \Box f(\alpha) \quad (\Box \text{right}^{\text{S4}})
\end{align*}
\]

where $\Box f(\alpha)$ coincides with $f(\Box \alpha)$ by the definition of f.

5. Case (¬right): The last inference of P is of the form:

\[
\begin{align*}
\Box \Gamma, \neg \Diamond \Sigma, \neg \Box \Pi & \Rightarrow -\alpha \\
\Box \Gamma, \neg \Diamond \Sigma, \neg \Box \Pi & \Rightarrow -\Box \alpha \quad (-\Box \text{right}).
\end{align*}
\]

By induction hypothesis, we have $\text{GS4} \vdash f(\Box \Gamma), f(\neg \Diamond \Sigma), f(\neg \Box \Pi) \Rightarrow f(-\alpha)$ where $f(\Box \Gamma), f(\neg \Diamond \Sigma)$ and $f(\neg \Box \Pi)$ coincide with $\Box f(\Gamma), \Box f(\neg \Sigma)$ and $\Box f(\neg \Pi)$, respectively, by the definition of f and Proposition 3.3. Then, we obtain the required fact:

\[
\begin{align*}
\Box f(\Gamma), \Box f(\neg \Sigma), \Box f(\neg \Pi) & \Rightarrow f(-\alpha) \\
\Box f(\Gamma), \Box f(\neg \Sigma), \Box f(\neg \Pi) & \Rightarrow \Box f(-\alpha) \quad (\Box \text{right}^{\text{S4}})
\end{align*}
\]

where $\Box f(-\alpha)$ coincides with $f(-\Box \alpha)$ by the definition of f.

• (2): By induction on the proofs Q of $f(\Gamma) \Rightarrow f(\Delta)$ in $\text{GS4} \quad (\text{cut})$. We distinguish the cases according to the last inference of Q, and show some cases.

1. Case (¬left): The last inference of Q is (¬left).
 (a) Subcase (1): The last inference of Q is of the form:

\[
\begin{align*}
f(\Gamma) & \Rightarrow f(\Delta), f(\alpha) \\
f(\neg \alpha), f(\Gamma) & \Rightarrow f(\Delta) \quad (\text{¬left})
\end{align*}
\]
where \(f(\sim \alpha) \) coincides with \(\neg f(\alpha) \) by the definition of \(f \). By induction hypothesis, we have \(M4CC^\ast \) \(\rightarrow \) \(\Gamma \Rightarrow \Delta, \alpha \). We thus obtain the required fact:

\[
\frac{\Gamma \Rightarrow \Delta, \alpha}{\sim \alpha, \Gamma \Rightarrow \Delta} \quad \text{(~left)}.
\]

(b) Subcase (2): The last inference of \(Q \) is of the form:

\[
\frac{f(\Gamma) \Rightarrow f(\Delta), f(\alpha)}{f(\sim \alpha), f(\Gamma) \Rightarrow f(\Delta)} \quad \text{(~left)}
\]

where \(f(\sim \alpha) \) coincides with \(\neg f(\alpha) \) by the definition of \(f \). By induction hypothesis, we have \(M4CC^\ast \) \(\rightarrow \) \(\Gamma \Rightarrow \Delta, \alpha \). We thus obtain the required fact:

\[
\frac{\Gamma \Rightarrow \Delta, \alpha}{\sim \alpha, \Gamma \Rightarrow \Delta} \quad \text{(~left)}.
\]

2. Case \(\Box \text{right}^{S4} \): The last inference of \(Q \) is \(\Box \text{right}^{S4} \).

(a) Subcase (1): The last inference of \(Q \) is of the form:

\[
\frac{f(\Box \Gamma), f(\sim \Box \Sigma), f(\sim \Box \Pi) \Rightarrow f(\alpha)}{f(\Box \Gamma), f(\sim \Box \Sigma), f(\sim \Box \Pi) \Rightarrow f(\alpha)} \quad \text{\(\Box \text{right}^{S4} \)}
\]

where \(f(\Box \Gamma), f(\sim \Box \Sigma), f(\sim \Box \Pi) \) and \(f(\Box \alpha) \) coincide with \(\Box f(\Gamma), \Box f(\sim \Sigma), \Box f(\sim \Pi) \) and \(\Box f(\alpha) \), respectively, by the definition of \(f \) and Proposition 3.3. By induction hypothesis, we have \(M4CC^\ast \) \(\rightarrow \) \(\Gamma, \sim \Box \Sigma, \sim \Box \Pi \Rightarrow \alpha \). We thus obtain the required fact:

\[
\frac{\Box \Gamma, \sim \Box \Sigma, \sim \Box \Pi \Rightarrow \alpha}{\Box \Gamma, \sim \Box \Sigma, \sim \Box \Pi \Rightarrow \Box \alpha} \quad \text{\(\Box \text{right} \)}.
\]

(b) Subcase (2): The last inference of \(Q \) is of the form:

\[
\frac{f(\Box \Gamma), f(\sim \Box \Sigma), f(\sim \Box \Pi) \Rightarrow f(\sim \alpha)}{f(\Box \Gamma), f(\sim \Box \Sigma), f(\sim \Box \Pi) \Rightarrow f(\sim \alpha)} \quad \text{\(\Box \text{right}^{S4} \)}
\]
where \(f(\Box \Gamma), f(\Diamond \Sigma), f(\neg \Box \Pi)\) and \(f(\neg \Diamond \alpha)\) coincide with \(\Box f(\Gamma), \Box f(\Diamond \Sigma), \Box f(\neg \Pi)\) and \(\Box f(\neg \alpha)\), respectively, by the definition of \(f\) and Proposition 3.3. By induction hypothesis, we have \(\text{M}4\text{CC}^* - (\text{cut}) \vdash \Box \Gamma, \neg \Diamond \Sigma, - \Box \Pi \Rightarrow \neg \alpha\). We thus obtain the required fact:

\[
\begin{array}{c}
\Box \Gamma, \neg \Diamond \Sigma, - \Box \Pi \Rightarrow \neg \alpha \\
\Box \Gamma, \neg \Diamond \Sigma, - \Box \Pi \Rightarrow \neg \Diamond \alpha
\end{array}
\]

\((\neg \Box\text{right})\).

(c) Subcase (3): The last inference of \(Q\) is of the form:

\[
\frac{f(\Box \Gamma), f(\Diamond \Sigma), f(\neg \Box \Pi) \Rightarrow f(\neg \alpha)}{f(\Box \Gamma), f(\Diamond \Sigma), f(\neg \Box \Pi) \Rightarrow f(\neg \Diamond \alpha)} \quad (\Box\text{right}^{\text{S}4})
\]

where \(f(\Box \Gamma), f(\Diamond \Sigma), f(\neg \Box \Pi)\) and \(f(\neg \Diamond \alpha)\) coincide with \(\Box f(\Gamma), \Box f(\Diamond \Sigma), \Box f(\neg \Pi)\) and \(\Box f(\neg \alpha)\), respectively, by the definition of \(f\) and Proposition 3.3. By induction hypothesis, we have \(\text{M}4\text{CC}^* - (\text{cut}) \vdash \Box \Gamma, \neg \Diamond \Sigma, - \Box \Pi \Rightarrow \neg \alpha\). We thus obtain the required fact:

\[
\begin{array}{c}
\Box \Gamma, \neg \Diamond \Sigma, - \Box \Pi \Rightarrow \neg \alpha \\
\Box \Gamma, \neg \Diamond \Sigma, - \Box \Pi \Rightarrow \neg \Diamond \alpha
\end{array}
\]

\((\neg \Box\text{right})\).

Q.E.D.

Using Theorem 3.4 and the cut-elimination theorem for GS4, we obtain the
following cut-elimination theorem for \(\text{M}4\text{CC}^*\).

Theorem 3.5 (Cut-elimination for \(\text{M}4\text{CC}^*\)). *The rule (cut) is admissible in cut-free \(\text{M}4\text{CC}^*\).*

Proof. Suppose \(\text{M}4\text{CC}^* \vdash \Gamma \Rightarrow \Delta\). Then, we have \(\text{GS}4 \vdash f(\Gamma) \Rightarrow f(\Delta)\) by Theorem 3.4 (1), and hence \(\text{GS}4 - (\text{cut}) \vdash f(\Gamma) \Rightarrow f(\Delta)\) by the cut-elimination theorem for GS4. By Theorem 3.4 (2), we obtain \(\text{M}4\text{CC}^* - (\text{cut}) \vdash \Gamma \Rightarrow \Delta\).

Q.E.D.

Using Theorem 3.4 and the cut-elimination theorem for GS4, we obtain a
strong theorem for syntactically embedding \(\text{M}4\text{CC}^*\) into GS4.
Theorem 3.6 (Syntactical embedding from M4CC\(^*\) into GS4). Let \(\Gamma, \Delta\) be sets of formulas in \(L_{M4CC}^*\), and \(f\) be the mapping defined in Definition 3.1.

1. \(M4CC^* \vdash \Gamma \Rightarrow \Delta \iff GS4 \vdash f(\Gamma) \Rightarrow f(\Delta)\).
2. \(M4CC^* - \text{(cut)} \vdash \Gamma \Rightarrow \Delta \iff GS4 - \text{(cut)} \vdash f(\Gamma) \Rightarrow f(\Delta)\).

Proof. • (\(\Rightarrow\)): By Theorem 3.4 (1). (\(\Leftarrow\)): Suppose GS4 \(\vdash f(\Gamma) \Rightarrow f(\Delta)\). Then we have GS4 - (cut) \(\vdash f(\Gamma) \Rightarrow f(\Delta)\) by the cut-elimination theorem for GS4. We thus obtain M4CC\(^*\) - (cut) \(\vdash \Gamma \Rightarrow \Delta\) by Theorem 3.4 (2). Therefore we have M4CC\(^*\) \(\vdash \Gamma \Rightarrow \Delta\).

• (\(\Rightarrow\)): Suppose M4CC\(^*\) - (cut) \(\vdash \Gamma \Rightarrow \Delta\). Then we have M4CC\(^*\) \(\vdash \Gamma \Rightarrow \Delta\). We then obtain GS4 \(\vdash f(\Gamma) \Rightarrow f(\Delta)\) by Theorem 3.4 (1). Therefore we obtain GS4 - (cut) \(\vdash f(\Gamma) \Rightarrow f(\Delta)\) by the cut-elimination theorem for GS4. (\(\Leftarrow\)): By Theorem 3.4 (2). \(Q.E.D.\)

Theorem 3.7 (Decidability for M4CC\(^*\)). The system M4CC\(^*\) is decidable.

Proof. By decidability of GS4, for each \(\alpha\), it is possible to decide if \(f(\alpha)\) is provable in GS4. Then, by Theorem 3.6, M4CC\(^*\) is also decidable. \(Q.E.D.\)

Using Theorem 3.5, we can obtain some characteristic properties of M4CC\(^*\), which do not hold for M4CC. Such properties are defined as follows.

Definition 3.8.

1. A sequent system \(L\) is called quasi-explosive with respect to the combination of two different negation-like connectives \(\sharp\) and \(\natural\) if \(L \vdash \sharp \alpha, \natural \alpha \Rightarrow \beta\) for any formulas \(\alpha\) and \(\beta\). A sequent system \(L\) is called quasi-paraconsistent with respect to the combination of \(\sharp\) and \(\natural\) if \(L\) is not quasi-explosive with respect to the combination of \(\sharp\) and \(\natural\).

2. A sequent system \(L\) is called quasi-exclusive with respect to the combination of two different negation-like connectives \(\sharp\) and \(\natural\) if \(L \vdash \Rightarrow \sharp \alpha, \natural \alpha\) for any formula \(\alpha\). A sequent system \(L\) is called quasi-paracomplete with respect to the combination of \(\sharp\) and \(\natural\) if \(L\) is not quasi-exclusive with respect to the combination of \(\sharp\) and \(\natural\).
Remark 3.9. The quasi-paraconsistency and quasi-paracompleteness represent the relationship between \(\sim \) and \(-\), and are regarded as analogues of the paraconsistency and paracompleteness, which reject the axiom schemes \((\sim \alpha \land \alpha) \to \beta\) (the principle of explosion) and \(\sim \alpha \lor \alpha\) (the law of excluded middle), respectively. The quasi-paraconsistency and quasi-paracompleteness reject the axiom schemes \((\sim \alpha \land \neg \alpha) \to \beta\) (the principle of quasi-explosion) and \(\sim \alpha \lor \neg \alpha\) (the law of quasi-excluded middle), respectively.

Theorem 3.10 (Quasi-paraconsistency and quasi-paracompleteness for M4CC\(^*\)). We have:

1. The system M4CC\(^*\) is quasi-paraconsistent with respect to the combination of \(\sim \) and \(-\).
2. The system M4CC\(^*\) is quasi-parocomplete with respect to the combination of \(\sim \) and \(-\).

Proof. We show only (1) below. Consider sequent \(\sim p, \neg p \Rightarrow q\) where \(p\) and \(q\) are distinct propositional variables. Then, the unprovability of this sequent is guaranteed by Theorem 3.5. \(\text{Q.E.D.}\)

Next, we introduce an M4CC\(^*\)-translation function for formulas of GS4, and by using this translation, we show some theorems for embedding GS4 into M4CC\(^*\).

Definition 3.11. Let \(L_{M4CC^*}\) and \(L_{GS4}\) be the languages defined in Definition 3.1. A mapping \(g\) from \(L_{GS4}\) to \(L_{M4CC^*}\) is defined inductively by:

1. For any \(p \in \Phi\), any \(p^n \in \Phi^n\) and any \(p^c \in \Phi^c\), \(g(p) := p\), \(g(p^n) := \sim p\) and \(g(p^c) := \neg g(p)\).
2. \(g(\alpha \land \beta) := g(\alpha) \land g(\beta)\).
3. \(g(\alpha \lor \beta) := g(\alpha) \lor g(\beta)\).
4. \(g(\alpha \to \beta) := g(\alpha) \to g(\beta)\).
5. \(g(\neg \alpha) := \sim g(\alpha)\).
6. \(g(\Box \alpha) := \Box g(\alpha). \)

Theorem 3.12 (Weak syntactical embedding from GS4 into M4CC\(^*\)).

Let \(\Gamma, \Delta \) be sets of formulas in \(\mathcal{L}_{GS4} \), and \(g \) be the mapping defined in Definition 3.11.

1. If \(GS4 \vdash \Gamma \Rightarrow \Delta \), then \(M4CC^* \vdash g(\Gamma) \Rightarrow g(\Delta). \)
2. If \(M4CC^* \vdash \neg (cut) \vdash g(\Gamma) \Rightarrow g(\Delta) \), then \(GS4 \vdash \neg (cut) \vdash \Gamma \Rightarrow \Delta. \)

Proof. • (1): By induction on the proofs \(P \) of \(\Gamma \Rightarrow \Delta \) in GS4. We distinguish the cases according to the last inference of \(P \), and show only the following cases.

1. Case \(p^\ast \Rightarrow p^\ast \) with \(\ast \in \{n, c\} \): The last inference of \(P \) is of the form:

 \(p^\ast \Rightarrow p^\ast \) for any \(p^\ast \in \Phi^\ast \) with \(\ast \in \{n, c\} \). In this case, we obtain

 \(M4CC^* \vdash g(p^\ast) \Rightarrow g(p^\ast) \) and \(M4CC^* \vdash g(p^\ast) \Rightarrow g(p^\ast) \) i.e., \(M4CC^* \vdash \neg p \Rightarrow \neg p \) and \(M4CC^* \vdash \Box \neg p \Rightarrow \Box \neg p \), by the definition of \(g \).

2. Case (\(\neg \)left): The last inference of \(P \) is of the form:

 \[
 \Gamma \Rightarrow \Delta, \alpha \neg \alpha, \Gamma \Rightarrow \Delta \quad (\neg \text{left})
 \]

 By induction hypothesis, we have \(M4CC^* \vdash g(\Gamma) \Rightarrow g(\Delta), g(\alpha) \). We then obtain the required fact:

 \[
 \vdots \\
 g(\Gamma) \Rightarrow g(\Delta), g(\alpha) \\
 \neg \neg g(\alpha), g(\Gamma) \Rightarrow g(\Delta) \quad (\neg \text{left})
 \]

 where \(\neg \neg g(\alpha) \) coincides with \(g(\neg \alpha) \) by the definition of \(g \).

3. Case (\(\Box \)right\(^S4\)): The last inference of \(P \) is of the form:

 \[
 \Box \Gamma \Rightarrow \alpha \quad (\Box \text{right}^{S4})
 \]

 By induction hypothesis, we have \(M4CC^* \vdash g(\Box \Gamma) \Rightarrow g(\alpha) \) where \(g(\Box \Gamma) \) coincides with \(\Box g(\Gamma) \) by the definition of \(g \). We then obtain the required fact:

 \[
 \vdots \\
 \Box g(\Gamma) \Rightarrow g(\alpha) \\
 \Box g(\Gamma) \Rightarrow \Box g(\alpha) \quad (\Box \text{right})
 \]
where □g(α) coincides with g(□α) by the definition of g.

• (2): By induction on the proofs Q of g(Γ) ⇒ g(Δ) in M4CC* − (cut). We distinguish the cases according to the last inference of Q, and show only the following cases.

1. Case (∼−left): The last inference of Q is of the form:
\[\frac{g(\Gamma) \Rightarrow g(\Delta), g(\alpha)}{\sim g(\alpha), g(\Gamma) \Rightarrow g(\Delta)} \quad (∼−left) \]
where ∼−g(α) coincides with g(∼α) by the definition of g. By induction hypothesis, we have GS4 − (cut) ⊢ Γ ⇒ ∆, α. We thus obtain the required fact:
\[\vdots \quad \frac{\Gamma \Rightarrow \Delta, \alpha}{\sim \alpha, \Gamma \Rightarrow \Delta} \quad (∼−left). \]

2. Case (□right): The last inference of Q is of the form:
\[\frac{g(\square \Gamma) \Rightarrow g(\alpha)}{g(\square \Gamma) \Rightarrow \square g(\alpha)} \quad (□right) \]
where g(□Γ) and □g(α) coincide with □g(Γ) and g(□α), respectively, by the definition of g. By induction hypothesis, we have GS4 − (cut) ⊢ □Γ ⇒ α. We thus obtain the required fact:
\[\vdots \quad \frac{\square \Gamma \Rightarrow \alpha}{\square \Gamma \Rightarrow \square \alpha} \quad (□right^{S4}). \]

Q.E.D.

Theorem 3.13 (Syntactical embedding from GS4 into M4CC*). Let Γ, ∆ be sets of formulas in L_{GS4}, and g be the mapping defined in Definition 3.11.

1. GS4 ⊢ Γ ⇒ ∆ iff M4CC* ⊢ g(Γ) ⇒ g(Δ).
2. GS4 − (cut) ⊢ Γ ⇒ ∆ iff M4CC* − (cut) ⊢ g(Γ) ⇒ g(Δ).

Proof. By using Theorems 3.12 and 3.5. Similar to Theorem 3.6. Q.E.D.
3.2. Semantical embedding and Kripke-completeness theorems for M4CC*

Next, we show a theorem for semantically embedding M4CC* into GS4. Prior to prove the semantical embedding theorem, we need to show some lemmas.

Lemma 3.14. Let \(f \) be the mapping defined in Definition 3.1. For any paraconsistent Kripke M4CC*-model \(\langle M, R, \models^* \rangle \), we can construct a Kripke model \(\langle M, R, \models \rangle \) such that for any formula \(\alpha \) and any \(x \in M \),

\[
x |\models^* \alpha \iff x |\models f(\alpha).
\]

Proof. Suppose that \(\langle M, R, \models^* \rangle \) is a paraconsistent Kripke M4CC*-model where \(\models^* \) is a mapping from \(\Phi \cup \Phi^\sim \cup \Phi^- \) to \(2^M \). Suppose that \(\langle M, R, \models \rangle \) is a Kripke model where \(\models \) is a mapping from \(\Phi \cup \Phi^\sim \cup \Phi^- \) to \(2^M \) such that for any \(x \in M \) and any \(q \in \Phi \),

1. \(x |\models^* q \iff x |\models q \) (by the assumption) iff \(x |\models f(q) \) (by the definition of \(f \)).
2. \(x |\models^* \sim q \iff x |\models q^n \) (by the assumption) iff \(x |\models f(\sim q) \) (by the definition of \(f \)).
3. \(x |\models^* \neg q \iff x |\models q^c \) (by the assumption) iff \(x |\models f(\neg q) \) (by the definition of \(f \)).

Then, the lemma is proved by induction on \(\alpha \).

- **Base step:**
 1. Case when \(\alpha \equiv q \) where \(q \) is a propositional variable: \(x |\models^* q \iff x |\models q \) (by the assumption) iff \(x |\models f(q) \) (by the definition of \(f \)).
 2. Case when \(\alpha \equiv \sim q \) where \(q \) is a propositional variable: \(x |\models^* \sim q \iff x |\models q^n \) (by the assumption) iff \(x |\models f(\sim q) \) (by the definition of \(f \)).
 3. Case when \(\alpha \equiv \neg q \) where \(q \) is a propositional variable: \(x |\models^* \neg q \iff x |\models q^c \) (by the assumption) iff \(x |\models f(\neg q) \) (by the definition of \(f \)).

- **Induction step:** We show some cases.
 1. Case \(\alpha \equiv \beta \land \gamma \): \(x |\models^* \beta \land \gamma \iff x |\models^* \beta \) and \(x |\models^* \gamma \) iff \(x |\models f(\beta) \) and \(x |\models f(\gamma) \) (by induction hypothesis) iff \(x |\models f(\beta) \land f(\gamma) \) iff \(x |\models f(\beta \land \gamma) \) (by the definition of \(f \)).
2. Case when \(\alpha \equiv \beta \rightarrow \gamma\): \(x \vdash \beta \rightarrow \gamma\) iff \(x \vdash\) \(\beta\) implies \(x \vdash \gamma\) iff \(x \vdash f(\beta)\) implies \(x \vdash f(\gamma)\) (by induction hypothesis) iff \(x \vdash f(\beta \rightarrow f(\gamma))\) iff \(x \vdash f(\beta \rightarrow \gamma)\) (by the definition of \(f\)).

3. Case \(\alpha \equiv \square \beta\): \(x \vdash \square \beta\) iff \(\forall y \in M[xRy] \implies y \vdash \beta\) iff \(\forall y \in M[xRy] \implies y \vdash f(\beta)\) (by induction hypothesis) iff \(x \vdash \square f(\beta)\) iff \(x \vdash f(\square \beta)\) (by the definition of \(f\)).

4. Case \(\alpha \equiv \neg \neg \beta\): \(x \vdash \neg \neg \beta\) iff \(x \vdash \beta\) (by induction hypothesis) iff \(x \vdash f(\neg \neg \beta)\) (by the definition of \(f\)).

5. Case \(\alpha \equiv \neg (\beta \land \gamma)\): \(x \vdash \neg (\beta \land \gamma)\) iff \(x \vdash \neg \beta\) or \(x \vdash \neg \gamma\) iff \(x \vdash \neg f(\beta)\) or \(x \vdash f(\neg \gamma)\) (by induction hypothesis) iff \(x \vdash f(\neg \beta) \lor f(\neg \gamma)\) iff \(x \vdash f(\neg (\beta \land \gamma))\) (by the definition of \(f\)).

6. Case when \(\alpha \equiv \neg (\beta \rightarrow \gamma)\): \(x \vdash \neg (\beta \rightarrow \gamma)\) iff \(x \vdash \beta\) and \(x \vdash \neg \gamma\) iff \(x \vdash f(\beta)\) and \(x \vdash f(\neg \gamma)\) (by induction hypotheses) iff \(x \vdash f(\beta \land f(\neg \gamma))\) iff \(x \vdash f(\neg (\beta \rightarrow \gamma))\) (by the definition of \(f\)).

7. Case \(\alpha \equiv \neg \square \beta\): \(x \vdash \neg \square \beta\) iff \(\exists y \in M[xRy] \land y \vdash \neg \beta\) iff \(\exists y \in M[xRy] \land y \vdash f(\neg \beta)\) (by induction hypothesis) iff \(x \vdash \neg f(\square \beta)\) (By Proposition 2.19) iff \(x \vdash f(\neg \square \beta)\) (by the definition of \(f\)).

8. Case \(\alpha \equiv \neg \neg \beta\): \(x \vdash \neg \neg \beta\) iff \(x \not\vdash (\beta)\) iff \(x \not\vdash f(\beta)\) (by induction hypothesis) iff \(x \vdash \neg f(\beta)\) iff \(x \vdash f(\neg \neg \beta)\) (by the definition of \(f\)).

9. Case when \(\alpha \equiv \neg (\beta \land \gamma)\): \(x \vdash \neg (\beta \land \gamma)\) iff \(x \vdash \neg \beta\) and \(x \vdash \neg \gamma\) iff \(x \vdash f(\neg \beta)\) and \(x \vdash f(\neg \gamma)\) (by induction hypothesis) iff \(x \vdash f(\neg \beta \land f(\neg \gamma))\) iff \(x \vdash f(\neg (\beta \land \gamma))\) (by the definition of \(f\)).

10. Case \(\alpha \equiv \neg (\beta \rightarrow \gamma)\): \(x \vdash \neg (\beta \rightarrow \gamma)\) iff \(x \vdash \beta\) implies \(x \vdash \neg \gamma\) iff \(x \vdash f(\beta)\) implies \(x \vdash f(\neg \gamma)\) (by induction hypothesis) iff \(x \vdash f(\beta \rightarrow f(\neg \gamma))\) iff \(x \vdash f(\neg (\beta \rightarrow \gamma))\) (by the definition of \(f\)).

11. Case \(\alpha \equiv \neg \square \beta\): \(x \vdash \neg \square \beta\) iff \(\forall y \in M[xRy] \implies y \vdash \neg \beta\) iff \(\forall y \in M[xRy] \implies y \vdash f(\neg \beta)\) (by induction hypothesis) iff \(x \vdash \neg f(\neg \beta)\) iff \(x \vdash f(\neg \square \beta)\) (by the definition of \(f\)).

Lemma 3.15. Let \(f\) be the mapping defined in Definition 3.1. For any Kripke model \(\langle M, R, \models \rangle\), we can construct a paraconsistent Kripke \(M\&CC^*\).
model \langle M, R, \models^* \rangle \) such that for any formula \(\alpha \) and any \(x \in M \),

\[x \models f(\alpha) \iff x \models^* \alpha. \]

Proof. Similar to the proof of Lemma 3.14. \(\text{Q.E.D.} \)

Theorem 3.16 (Semantical embedding from M4CC* into GS4). Let \(f \) be the mapping defined in Definition 3.1. For any sequent \(\Gamma \Rightarrow \Delta \),

\[\text{M4CC}^* \models \Gamma \Rightarrow \Delta \iff \text{GS4} \models f(\Gamma) \Rightarrow f(\Delta). \]

Proof. By Lemmas 3.14 and 3.15. \(\text{Q.E.D.} \)

Theorem 3.17 (Kripke-completeness for M4CC*). For any sequent \(\Gamma \Rightarrow \Delta \),

\[\text{M4CC}^* \vdash \Gamma \Rightarrow \Delta \iff \text{M4CC}^* \models \Gamma \Rightarrow \Delta. \]

Proof. We have the following. M4CC* \vdash \Gamma \Rightarrow \Delta \iff GS4 \vdash f(\Gamma) \Rightarrow f(\Delta) \) (by Theorem 3.6) \iff G4S \models f(\Gamma) \Rightarrow f(\Delta) \) (by the completeness theorem for GS4) \iff M4CC* \models \Gamma \Rightarrow \Delta \) (by Theorem 3.16). \(\text{Q.E.D.} \)

Theorem 3.18 (Finite model property for M4CC*). For any sequent \(\Gamma \Rightarrow \Delta \), \(\Gamma \Rightarrow \Delta \) is M4CC*-valid in any finite Kripke frame iff M4CC* \vdash \Gamma \Rightarrow \Delta.

Proof. We can modify Lemmas 3.14 and 3.15 for finite models. Using such modified lemmas and the finite model property for GS4, we can obtain the required property. \(\text{Q.E.D.} \)

Next, we show a theorem for semantically embedding GS4 into M4CC*.

Lemma 3.19. Let \(g \) be the mapping defined in Definition 3.11. For any Kripke model \(\langle M, R, \models \rangle \), we can construct a paraconsistent Kripke M4CC*-model \(\langle M, R, \models^* \rangle \) such that for any formula \(\alpha \) and any \(x \in M \),

\[x \models \alpha \iff x \models^* g(\alpha). \]
Proof. Suppose that \(\langle M, R, \models \rangle \) is a Kripke model where \(\models \) is a mapping from \(\Phi \cup \Phi^\neg \cup \Phi^c \) to \(2^M \). Suppose that \(\langle M, R, \models^* \rangle \) is a paraconsistent Kripke M4CC*-model where \(\models^* \) is a mapping from \(\Phi \cup \Phi^\neg \cup \Phi^c \) to \(2^M \) such that for any \(x \in M \) and any \(q \in \Phi \),

1. \(x \models^* q \) iff \(x \models q \)
2. \(x \models^* \neg q \) iff \(x \models q^\neg \)
3. \(x \models^* \neg q \) iff \(x \models q^c \)

Then, the lemma is proved by induction on \(\alpha \).

• Base step:

1. Case \(\alpha \equiv p \) where \(q \) is a propositional variable: \(x \models q \) iff \(x \models^* q \) (by the assumption) iff \(x \models^* g(q) \) (by the definition of \(g \)).
2. Case \(\alpha \equiv q^n \) where \(q^n \) is a propositional variable in \(\Phi^n \): \(x \models q^n \) iff \(x \models^* q^n \) (by the assumption) iff \(x \models^* g(q^n) \) (by the definition of \(g \)).
3. Case \(\alpha \equiv q^c \) where \(q^c \) is a propositional variable in \(\Phi^c \): \(x \models q^c \) iff \(x \models^* q^c \) (by the assumption) iff \(x \models^* g(q^c) \) (by the definition of \(g \)).

• Induction step: We show some cases.

1. Case \(\alpha \equiv \beta \land \gamma \): \(x \models \beta \land \gamma \) iff \(x \models \beta \land x \models \gamma \) iff \(x \models^* g(\beta) \) and \(x \models^* g(\gamma) \) (by induction hypothesis) iff \(x \models^* g(\beta) \land g(\gamma) \) iff \(x \models^* g(\beta \land \gamma) \) (by the definition of \(g \)).
2. Case \(\alpha \equiv \neg \beta \): \(x \models \neg \beta \) iff \(x \not\models \beta \) iff \(x \not\models^* g(\beta) \) (by induction hypothesis) iff \(x \models^* g(\neg \beta) \) iff \(x \models^* g(\neg \beta) \) (by the definition of \(g \)).
3. Case \(\alpha \equiv \Box \beta \): \(x \models \Box \beta \) iff \(\forall y \in M[xRy] \) implies \(y \models \beta \) iff \(\forall y \in M[xRy] \) implies \(y \models^* g(\beta) \) (by induction hypothesis) iff \(x \models^* g(\beta) \) iff \(x \models g(\Box \beta) \) (by the definition of \(g \)).

Q.E.D.

Lemma 3.20. Let \(g \) be the mapping defined in Definition 3.11. For any paraconsistent Kripke M4CC*-model \(\langle M, R, \models^* \rangle \), we can construct a Kripke model \(\langle M, R, \models \rangle \) such that for any formula \(\alpha \) and any \(x \in M \),
Proof. Similar to the proof of Lemma 3.19. Q.E.D.

Theorem 3.21 (Semantical embedding from GS4 into M4CC∗). Let g be the mapping defined in Definition 3.11. For any sequent Γ ⇒ ∆,

\[
\text{GS4} \models \Gamma \Rightarrow \Delta \iff \text{M4CC}^\ast \models g(\Gamma) \Rightarrow g(\Delta).
\]

Proof. By Lemmas 3.19 and 3.20. Q.E.D.

3.3. Theorems for M4CC

Next, we introduce a GS4-translation function for formulas of M4CC, and by using this translation, we show several theorems for embedding M4CC into GS4.

Definition 3.22. We fix a set Φ of propositional variables, and define the set Φ^n := \{p^n \mid p \in Φ\} of propositional variables. The language L_M4CC of M4CC is the same as that of M4CC^∗, i.e., it is defined using Φ, ∧, ∨, →, □, ¬, and ∼. The new alternative language L*_{GS4} of GS4 is defined using Φ, Φ^n, ∧, ∨, →, □, and ¬. Note that Φ^c is not used in L*_{GS4}, which differs from Definition 3.1 for M4CC^∗.

A mapping f from L_M4CC to L*_{GS4} is defined inductively by the conditions 2–17 in Definition 3.1 and the following new condition:

\text{*}. For any p ∈ Φ, f(p) := p, f(∼p) := p^n, and f(¬p) := ∼p^n where p^n ∈ Φ^n.

We now show a weak theorem for syntactically embedding M4CC into GS4.

Theorem 3.23 (Weak syntactical embedding from M4CC into GS4).

Let Γ, ∆ be sets of formulas in L_M4CC, and f be the mapping defined in Definition 3.22.

1. If M4CC ⊢ Γ ⇒ ∆, then GS4 ⊢ f(Γ) ⇒ f(∆).
2. If GS4 − (cut) ⊢ f(Γ) ⇒ f(∆), then M4CC − (cut) ⊢ Γ ⇒ ∆.
Proof. Since the proof of (2) is the same as that for M4CC*, we show only (1) by induction on the proofs \(P \) of \(\Gamma \Rightarrow \Delta \) in M4CC. We distinguish the cases according to the last inference of \(P \), and show only the following cases which are not included in or differ from the cases for M4CC*.

1. Case \(\sim p, -p \Rightarrow \): The last inference of \(P \) is of the form: \(\sim p, -p \Rightarrow \) for any \(p \in \Phi \). In this case, using \((\sim \text{left}) \), we obtain \(\text{GS4} \vdash f(\sim p), f(-p) \Rightarrow \), i.e.,
\[
\text{GS4} \vdash p^n, -p^n \Rightarrow (p^n \in \Phi^n) \text{ by the definition of } f.
\]

2. Case \(\Rightarrow \sim p, -p \): Similar to Case \(\sim p, -p \Rightarrow \).

3. Case \(-p \Rightarrow -p \): The last inference of \(P \) is of the form: \(-p \Rightarrow -p \) for any \(p \in \Phi \). In this case, we obtain \(\text{GS4} \vdash f(-p) \Rightarrow f(-p) \), i.e.,
\[
\text{GS4} \vdash -p^n \Rightarrow -p^n \text{ (p}^n \in \Phi^n) \text{ by the definition of } f.
\]

Q.E.D.

Theorem 3.24 (Cut-elimination for M4CC). The rule \((\text{cut}) \) is admissible in cut-free M4CC.

Proof. Similar to the proof of Theorem 3.5. By using Theorem 3.23. Q.E.D.

Theorem 3.25 (Syntactical embedding from M4CC into GS4). Let \(\Gamma, \Delta \) be sets of formulas in \(\mathcal{L}_{\text{M4CC}} \), and \(f \) be the mapping defined in Definition 3.22.

1. M4CC \(\vdash \Gamma \Rightarrow \Delta \) iff GS4 \(\vdash f(\Gamma) \Rightarrow f(\Delta) \).
2. M4CC - (cut) \(\vdash \Gamma \Rightarrow \Delta \) iff GS4 - (cut) \(\vdash f(\Gamma) \Rightarrow f(\Delta) \).

Proof. Similar to the proof of Theorem 3.6. By using Theorem 3.23 and the cut-elimination theorem for GS4. Q.E.D.

Theorem 3.26 (Decidability for M4CC). The system M4CC is decidable.

Proof. Similar to the proof of Theorem 3.7. By using Theorem 3.25. Q.E.D.

We show the following characteristic property of M4CC.

Theorem 3.27 (Negative symmetry for M4CC). For any formulas \(\alpha \) and \(\beta \),
By Theorem 3.24 and Proposition 2.7, we have the fact that (∼-left), (∼-right), (−-left), and (−-right) are admissible in cut-free M4CC. This fact implies the required fact.

Q.E.D.
1. \(x \models^* q \iff x \models q \),
2. \(x \models^* \neg q \iff x \models q^n \),
3. \(x \models^* -q \iff x \models -q^n \).

Then, the lemma is proved by induction on \(\alpha \). Since the proof of the induction step is the same as that for M4CC*, we show only the following proof of the base step which differs from that for M4CC*.

Case when \(\alpha \equiv -q \) where \(q \) is a propositional variable: \(x \models^* -q \iff x \models \neg q^n \) (by the assumption) iff \(x \models f(-q) \) (by the definition of \(f \)).

Q.E.D.

Lemma 3.30. Let \(f \) be the mapping defined in Definition 3.22. For any Kripke model \(\langle M, R, \models \rangle \), we can construct a paraconsistent Kripke M4CC-model \(\langle M, R, \models^* \rangle \) such that for any formula \(\alpha \) and any \(x \in M \),

\[x \models f(\alpha) \iff x \models^* \alpha. \]

Proof. Similar to the proof of Lemma 3.29. Q.E.D.

Theorem 3.31 (Semantical embedding from M4CC into GS4). Let \(f \) be the mapping defined in Definition 3.22. For any sequent \(\Gamma \Rightarrow \Delta \),

\[M4CC \models \Gamma \Rightarrow \Delta \iff GS4 \models f(\Gamma) \Rightarrow f(\Delta). \]

Proof. By Lemmas 3.29 and 3.30. Q.E.D.

Theorem 3.32 (Kripke-completeness for M4CC). For any sequent \(\Gamma \Rightarrow \Delta \),

\[M4CC \vdash \Gamma \Rightarrow \Delta \iff M4CC \models \Gamma \Rightarrow \Delta. \]

Proof. Similar to the proof of Theorem 3.17. By using Theorem 3.31 and the completeness theorem for GS4. Q.E.D.

Theorem 3.33 (Finite model property for M4CC). For any sequent \(\Gamma \Rightarrow \Delta \), \(\Gamma \Rightarrow \Delta \) is M4CC-valid in any finite Kripke frame iff \(M4CC \vdash \Gamma \Rightarrow \Delta \).

Proof. Similar to the proof of Theorem 3.18. Using the appropriate modifications of Lemmas 3.29 and 3.30 and the finite model property for GS4, we can obtain the required property. Q.E.D.
4. Adding ♦ as an explicit modal operator

4.1. Sequent calculi and Kripke semantics

We consider an extended language with the diamond modal operator ♦ as an explicit modal operator instead of the abbreviation of ∼¬□¬. Gentzen-type sequent calculi M4CC♢ and M4CC♧ for the extended language with ♦ are defined as follows.

Definition 4.1 (M4CC♢ and M4CC♧). The systems M4CC♢ and M4CC♧ are respectively obtained from M4CC and M4CC* by replacing (□right), (∼♦right), and (¬□right) with the logical inference rules of the form:

\[
\frac{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π}{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π} (□right*)
\]

\[
\frac{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π}{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π} (∼□right*)
\]

\[
\frac{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π}{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π} (¬□right*)
\]

and adding the logical inference rules of the form:

\[
\frac{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π}{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π} (▷left)
\]

\[
\frac{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π}{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π} (◇right)
\]

\[
\frac{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π}{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π} (∼◇right)
\]

\[
\frac{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π}{□Γ, ∼Δ, ∼□Σ, ¬□Π \Rightarrow □Γ, ∼Δ, ∼□Σ, ¬□Π} (¬◇right)
\]

Definition 4.2. Kripke semantics for M4CC♧ and M4CC♢ are defined by adding the following valuation clauses to the Kripke semantics for M4CC* and M4CC, respectively:

1. \(x \models * ◇α \iff \exists y \in M \ [xRy \ and \ y \models * α] \),
2. \(x \models * ∼◇α \iff \forall y \in M \ [xRy \ implies \ y \models * ∼α] \),
3. \(x \models * ¬◇α \iff \exists y \in M \ [xRy \ and \ y \models * ¬α] \).

We have the following propositions.

34
Proposition 4.3. Let \(L \) be \(\text{M4CC}_\Diamond \) or \(\text{M4CC}_\star \). The sequents of the form \(\alpha \Rightarrow \alpha \) for any formula \(\alpha \) are provable in cut-free \(L \).

Proof. Straightforward. We can prove this by induction on \(\alpha \). \(\text{Q.E.D.} \)

Proposition 4.4. The following sequents are provable in cut-free \(\text{M4CC} \) for any formulas \(\alpha \) and \(\beta \):

1. \(\sim \alpha, \neg \alpha \Rightarrow \)
2. \(\Rightarrow \sim \alpha, \neg \alpha \),

Proof. Straightforward. We can prove them by induction on \(\alpha \). \(\text{Q.E.D.} \)

Proposition 4.5. Let \(L \) be \(\text{M4CC}_\Diamond \) or \(\text{M4CC}_\star \), and let \(\sim \) be the abbreviation of \(\sim \neg \). The following sequents are provable in cut-free \(L \) for any formulas \(\alpha \) and \(\beta \):

1. \(\sim \Box \alpha \Leftrightarrow \Diamond \sim \alpha \),
2. \(\sim \Diamond \alpha \Leftrightarrow \Box \sim \alpha \),
3. \(\sim \Box \alpha \Leftrightarrow \Diamond \sim \alpha \),
4. \(\sim \Diamond \alpha \Leftrightarrow \Box \sim \alpha \),
5. \(\neg \Box \alpha \Leftrightarrow \Box \neg \alpha \),
6. \(\neg \Diamond \alpha \Leftrightarrow \Diamond \neg \alpha \).

Proof. We show only the following cases.

1. Case (1):

2. Case (3):
Next, we introduce an extension \(\text{GS4}_\lozenge \) of \(\text{GS4} \) by adding some logical inference rules for \(\lozenge \).

Definition 4.6 (\(\text{GS4}_\lozenge \)). The system \(\text{GS4}_\lozenge \) is obtained from \(\text{GS4} \) by replacing \((\Box \text{right}) \) with the logical inference rule of the form:

\[
\begin{align*}
\Box \Gamma & \Rightarrow \lozenge \Delta, \alpha \\
\Box \Gamma & \Rightarrow \lozenge \Delta, \Box \alpha
\end{align*}
\]

(\(\text{right}^{\text{S4*}} \))

and adding \((\lozenge \text{right}) \) introduced in Definition 4.1 and the logical inference rule of the form:

\[
\begin{align*}
\lozenge \alpha, \Box \Gamma & \Rightarrow \lozenge \Delta \\
\lozenge \alpha, \Box \Gamma & \Rightarrow \lozenge \Delta
\end{align*}
\]

(\(\text{left}^{\text{S4*}} \)).

Remark 4.7.

1. Almost the same system as \(\text{GS4}_\lozenge \) was originally introduced by Kripke in [25] (p. 91) in order to deal with \(\Box \) and \(\lozenge \) simultaneously. The system was introduced by modifying Ohnishi and Matsumoto’s Gentzen-type sequent calculus introduced in [33]. This system has also recently investigated and extended by Grigoriev and Petrukhin in [16].

2. In \(\text{GS4}_\lozenge \), the characteristic inference rules are \((\Box \text{right}^{\text{S4*}}) \) and \((\lozenge \text{left}^{\text{S4*}}) \). Using these rules, we can show that the following sequents are provable in cut-free \(\text{GS4}_\lozenge \) for any formula \(\alpha \):

 (a) \(\neg \Box \alpha \Leftrightarrow \lozenge \neg \alpha \),

 (b) \(\neg \lozenge \alpha \Leftrightarrow \Box \neg \alpha \).

For more information on these characteristic rules, see [25] (p. 91) and [16] (pp. 692-693).

3. It is known that the cut-elimination and Kripke-completeness theorems hold for \(\text{GS4}_\lozenge \). In addition to these theorems, the decidability for \(\text{GS4}_\lozenge \) can be obtained in a straightforward way. For more information on these theorems, see [25, 16]. On the other hand, as far as we know, the finite model property for \(\text{GS4}_\lozenge \) is unknown in the literature. However, the finite
model property does seem to hold for GS4 as well, because it is clear that GS4 is definitionally equivalent to GS4, in which case the finite model property for GS4 follows from that for GS4.

The Kripke semantics for GS4 is naturally defined as follows.

Definition 4.8. A Kripke semantics for GS4 is defined by adding the following valuation clause to the Kripke semantics for GS4:

\[x \models \Diamond \alpha \iff \exists y \in M [xRy \text{ and } y \models \alpha] \]

4.2. Theorems for M4CC

Next, we introduce a GS4-translation function for formulas of M4CC, and by using this translation, we show several theorems for syntactically embedding M4CC into GS4.

Definition 4.9. The language \(L_{M4CC} \) of M4CC is obtained from the language \(L_{M4CC} \) defined in Definition 3.1 by adding \(\Diamond \). The language \(L_{GS4} \) of GS4 is obtained from the language \(L_{GS4} \) defined in Definition 3.1 by adding \(\Diamond \).

A mapping \(f_{\Diamond} \) from \(L_{M4CC} \) to \(L_{GS4} \) is obtained from the conditions of the mapping \(f \) defined in Definition 3.1 by adding the following conditions:

1. \(f_{\Diamond}(\Diamond \alpha) := \Diamond f_{\Diamond}(\alpha) \),
2. \(f_{\Diamond}(-\Diamond \alpha) := \Diamond f_{\Diamond}(-\alpha) \).
3. \(f_{\Diamond}(-\Diamond \alpha) := \Diamond f_{\Diamond}(-\alpha) \).

We then obtain the following theorem. We remark that the proof of this theorem does not require a similar proposition to Proposition 3.3.

Theorem 4.10 (Weak syntactical embedding from M4CC into GS4). Let \(\Gamma, \Delta \) be sets of formulas in \(L_{M4CC} \), and \(f_{\Diamond} \) be the mapping defined in Definition 4.9.

1. If M4CC \(\vdash \Gamma \Rightarrow \Delta \), then GS4 \(\vdash f_{\Diamond}(\Gamma) \Rightarrow f_{\Diamond}(\Delta) \).
2. If GS4 \(\vdash \text{(cut)} \vdash f_{\Diamond}(\Gamma) \Rightarrow f_{\Diamond}(\Delta) \), then M4CC \(\vdash \text{(cut)} \vdash \Gamma \Rightarrow \Delta \).

37
Proof. We show only (1) by induction on the proofs P of $\Gamma \Rightarrow \Delta$ in \mathcal{M}^\star. We distinguish the cases according to the last inference of P, and show only the following cases

1. Case ($\sim \Box$ left): The last inference of P is of the form:

 \[
 \frac{\sim \alpha, \Box \Delta, \sim \Diamond \Omega, -\Box \Lambda \Rightarrow \Diamond \Gamma, \sim \Box \Sigma, -\Diamond \Pi}{\sim \Box \alpha, \Box \Delta, \sim \Diamond \Omega, -\Box \Lambda \Rightarrow \Diamond \Gamma, \sim \Box \Sigma, -\Diamond \Pi} \quad (\sim \Box \text{left}).
 \]

 By induction hypothesis, we have

 \[
 \text{GS4}_{\Box} \vdash f_{\Box}(\sim \Box \alpha), f_{\Box}(\Box \Delta), f_{\Box}(\sim \Diamond \Omega), f_{\Box}(-\Box \Lambda) \Rightarrow f_{\Box}(\Diamond \Gamma), f_{\Box}(\sim \Box \Sigma), f_{\Box}(-\Diamond \Pi)
 \]

 where $f_{\Box}(\Box \Delta), f_{\Box}(\sim \Diamond \Omega), f_{\Box}(-\Box \Lambda), f_{\Box}(\Diamond \Gamma), f_{\Box}(\sim \Box \Sigma)$ and $f_{\Box}(-\Diamond \Pi)$ coincide with $\Box f_{\Box}(\Delta), \Box f_{\Box}(\sim \Omega), \Box f_{\Box}(-\Lambda), \Diamond f_{\Box}(\Gamma), \Diamond f_{\Box}(\sim \Sigma)$ and $\Diamond f_{\Box}(-\Pi)$, respectively, by the definition of f_{\Box}. We then obtain the required fact:

 \[
 f_{\Box}(\sim \alpha), \Box f_{\Box}(\Delta), \Box f_{\Box}(\sim \Omega), \Box f_{\Box}(-\Lambda) \Rightarrow \Diamond f_{\Box}(\Gamma), \Diamond f_{\Box}(\sim \Sigma), \Diamond f_{\Box}(-\Pi)
 \]

 \[
 \Diamond f_{\Box}(\sim \alpha), \Box f_{\Box}(\Delta), \Box f_{\Box}(\sim \Omega), \Box f_{\Box}(-\Lambda) \Rightarrow \Diamond f_{\Box}(\Gamma), \Diamond f_{\Box}(\sim \Sigma), \Diamond f_{\Box}(-\Pi) \quad (\Diamond \text{left}_{\text{GS4}})
 \]

 where $\Diamond f_{\Box}(\sim \alpha)$ coincides with $f_{\Box}(\sim \Box \alpha)$ by the definition of f_{\Box}.

2. Case ($-\Diamond$ right): The last inference of P is of the form:

 \[
 \frac{\Gamma \Rightarrow \Delta, -\alpha}{\Gamma \Rightarrow \Delta, -\Diamond \alpha} \quad (-\Diamond \text{right}).
 \]

 By induction hypothesis, we have $\text{GS4}_{\Box} \vdash f_{\Box}(\Gamma) \Rightarrow f_{\Box}(\Delta), f_{\Box}(-\alpha)$. We then obtain the required fact:

 \[
 f_{\Box}(\Gamma) \Rightarrow \Diamond f_{\Box}(\Delta), f_{\Box}(-\alpha)
 \]

 \[
 f_{\Box}(\Gamma) \Rightarrow \Diamond f_{\Box}(\Delta), \Diamond f_{\Box}(-\alpha) \quad (\Diamond \text{right})
 \]

 where $\Diamond f_{\Box}(-\alpha)$ coincides with $f_{\Box}(-\Diamond \alpha)$ by the definition of f_{\Box}. Q.E.D.

Theorem 4.11 (Syntactical embedding from \mathcal{M}^\star_{\Box} into GS4_{\Box}). Let Γ, Δ be sets of formulas in $\mathcal{L}_{\mathcal{M}^\star_{\Box}}$, and f_{\Box} be the mapping defined in Definition 4.9.
Theorem 4.12.

1. (Cut-elimination for M4CC*: The rule (cut) is admissible in cut-free M4CC*.
2. (Decidability for M4CC*: The system M4CC* is decidable.
3. (Quasi-paraconsistency for M4CC*: The system M4CC* is quasi-paraconsistent with respect to the combination of \(\sim\) and \(-\).
4. (Quasi-paracompleteness for M4CC*: The system M4CC* is quasi-paracomplete with respect to the combination of \(\sim\) and \(-\).

Next, we introduce an M4CC*-translation function for formulas of GS4*, and by using this translation, we can show some theorems for embedding GS4* into M4CC*.

Definition 4.13. Let \(\mathcal{L}_{M4CC}\) and \(\mathcal{L}_{GS4}\) be the languages defined in Definition 4.9. A mapping \(g\) from \(\mathcal{L}_{GS4}\) to \(\mathcal{L}_{M4CC}\) is obtained from the conditions of the mapping \(g\) defined in Definition 3.11 by adding the following condition:

\[g\circ (\Diamond \alpha) := \Diamond g\circ (\alpha). \]

We then obtain the following theorem in a similar way as that for M4CC*.

Theorem 4.14 (Syntactical embedding from GS4* into M4CC*). Let \(\Gamma\), \(\Delta\) be sets of formulas in \(\mathcal{L}_{GS4}\), and \(g*\) be the mapping defined in Definition 4.13.

1. GS4* \(\vdash \Gamma \Rightarrow \Delta\) iff M4CC* \(\vdash g*(\Gamma) \Rightarrow g*(\Delta)\).
2. GS4* - (cut) \(\vdash \Gamma \Rightarrow \Delta\) iff M4CC* - (cut) \(\vdash g*(\Gamma) \Rightarrow g*(\Delta)\).
We also have the following theorems in a similar way as these for M4CC⋆.
We remark that the proof of Theorem 4.15 does not require a similar proposition to Proposition 2.19.

Theorem 4.15 (Semantical embedding from M4CC⋆ into GS4♢). Let f_\Diamond be the mapping defined in Definition 4.9. For any sequent $\Gamma \Rightarrow \Delta$,

$$M4CC\Diamond \models \Gamma \Rightarrow \Delta \text{ iff } GS4\Diamond \models f_\Diamond(\Gamma) \Rightarrow f_\Diamond(\Delta).$$

Theorem 4.16 (Kripke-completeness for M4CC⋆). For any sequent $\Gamma \Rightarrow \Delta$,

$$M4CC\Diamond \vdash \Gamma \Rightarrow \Delta \text{ iff } M4CC\Diamond \models \Gamma \Rightarrow \Delta.$$

Theorem 4.17 (Semantical embedding from GS4♢ into M4CC⋆). Let g_\Diamond be the mapping defined in Definition 4.13. For any sequent $\Gamma \Rightarrow \Delta$,

$$GS4\Diamond \models \Gamma \Rightarrow \Delta \text{ iff } M4CC\Diamond \models g_\Diamond(\Gamma) \Rightarrow g_\Diamond(\Delta).$$

4.3. Theorems for M4CC♢

Next, we introduce a GS4♢-translation function for formulas of M4CC♢, and by using this translation, we can show several theorems for embedding M4CC♢ into GS4♢.

Definition 4.18. We fix a set Φ of propositional variables, and define the set $\Phi^n := \{p^n | p \in \Phi\}$ of propositional variables. The language $L_{M4CC\Diamond}$ of M4CC♢ is the same as the language $L_{M4CC\Diamond}$ of M4CC⋆. The new alternative language $L_{GS4\Diamond}$ of GS4♢ is defined using Φ, Φ^n, \land, \lor, \rightarrow, \Box, \Diamond, and \neg.

A mapping f_\Diamond from $L_{M4CC\Diamond}$ to $L_{GS4\Diamond}$ is obtained from the conditions of the mapping f defined in Definition 3.22 by adding the following conditions:

1. $f_\Diamond(\Diamond\alpha) := \Diamond f_\Diamond(\alpha)$,
2. $f_\Diamond(\neg\Diamond\alpha) := \Box f_\Diamond(\neg\alpha)$,
3. $f_\Diamond(\neg\Diamond\alpha) := \Diamond f_\Diamond(\neg\alpha)$.

We can obtain the following theorems in a similar way as those for M4CC.
Theorem 4.19 (Syntactical embedding from $M4CC\diamond$ into $GS4\diamond$). Let Γ, Δ be sets of formulas in $L_{M4CC\diamond}$, and $f\diamond$ be the mapping defined in Definition 4.18.

1. $M4CC\diamond \vdash \Gamma \Rightarrow \Delta$ iff $GS4\diamond \vdash f\diamond(\Gamma) \Rightarrow f\diamond(\Delta)$.
2. $M4CC\diamond - \text{(cut)} \vdash \Gamma \Rightarrow \Delta$ iff $GS4\diamond - \text{(cut)} \vdash f\diamond(\Gamma) \Rightarrow f\diamond(\Delta)$.

Theorem 4.20.

1. (Cut-elimination for $M4CC\diamond$): The rule (cut) is admissible in cut-free $M4CC\diamond$.
2. (Decidability for $M4CC\diamond$): The system $M4CC\diamond$ is decidable.
3. (Negative symmetry for $M4CC\diamond$): For any formulas α and β,

 $M4CC\diamond - \text{(cut)} \vdash \sim\alpha \Rightarrow \sim\beta$ iff $M4CC\diamond - \text{(cut)} \vdash \sim\beta \Rightarrow \sim\alpha$.

Theorem 4.21 (Semantical embedding from $M4CC\diamond$ into $GS4\diamond$). Let $f\diamond$ be the mapping defined in Definition 4.18. For any sequent $\Gamma \Rightarrow \Delta$,

 $M4CC\diamond \models \Gamma \Rightarrow \Delta$ iff $GS4\diamond \models f\diamond(\Gamma) \Rightarrow f\diamond(\Delta)$.

Theorem 4.22 (Kripke-completeness for $M4CC\diamond$). For any sequent $\Gamma \Rightarrow \Delta$,

 $M4CC\diamond \vdash \Gamma \Rightarrow \Delta$ iff $M4CC\diamond \models \Gamma \Rightarrow \Delta$.

5. Conclusions, remarks, and related works

In this study, we introduced a modal extension $M4CC$ of Arieli, Avron, and Zamansky’s ideal paraconsistent four-valued logic known as $4CC$ [5, 6, 7]. We proved several theorems for syntactically embedding $M4CC$ into a Gentzen-type sequent calculus for the normal modal logic $S4$. Furthermore, using such a syntactical embedding theorem, we obtained the cut-elimination theorem for $M4CC$ and the decidability result for $M4CC$. We obtained the negative symmetry theorem for $M4CC$ as a corollary of the cut-elimination theorem. We also proved several theorems for semantically embedding $M4CC$ into $S4$. Furthermore, using such a semantical embedding theorem, we obtained the Kripke-completeness
theorem for M4CC and the finite model property of M4CC. Moreover, we introduced another logic M4CC* that is obtained from M4CC by deleting some initial sequents which correspond to the principle of quasi-explosion and the law of a quasi-excluded middle. We proved several theorems for syntactically embedding M4CC* into a Gentzen-type sequent calculus for S4 and vice versa. Furthermore, using such a syntactical embedding theorem, we obtained the cut-elimination theorem for M4CC* and the decidability result for M4CC*. We also obtained the quasi-paraconsistency and quasi-paracompleteness for M4CC* as corollaries of the cut-elimination theorem. We also proved several theorems for semantically embedding M4CC* into S4. Furthermore, using such a semantical embedding theorem, we obtained the Kripke-completeness theorem for M4CC* and the finite model property of M4CC*. Furthermore, we introduced the extended systems M4CC_0 and M4CC_0* by adding some logical inference rules for ♦. It was shown that the same theorems (except the finite model property) as those for M4CC and M4CC* hold for M4CC_0 and M4CC_0* in a similar embedding-based method.

Next, we address some remarks on K-type modal extensions, which are based on the normal modal logic K. We can construct K-type modal extensions and can prove the same theorems as those for M4CC and M4CC*. We now address the K-type modal extensions M4CC_K and M4CC_K*, which are analogues of M4CC and M4CC*, respectively, as follows.

Definition 5.1 (M4CC_K and M4CC_K*). Let ♦ be the abbreviation of ¬□¬ or ¬¬□¬. The systems M4CC_K and M4CC_K* are obtained from M4CC and M4CC* defined in Definitions 2.1 and 2.2 by replacing the logical inference rules concerning □ by the logical inference rules concerning ♦ of the form:

\[
\frac{Γ, □Σ, −Π ⊢ □α}{□Γ, □Σ, □Π ⊢ □α} (□\text{regularity}) \quad \frac{Γ, □Σ, −Π ⊢ □α}{□Γ, □Σ, □Π ⊢ □α} (¬□\text{regularity})
\]

\[
\frac{Γ, ~Σ, −Π ⊢ −α}{□Γ, □Σ, □Π ⊢ −□α} (¬□\text{regularity}).
\]

A Gentzen-type sequent calculus GK for K is presented as follows.
Definition 5.2 (GK). The system GK is obtained from GS4 defined in Definition 2.9 by replacing the logical inference rule concerning □ with the logical inference rule of the form:

\[
\frac{\Gamma \Rightarrow \alpha}{\Box \Gamma \Rightarrow \Box \alpha} \quad (\Box\text{regularity}^K).
\]

The Kripke-type semantics for M4CCₖ, M4CCₖ, and GK are obtained from those for M4CC, M4CC*, and GS4, respectively, by deleting the reflexive and transitive conditions on the accessibility relations \(R \) used for them (i.e., \(R \) has no condition). Then, we can prove the same theorems for M4CCₖ and M4CCₖ as those for M4CC and M4CC* by imposing some appropriate modifications. On the other hand, we do not know how to construct cut-free and Kripke-complete Gentzen-type sequent calculi for the extended logics with \(\Diamond \) as an explicit modal operator.

In the remainder of this section, we address some related works on some modal extensions of many-valued logics. The idea of extending many-valued logics to modal many-valued logic is not new. Some traditional results in this respect are found, such as in [13, 14]. Nevertheless, the modal extensions of many-valued logics have not yet been studied intensively. Some many-valued modal logics over finite residuated lattices were studied by Bou et al. in [11], with special attention to some basic classes of Kripke frames and their axiomatizations. One may refer also to [16, 22, 36, 28, 30, 31, 29, 38, 39], wherein some modal extensions of Belnap and Dunn’s useful four-valued logic and related logics have been studied and certain properties of such logics from proof-theoretic, semantic, and algebraic viewpoints have also been analyzed. We now address some of these studies. Some three- and four-valued modal logics, which are extensions of Belnap and Dunn’s four-valued logic and its three-valued variant were introduced by Odintsov and Wansing in [31], by providing them with the sound and complete tableau calculi, Kripke semantics, and modal algebras with twist structures. By considering the many-valued Kripke structures and their counterpart modal algebras in the sense of the topological duality theory, a family of four-valued modal logics, which are modal extensions of Belnap and
Dunn’s four-valued logic, was studied by Rivieccio et al. in [38]. A Belnapian
version BK of the least normal modal logic K with the addition of strong nega-
tion was introduced by Odintsov and Speranski in [30], and a systematic study of
the lattices of logic containing BK was carried out by them. Modal multilattice
logic based on S4 was studied by Kamide and Shramko in [22]. A Gentzen-type
sequent calculus and a Kripke semantics for this S4 modal multilattice logic
were developed by them. However, some of the results by Kamide and Shramko
for the S4 modal multilattice logic were not correct. The Gentzen-type sequent
calculus proposed in [22] was not Kripke-complete with respect to the Kripke
semantics for the S4 modal multilattice logic. The wrong results by Kamide and
Shramko were correct by Grigoriev and Petrukhin in [16]. Modal multilattice
logic based on S5 was studied by Grigoriev and Petrukhin in [16]. A hyper se-
quent calculus and a Kripke semantics for this S5 modal multilattice logic was
introduced, and the cut-elimination and Kripke-completeness theorems for the
S5 modal multilattice logic were proved by them.

Acknowledgments. We would like to thank an anonymous referee for his or
her valuable comments and suggestions. The idea of the translation function
from M4CC into GS4 is a suggestion by the referee. Norihiro Kamide was
supported by JSPS KAKENHI Grant Numbers JP18K11171 and JP16KK0007.

References

[1] A. Almukdad and D. Nelson, Constructible falsity and inexact predicates,

Language and Information 5, pp. 25-63, 1996.

