
HIERARCHICAL CLUSTERING WITH GLOBAL OBJECTIVES:

APPROXIMATION ALGORITHMS AND HARDNESS RESULTS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Evangelos Chatziafratis

June 2020

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/bb164pj1759

© 2020 by Evangelos Chatziafratis. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/bb164pj1759

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Tim Roughgarden, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Moses Charikar, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Li-Yang Tan

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Gregory Valiant

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Hierarchical Clustering is an important tool for data analysis, used in diverse areas ranging from

Phylogenetics in Biology to YouTube video recommendations and everything in between. The term

“hierarchical” is used to contrast with “flat” clustering approaches, like k-means or k-center, which

only produce one specific partitioning of a data set. Hierarchical Clustering is a way of understanding

the overall structure of large data sets by visualizing them as a collection of successively smaller

and smaller clusters, capturing di↵erent levels of granularity simultaneously. The end result is a

tree, whose internal nodes represent nested clusters and with leaves representing the data points.

Despite the plethora of applications and heuristics, the theory behind Hierarchical Clustering was

underdeveloped, since no “global” objective function was associated with the final output. A well-

formulated objective allows us to compare di↵erent algorithms, measure their quality, explain their

success or failure and enables continuous optimization methods with gradient descent. This lack of

objectives is in stark contrast with the flat clustering literature, where objectives like k-means, k-

median or k-center have been studied intensively starting from the 1950s, leading to a comprehensive

theory on clustering.

In this thesis, we study approximation algorithms and their limitations, making progress towards

building such a theory for objective-based Hierarchical Clustering (HC). For the minimization cost

function with pairwise similarities introduced recently by Dasgupta (2016) and its maximization

variants, we show how standard tools like Sparsest Cut, Balanced Cut, Max Cut or Max Uncut

Bisection can be used in a black box manner, to produce provably good HC and we also complement

our algorithms with inapproximability results. Escaping from worst-case analyses, we also study

scenarios where extra structure is imposed on the data points (e.g., feature vectors) or qualitative

information is provided (e.g., the common triplet or quartet constraints in Phylogenetics). Our

results are inspired by geometric ideas (semidefinite programming relaxations, spreading metrics,

random projections) and novel connections with ordering Constraint Satisfaction Problems.

Overall, this thesis provides state-of-the-art approximation and hardness results for optimizing

global HC objectives, reveals unexpected connections with common linkage or graph cut heuristics

and advances our understanding of old Phylogenetics problems. As such, we hope it serves the com-

munity as the foundation for objective-based Hierarchical Clustering and for future improvements.

iv

Acknowledgments

As I am finishing my thesis from an apartment in New York, I can’t help but thinking how lucky

I have been so far, especially throughout those 5 years of my PhD. Featuring a single name on

the front cover is merely an understatement, as both this thesis and myself would not be the same

without the tremendous help and constant support of several amazing individuals, I had the extreme

pleasure to meet along my journey in research and in the academic world. Given that no physical

PhD defense ever took place at Stanford, I want to take this opportunity to express my gratitude

to the people that helped me during this beautiful journey and, more importantly, made it possible.

First and foremost, I can’t thank enough my advisor Tim Roughgarden for all he has done for

me over these past 5 years. From my second quarter at Stanford, when I first rotated and worked

with Tim, to our productive research trip in London School of Economics during his sabbatical, to

our path towards New York in Columbia and my next career steps, Tim has always been extremely

supportive and patient of my diverse research pursuits, always ready to provide me with his insightful

ideas and advice. I owe him so much for his mentorship and ideas, for inspiring me, for teaching

me cool stu↵ and helping me improve my communication skills; and all these, done in the casual

environment he created for his group (lunches at Ike’s, dinners at NOLA etc.), which allowed me

to thrive without ever feeling I was working, rather enjoying research and theory. Outside research,

I also want to thank Tim, simply for being lenient with me, accepting my longer-than-usual trips

to Greece, without asking questions whether they happened during (early) summer, Christmas, or

even March. I also consider myself privileged to have been his unique student simultaneously at

Stanford and Columbia, and to have helped with the summer rental car situation in Ikaria and with

the cameras and amplifiers during Papafest’s talks and band concert.

The second person that I want to thank is Moses Charikar. During the spring quarter of my first

year, we started exploring hierarchical clustering, a term I had never heard about back then and,

unknowingly, the main chapter in this thesis had already started. Collaborating with Moses and

trying to make sense of the variety of clustering questions that appeared on our way over time, has

truly been an immense pleasure. His intuition and clarity of thought together with his patience on

explaining to me possible ways of attacking the problems have been extremely beneficial. I am also

grateful to him for being available for late night Skypes in several occasions and for interrupting his

v

dinner plans just to answer my texts, admittedly right before the submission deadlines, and finally

for battling with the di↵erent timezones when I was in Switzerland or in Sweden and he was in

India.

I also want to thank Jan Vondrak, not only for our collaboration, but also for being a friendly and

approachable person in the Math department, that I always felt comfortable talking to and I could

always go with questions and have interesting conversations across many di↵erent topics. Of course,

I am glad he also agreed to be the Chair of my thesis committee. I want to thank Greg Valiant for

being in my orals committee, for letting me TA several of his courses and for his support during

summer 2017. Also, for his direct and casual character that always makes you feel comfortable. I

also owe a big thanks to Li-Yang Tan for agreeing to be in my quals and my orals committee and

for sharing much of his love and expertise in complexity theory.

I also want to thank several professors I had the pleasure to work with for a short period: Virginia

Vassilevska Williams for an awesome first rotation, and for her great teaching style, Nisheeth Vishnoi

for an inspiring summer internship in EPFL during summer 2016, which taught me a lot and Osman

Yagan for several visits to CMU in Silicon Valley and in Pittsburgh and for interesting discussions

on network robustness. Outside research, I want to thank Omer Reingold for an amazing class on

Playback theater and Kumaran Arul for being an excellent and inspiring piano tutor. Watching

Ryan Williams playing guitar, singing and improvising during our Theory Music Tuesday Nights

has also been quite the experience!

A big role for the development of this thesis was played by my amazing collaborators. First of

all, I want to thank Rad Niazadeh for the countless hours we spent drawing trees and clusters on the

whiteboard, discussing about how to round SDPs, late-night editing of papers before submissions,

and also for giving me career advice. I want to thank Mohammad Mahdian for being an amazing

host at Google New York during my summer and winter internships, for the always stimulating

conversations that may happen at a microkitchen or while searching for available rooms, over video

calls, or even while on vacation in Rhodes, Greece. I want to thank Ioannis Panageas for hosting

me in Singapore, for his direct and fun character and for his mathematical depth that helped

me explore and appreciate the many interesting connections between deep learning and dynamical

systems. Moreover and in no particular order, I also had the pleasure to work with: Neha Gupta,

Euiwoong Lee, Sara Ahmadian, Alessandro Epasto, Grigory Yaroslavtsev, Kontantin Makarychev,

Sai Ganesh Nagarajan, Xiao Wang, Haris Angelidakis, Avrim Blum, Chen Dan, Pranjal Awasthi,

Xue Chen, Aravindan Vijayaraghavan, Osman Yagan, and Joshua Wang. I also want to thank Okke

Schrijvers and his team at Facebook for hosting me over the summer of 2018: Julián Mestre, Nicolas

Stier-Moses and Birce Tezel.

My time at Stanford and New York would not be as fun and carefree as it has been, without

the necessary balance that came from my friends. First, I would like to thank Mary Ann and Bob

Poulos and their amazing family Olivia, Lindsey and Lauren that took care of me, for their support

vi

and their hospitality. I want to thank my friends in Hellas (Stanford’s Greek community) for all the

nice events we organized over Easter, Christmas and summer and for all the help and advice they

provided during these years: our statistician Nikos Ignatiadis, our tamias (treasurer) Kostis Ka↵es

and vice-president Faidra Monachou, our doctor Stelios Serghiou and biologist Eirini Tsekitsidou,

to (the) Peter Zachares, our petroleum experts Dimitris Belivanis and Philippos Kostakis, our

basketball player George Korakitis, our minaras Marios Galanis from Patras, my mentor Yorgos

Katsikis and our life-coach Vasilis Verroios. See you in Cholargos, at President’s souvlaki or Shisan

sushi ;) Also, the other Greeks from my incoming year George Alexopoulos, George Chrysochoos,

Georgios Laskaris, Iakovos Anagnostopoulos that helped me adapt to the new environment and

Alexios Voulimeneas for the Halloween Sparta costumes. I would also like to thank my friends in New

York: Ilias Zadik, Orestis Plevrakis, Themis Melissaris, Lampros Flokas, Manolis Vlatakis, Giannis

Karamanolakis, Thodoris Lykouris, and Fotis Iliopoulos for hosting me when in need, for giving

me valuable presentation feedback and laughs at online Codenames, and for interesting research

discussions.

My time in the theory groups at Stanford and Columbia would not be as fun and memorable,

if it weren’t for the many board games, theory retreats, research talks, food and concerns shared

with my fellow grad students: in no particular order thank you to Amir Abboud, Kostas Kollias,

Leo Keselman, Josh Alman, Brian Axelrod, Greg Bodwin, Saba Eskadarian, Shivam Garg, Paris

Syminelakis, Nicole Wein, Hilal Asi, Sam Kim, Ofir Geri, Neha Gupta, Reyna Hulett, Ray Li,

Noah Shutty, Michael Kim, Andrea Lincoln, Annie Mardsen, Tony Kim, Jimmy Wu, Bruce Spang,

Kevin Tian, Warut Suksompong, Vasilis Gkatzelis, Weihao Kong, Okke Schrijvers, Dylan McKay,

Aditi Raghunathan, Henry Corrigan-Gibbs, Dima Kogan, Yeganeh Alimohammadi, Benedikt Bünz,

Florian Tramer, Josh Wang, Vatsal Sharan, Kiran Shiragur, Shashwat Silas, Hongyang Zhang, and

Clayton Sanford. I owe huge thanks to Megan Harris, Ruth Harris, Jay Subramanian and Jam

Kiattinant for helping me in anything I needed and always being there for the students. Also, I owe

thanks to Katerina Magkel and the Onassis Foundation for supporting in part my studies during

the 2019-2020 academic year.

Finally, I want to thank my professors Stathis Zachos, Dimitris Fotakis and Aris Pagourtzis for

their excellent work, for inspiring so many students during my undergraduate studies in NTUA

and for making us love and eventually follow the path towards Algorithms and Theory. Also,

thanks to all my friends in EPFL and ETH, Prodromos Kolyvakis, Georgios Damaskinos, Lefteris

Kokoris-kogias and Harris Angelidakis for making my stay in Switzerland so easy and smooth, my

friends in Athens, George Banis, Nikos Mavroulis, Alexandros Banis, Manos Sofoulis, Marios Fouzas,

Dennis Triantafillis II, Steve Mitropoulos, Nasos Georgiou, Alexia Athanasiou, Alexis Markazos, and

Alexandros Georgopoulos for their endless supply of interesting conversations, funny stories, memes,

discussions and memorable vacations.

I want to thank my girlfriend Yuuki Miura for being an amazing companion, her hospitality

vii

during Big ’Rona and her inspiring kindness and good character. Last but not least, I can’t thank

enough my family for everything they have done for me and continue to do, for everything they have

taught me and continue to teach me and for their endless love and support for whatever I did and

continue to do.

viii

Dedicated to my first teachers, my family

Chryssa, Anna-Maria, Telemachos, Andreas, Stratos

ix

To pr∏to skal–

Eic ton JeÏkrito paraponio‘ntan

mià mËra o nËoc poiht†c EumËnhc·

⌧T∏ra duÏ qrÏnia pËrasan pou gràfw

k’ Ëna eid‘lio Ëkama monàqa.

To mÏnon àrtiÏn mou Ërgon e–nai.

Allo–monon, e–n’ uyhl† to blËpw,

pol‘ uyhl† thc Poi†sewc h skàla·

kai ap’ to skal– to pr∏to ed∏ pou e–mai

potË den j’ anaib∏ o dustuqismËnoc�.

Eip’ o JeÏkritoc· ⌧Autà ta lÏgia

anàrmosta kai blasfhm–ec e–nai.

Ki an e–sai sto skal– to pr∏to, prËpei

nàsai uper†fanoc k’ eutuqismËnoc.

Ed∏ pou Ëfjasec, l–go den e–nai·

tÏso pou Ëkamec, megàlh dÏxa.

Ki autÏ akÏmh to skal– to pr∏to

pol‘ apÏ ton koinÏ ton kÏsmo apËqei.

Eic to skal– gia na pat†seic to‘to

prËpei me to dika–wmà sou nàsai

pol–thc eic twn ide∏n thn pÏli.

Kai d‘skolo sthn pÏli eke–nhn e–nai

kai spànio na se politograf†soun.

Sthn agorà thc br–skeic NomojËtac

pou den gelà kanËnac tuqodi∏kthc.

Ed∏ pou Ëfjasec, l–go den e–nai·

tÏso pou Ëkamec, megàlh dÏxa�.

Kwnstant–noc P. Kabàfhc

The First Step

The young poet Evmenis

complained one day to Theocritus:

“I’ve been writing for two years now

and I’ve composed only one idyll.

It’s my single completed work.

I see, sadly, that the ladder

of Poetry is tall, extremely tall;

and from this first step I’m standing on now

I’ll never climb any higher.”

Theocritus retorted: “Words like that

are improper, blasphemous.

Just to be on the first step

should make you happy and proud.

To have reached this point is no small deed:

what you’ve done already is wonderful.

Even this first step

is a long way above the ordinary world.

To stand on this step

you must be in your own right

a member of the city of ideas.

And it’s a hard, unusual thing

to be enrolled as a citizen of that city.

Its councils are full of Legislators

no charlatan can fool.

To have reached this point is no small deed:

what you’ve done already is wonderful.”

Constantine P. Cavafy

x

This thesis is based on previously published and ongoing works:

1. Chapter 4 is based on the following three papers:

• “Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics”

from SODA 2017 [27]

• “Hierarchical Clustering better than Average-Linkage” from SODA 2019 [28]

• “Bisect and Conquer: Hierarchical Clustering via Max-Uncut Bisection”

from AISTATS 2020 [2].

2. Chapter 5 is based on “Hierarchical Clustering for Euclidean Data” from AISTATS 2019 [29].

3. Chapter 6 is based on the following two papers:

• “Hierarchical Clustering with Structural Constraints” from ICML 2018 [35]

• “Aggregating Inconsistent Information in Ranking, Clustering and Phylogenetic Trees”,

manuscript under submission, May 2020 [34].

xi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Basic Concepts in Hierarchical Clustering (HC) . 4

1.1.1 Trees, Subtrees and Ancestors . 4

1.1.2 – How many trees are there? – Simply, too many! 6

1.2 Global Objectives for Hierarchical Clustering . 8

1.3 Heuristics for Hierarchical Clustering . 10

1.4 Constrained Hierarchical Clustering . 13

1.4.1 Connections to Consistency in Phylogenetics 13

1.4.2 Connections to Correlation Clustering and Rankings 15

1.5 Further Related Work . 16

1.6 Structure of this PhD Thesis . 17

2 Gentle Overview of Main Results 18

2.1 Black-box Approximations for Hierarchical Clustering 18

2.1.1 Minimizing Dasgupta’s cost via Graph Cuts and Spreading Metrics 19

2.1.2 Maximization HC: Variations on a Theme . 20

2.1.3 Two Hardness Results from Small-Set Expansion 21

2.2 Hierarchical Clustering for Euclidean Data . 22

2.3 Hierarchical Clustering with Structural Constraints 23

2.3.1 Connections to Rankings, Correlation Clustering and Phylogeny Reconstruction 23

3 Preliminaries 25

3.1 Background in Algorithms and Hardness . 25

3.2 Global Objectives for Hierarchical Clustering . 27

xii

4 Black-box Approximations for Hierarchical Clustering 30

4.1 Minimizing HC cost: Graph Cuts and Spreading Metrics 30

4.1.1 Recursive Sparsest Cut . 31

4.1.2 Using Balanced Cut instead of Sparsest Cut 34

4.1.3 Generalized HC Cost Function Approximation 36

4.1.4 Convex Relaxations for HC . 38

4.1.5 O(
p

log n) approximation for Hierarchical Clustering 41

4.1.6 An LP-based O(log n) approximation via spreading metrics 42

4.1.7 Hardness via Min Linear Arrangement and Small Set Expansion 46

4.2 Maximization HC: Variations on a Theme . 47

4.2.1 Average-Linkage for similarity-HC is a tight 1

3
-approximation 49

4.2.2 Average-Linkage for dissimilarity-HC is a tight 2

3
-approximation 51

4.2.3 Beating Average Linkage via SDP for the Moseley-Wang HC Objective . . . 52

4.2.4 Beating Average Linkage via MaxCut for Dissimilarity HC 58

4.2.5 An improved 0.42-approximation for Moseley-Wang 64

4.2.6 Hardness for Moseley-Wang via Small Set Expansion 72

5 Hierarchical Clustering for Euclidean Data 75

5.1 Setting: Feature Vectors with Gaussian Kernel . 76

5.2 Performance of Average Linkage . 78

5.3 Greedy Cutting and Single-linkage. 81

5.4 A Fast Algorithm based on Random Projections . 83

5.4.1 Gaussian Kernels with small � . 86

5.5 Hard Instances with Gaussian Kernel . 87

5.5.1 Datasets from Section 5.5 . 91

6 Hierarchical Clustering with Structural Constraints 92

6.1 Motivation and Chapter Overview . 93

6.2 Minimizing Dasgupta’s Objective with Triplets . 96

6.2.1 Modified Sparsest or Balanced Cut Analysis 96

6.2.2 Soft Triplets and Regularization . 100

6.2.3 Dissimilarity HC and Constraint Dependencies 102

6.3 Old Biology Problems: Triplets/Quartets Consistency 108

6.3.1 Hardness for Rooted Triplets Consistency . 108

6.3.2 Hardness for Forbidden Triplets: Random is Optimal 110

xiii

7 Conclusion & Open Questions 112

7.1 Conclusion . 112

7.2 List of Open Problems and Conjectures . 112

A Omitted Proofs, Discussions and Experiments 115

A.1 Omitted Proofs from Chapters. 115

A.1.1 Missing proofs and discussion in Section 6.2.1 115

A.1.2 Missing proofs in Section 6.2.2 . 118

A.1.3 Missing proofs in Section 6.2.3 . 118

A.2 Experiments and Discussion from Chapter 6 . 121

A.2.1 Experimental Results . 122

A.3 Deferred Proofs of Section 4.2.1 . 123

A.4 Deferred Proofs of Section 4.2.3 . 124

A.5 Deferred Proofs of Section 4.2.4 . 125

xiv

List of Tables

4.1 A guide through the di↵erent variable names used in the proof. 61

5.1 Values of the objective (times 10�3) on the Zoo dataset (averaged over 10 runs). . . 90

5.2 Running times of PRC and one pass. 91

A.1 Results obtained for the Zoo dataset. 122

xv

List of Figures

1.1 Tree of Life in Biology . 2

1.2 Unrooted tree examples. 5

1.3 Example of a Dendrogram. 5

1.4 Caterpillar tree examples. 6

1.5 Possible combinations for generating binary rooted trees. 7

1.6 Induced subtrees and least common ancestors. 9

1.7 Calculating the HC cost function of Dasgupta. 10

1.8 Resolved quartets on three elements. 13

1.9 Resolved triplets on three elements. 14

4.1 A top-down heuristic for finding HC. 31

4.2 Level t decomposition in HC cost. 32

4.3 Illustration of HC levels for Balanced Cut. 35

4.4 Tight Instance for Average-Linkage for Moseley-Wang Objective 50

4.5 Tight Instance for Average-Linkage for Cohen-Addad et al. Objective 51

4.6 The layered structure of the optimum tree T ⇤ in Case 2. 60

4.7 Splitting T
⇤ to size restricted sets A, B, C. 66

5.1 Illustration of the merging process in 1D. 80

5.2 Projecting the triangle (v1, v2, v3) on g. 84

5.3 Clique Counterexample for Average-Linkage. 88

6.1 Rooted Triplet Constraints in Hierarchical Clustering 93

6.2 Decompoistion in Constrained Sparsest Cut analysis. 98

6.3 Transforming a 3-hyperedge to a triangle. 102

6.4 Counterexample for Recursive Densest Cut. 105

6.5 Description of a class C with base {x, y}. 105

6.6 Classes {Ci, Cj}, and two situations for having Ci ! Cj 106

6.7 Layered dependency subgraph of class C. 107

xvi

Chapter 1

Introduction

I have this nightmare: that scientific

historians of the future will say that during

the 20th century, there were these sixty very

intellectually exciting years during which

optimization was not just gradient descent.

-Christos Papadimitriou (2019)

This thesis is all about Hierarchical Clustering which, in some sense, is just a fancier way of

referring to what computer scientists are taught to call simply, a “tree”. Thinking about trees has

been a mathematician’s recreation for many centuries. In 1857, the great British mathematician

Arthur Cayley published an article “On the theory of the analytical forms called trees” and later

in 1889 another one “A theorem on trees”, where he gave formulas for counting di↵erent types of

trees [25, 26]. Such arguments are considered standard by now and typically, in undergraduate

algorithms, a student learns about binary trees and some of their amazing powers for speeding up

basic algorithmic problems. Here, we view trees as a way of understanding data sets and specifically

relationships among data points.

Hierarchical Clustering has become by now an essential tool for data analysis useful across diverse

areas, ranging from Phylogenetics in Biology to YouTube video recommendations and everything in

between. It originated in Biology, where researchers wanted to understand the evolution of species,

their genetic similarities, possible speciation events throughout history and build a taxonomy on

extinct and extant organisms, usually called the Tree of Life (see Figure 1.1). A major problem

then quickly appeared on how to aggregate vast amounts of information and automatically extract

groups of organisms that are similar together (e.g., types of di↵erent bacteria, birds or mammals

etc.).

In computer science, the problem of partitioning a given data set into multiple groups is called

clustering and is well-studied; chances are, that any conference on theory or applications in computer

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: In biology, understanding the origins and relations of species relies on using Hierarchical
Clustering.

science features several papers on clustering. However, in the above example from Taxonomy, it is

easy to see that since an organism can belong simultaneously to multiple clusters at di↵erent levels of

granularity (e.g., a cat belongs to the family of “Felidae” which is subclass of the class “Mammals”),

standard “flat” clustering is no longer the right tool, as what we want is a hierarchy of clusters to

capture the naturally hierarchical structure of the evolution of species.

As a result, we use the term “hierarchical” (etymology comes from the greek word < hierarkhia

meaning “sacred rules”) to contrast with “flat” clustering approaches, which only produce one

specific partitioning of a data set. Hierarchical Clustering is a way of understanding the overall

structure of large data sets by conveniently visualizing them as a collection of successively smaller

and smaller clusters, capturing di↵erent levels of granularity simultaneously. The end result is a tree,

whose internal nodes represent nested clusters and where data points lie at its lowest levels, with

dissimilar data points being split towards the top of the tree and with similar data points being split

CHAPTER 1. INTRODUCTION 3

towards the bottom of the tree. To construct this tree, there are intuitive and easy to implement

bottom-up merging methods or top-down divisive procedures.

Once you are aware of it, you quickly realize that Hierarchical Clustering is everywhere as

data sets are of hierarchical nature. When analyzing social networks, solving community detection,

organizing and recommending movies, retrieving relevant tweets and doing text analysis, suggesting

ads in online platforms, investigating gene relations to cancer, or investing money on large portfolios,

at some point hierarchies on data will be required and Hierarchical Clustering sneaks in.

But it’s not all good news, as there was something unsatisfactory about Hierarchical Clustering.

Despite the plethora of applications and heuristics, the theory behind it was underdeveloped, partly

because no “global” objective function, measuring the quality of the final output tree, was studied.

A well-formulated objective allows us to compare di↵erent algorithms, measure their quality, explain

their success or failure and enables continuous optimization methods with gradient descent. This

lack of objectives is in stark contrast with the flat clustering literature, where objectives like k-means,

k-median or k-center have been studied intensively leading to a comprehensive theory on clustering.

However, as is a common curse in computer science, most problems are hard to optimize, and

hierarchical clustering is no exception. Thus, we need to turn our attention to approximation

algorithms. Such algorithms try to find good solutions close to the optimum and usually they are

accompanied by a proof for their performance.

This thesis, by studying approximation algorithms and their limitations, makes progress towards

building a theory for objective-based Hierarchical Clustering (HC from now as the name is simply

too long). In a nutshell, We study both minimization and maximization objectives for HC, we derive

algorithms and their limitations based on standard graph partitioning problems.

Main Results

Before continuing with the basic definitions for HC, we want to quickly mention our main findings.

We present 4 main results: For the minimization cost function with pairwise similarities introduced

recently by Dasgupta [43], we show how using Sparsest Cut or Balanced Cut primitives as a black

box, produces a HC with no extra loss in approximation. Our result was inspired by a semidefinite

programming relaxation (SDP) we originally formulated for HC based on so-called spreading metrics.

To complement the upper bounds, we also prove that no e�cient algorithm can achieve constant

factor approximations. This work appeared in SODA 2017 [27].

For two maximization variants of Dasgupta’s HC cost, we give the first tight analysis for the

performance of Average-Linkage which is an important algorithm originally proposed in the context

of Biology. We show how to achieve better approximations using our aforementioned SDP together

with geometric ideas from convex analysis. In a follow-up work, where we study one of the max-

imization variants, we show how using Max-Uncut Bisection as a black box, produces a solution

within 42% of optimum and we complement this with hardness results showing there is inherent

CHAPTER 1. INTRODUCTION 4

limitations on achieving approximations close to optimal. These works appeared in SODA 2019 [28]

and in AISTATS 2020 [2].

The above results are general, with no assumptions on the input data points. However, in many

scenarios, data points lie in high-dimensional Euclidean space and similarities are derived from the

popular Gaussian kernel. We show how to exploit this extra structure to get a fast and simple to

implement HC algorithm with provable approximation guarantees. It is a one-pass algorithm and is

based on a random projection step. This appeared in AISTATS 2019 [29].

Finally, we study the problem of constrained Hierarchical Clustering motivated by the problem

of optimal tree reconstruction in Phylogenetics and gene sequencing. In these problems, on top of

the pairwise similarities, we are given triplets or quartet constraints that reflect domain expertise or

prior knowledge about the data. The goal is to produce a HC that aggregates the expert constraints

as consistently as possible. We provide conceptually simple top-down modifications of Sparsest

Cut and Balanced Cut and demonstrate both theoretically and experimentally that they enjoy

performance guarantees analogous to unconstrained HC. Part of these results appeared in ICML

2018 [35] and recent findings about the triplet and quartet consistency problem are currently under

submission [34].

Overall, this thesis provides state of the art approximation and hardness results for optimizing

global HC objectives, reveals unexpected connections with common linkage or graph cut heuristics

and as such, I hope it serves the community as the foundation of objective-based Hierarchical

Clustering and of future improvements.

1.1 Basic Concepts in Hierarchical Clustering (HC)

The undisputed queen of killer applications for HC is in phylogenetics [e.g. in 46], where genomic

similarity (or dissimilarity) patterns are used to create taxonomies of organisms, with the goal of

shedding light on the evolution of species by understanding the ancestral tree of life. The easiest

way to view HC is as a recursive partitioning of a set of datapoints into successively smaller clusters

represented by a dendrogram; a rooted tree whose leaves are in one-to-one correspondence with the

datapoints. If you are interested more in biological, rather than computational, perspectives of HC,

we refer the reader to the excellent book “Inferring Phylogenies” by Joseph Felsenstein [50].

1.1.1 Trees, Subtrees and Ancestors

We first define an unrooted tree (see Figure 1.2) to be an acyclic connected graph with no vertices

of degree two and every leaf (vertex of degree one) labelled uniquely. Internal vertices (vertices that

are not leaves) are usually left unlabelled. This, for example, can correspond to a phylogenetic tree

in Biology where the leaves are di↵erent species. Next, we define a “rooted” tree almost in the same

way, as here there is one special internal vertex, which can have degree two, and called the “root” of

CHAPTER 1. INTRODUCTION 5

the tree. The main protagonist in this thesis will be the set of rooted binary trees (see Figure 1.3)

as these are the most common in data analysis, since they correspond to natural splits into two, for

a given data set. A special and important case of the aforementioned types of trees are caterpillar

trees: an unrooted caterpillar tree (see Figure 1.4) has one central path with leaves branching o↵

of it and a rooted caterpillar has leaves appended to a single path from the root to a single leaf.

Caterpillar trees can describe outliers in a data set by pointing to data points that should be split

from the rest.

Figure 1.2: Unrooted tree examples.

Figure 1.3: HC dendrogram with 8 datapoints (leaves); numbers are the sizes of the clusters (tree
nodes).

A vertex u in a rooted tree is called a descendant of a vertex v if the path from u to the root r

passes through v. Then, v is called an ancestor of u. The vertices that lie below a vertex, i.e., that

are descendants of the vertex are called the children of the vertex, whereas and an adjacent ancestor

vertex is called the parent of that vertex. An important concept is that of the lowest common

ancestor of a set of vertices L, which is defined as the unique ancestor of L that is a descendant of

all the ancestors of L.

From now on let T denote a rooted tree with n leaves. We want to understand what kind of

meaningful groupings or clusters this tree implies. If we remove the edge between v and its parent,

we will get two connected subgraphs. The set of leaves that are descendants of v is called a cluster.

Rooting the subgraph containing v at the vertex v, we get subtree of T rooted at v which we denote

Tv. If r is the root of T then the subtrees branching o↵ at the root are called the maximal subtrees

CHAPTER 1. INTRODUCTION 6

Figure 1.4: Caterpillar tree examples.

of T .

As we shall see later, our goal will be to find optimum hierarchical clusterings for a given data

set. It is reasonable then to wonder “how many trees are there?”, since understanding this question

enables us to get a sense of the space over which we optimize.

1.1.2 – How many trees are there? – Simply, too many!

This is considered by now a standard computation as the counting of trees has been a mathemati-

cian’s recreation since the fundamental work of Cayley in 1857 and 1889 [25, 26].

Starting with something simple, if we only had three elements of interest a, b, c there is only one

unrooted tree with that leaf set, though there are four unrooted trees for any set of four leaves.

Generally if we want an n-species tree, we can get:

1⇥ 3⇥ 5⇥ . . .⇥ (2n� 5) =
(2n� 4)!

(n� 2)!2n�2

possible (labeled) unrooted binary trees.

As binary rooted trees with n leaves will be the main protagonist when our optimization problem

is formally defined, we review here some observations to help us better understand the complexity

of the problem. The proof we will present here for counting them is from Felsenstein’s book [50] and

was originally given by Cavalli and Edwards [24].

For every three leaves a, b, c there are exactly three binary rooted trees with leaf set a, b, c: ab|c

or ac|b or bc|a. These are called rooted triplets or sometimes resolved rooted triplets as they describe

a pair of leaves connected to a third leaf via the root. Generally, with n leaves, there are:

1⇥ 3⇥ 5⇥ . . .⇥ (2n� 5)⇥ (2n� 3) =
(2n� 3)!

(n� 2)!2n�2

CHAPTER 1. INTRODUCTION 7

di↵erent (labeled) binary rooted trees (left or right children are indistinguishable as the trees are

considered to be unordered). See Figure 1.5 for the possible combinations with 4 leaves.

Figure 1.5: Possible combinations for generating binary rooted trees.

To prove such a formula one easy way is to try to build all possible trees, by adding one new leaf

at a time. By starting from a list of all possible trees with n species and adding the new species n+1,

in all possible places, we will generate all of the trees on n+1 species, each only once. Observe that

the tree is bifurcating both before and after the addition, so the new species cannot be connected

to an existing interior node, so it must instead be connected to a new node, which is placed in the

middle of an existing edge. This implies that each internal edge of a tree is a potential location for

an addition.

Again, one reasonable question to ask is “will this process lead to all trees?” or “do we generate

di↵erent trees with this process?”. The truth of both statements is argued below. For some number

k, let’s consider the process of adding species k to a tree that consists of species 1 through k � 1.

CHAPTER 1. INTRODUCTION 8

Consider also the operation of removing species k from a tree that contains species 1 through k.

These two operations are inverses of each other.

Suppose that we have a particular tree with n species and we remove one by one species n, n�

1, n� 2 and so on until species k + 1 is removed. At this point what is left must be one particular

tree with species 1 through k. Since the removal operation reverses the addition of the species, there

must then be some particular sequence of places to add species k + 1, k + 2, . . . onto that k-species

tree to end up with that n-species tree. Furthermore no other k-species tree can, when those n� k

missing species are added, yield that particular n-species tree. If there were another k-species tree

that could yield it, then that tree too would be reached by removal of those species from the n-

species tree. But that is a logical impossibility, as the same sequence of removals cannot result in

two di↵erent trees. Thus any n-species tree can be reached from one and only one k-species tree.

Therefore, each possible addition sequence leads to a di↵erent n-species tree, and all such trees

can be generated in that way. When we add species to a tree, the number of ways in which we can

do that are equal to the number of internal edges, including a potential edge at the root of the tree,

if the new species gets separated directly from the rest. There are 3 such branches in a two-species

tree. Every time that we add a new species, it adds a new interior node, plus two new edges. Thus

after choosing one of the 3 possible places to add the 3rd species, the 4th can be added in any of 5

places, the 5th in any of 7, and so on, which leads to:

1⇥ 3⇥ 5⇥ . . .⇥ (2n� 5)⇥ (2n� 3) =
(2n� 3)!

(n� 2)!2n�2

Given the vast space of possibilities (e.g., n = 20 gives rise to 8, 200, 794, 532, 637, 891, 559, 375

di↵erent trees on 20 species), it is surprising that we will be able to derive conceptually simple

and implementable in practice polynomial time algorithms with provable guarantees against the

(unknown) optimum tree. But before we do this, let’s formally define the hierarchical clustering

optimization problem as was proposed by Dasgupta [43].

1.2 Global Objectives for Hierarchical Clustering

HC owes its widespread success to several advantages that this tree o↵ers compared to the more

traditional “flat” clustering approaches like k-means, k-median or k-center. It is a non-parametric

method for unsupervised learning as it does not require a fixed number k of clusters and it pro-

vides richer information at all levels of granularity, simultaneously displayed in an intuitive form.

Importantly, there are many fast and easy to implement algorithms commonly used in practice to

find the tree. Examples are simple linkage-based agglomerative procedures, with Single-Linkage

and Average-Linkage being perhaps the most popular [62, 51, 84]. We will define these and related

algorithms in later sections.

CHAPTER 1. INTRODUCTION 9

T [u]

u

i j

i _ j

Figure 1.6: Induced subtrees and least common ancestors.

For now, let’s assume that the input consists of pairwise similarities between n data points of

interest. These can be for example, a set of n animals that you want to build a tree on. We would

like to hierarchically cluster the n points in a way that is mindful of the given similarity structure.

This requires a little terminology.

Let T be any rooted, not necessarily binary, tree whose leaves are in one-to-one correspondence

with V . For any node u of T , let Tu (or T [u]) be the subtree rooted at u, and let leaves(Tu) ✓ V

(or simply |Tij |) denote the leaves of this subtree. For leaves i, j 2 V , the term Tij (or i_ j) denotes

their lowest common ancestor in T . Equivalently, Tij is the smallest subtree whose leaves include

both i and j (Figure 1.6).

The input can be a matrix or equivalently an undirected graph G = (V, E, w), with one node

for each point, edges between pairs of similar points, and positive edge weights w(e) that capture

the degree of similarity. We will sometimes omit w, in which case all edges are taken to have unit

weight.

The edges {i, j} in G, and their strengths wij , reflect locality. When clustering, we would like to

avoid cutting too many edges. But in a hierarchical clustering, all edges do eventually get cut. All

we can ask, therefore, is that edges be cut as far down the tree as possible.

Accordingly, Dasgupta in his seminal HC paper [43] defined the cost of T to be

costG(T) =
X

{i,j}2E

wij |leaves(Tij)| =
X

{i,j}2E

wij |Tij | (1.1)

Often, it will be clear which graph G we are referring to so we will omit the subscript G. If an

edge {i, j} of unit weight is cut all the way at the top of the tree, it incurs a penalty of n. If it is

cut further down, in a subtree that contains c fraction of the data, then it incurs a smaller penalty

of cn. See Figure 1.7 for a simple numerical example.

Having an objective function for HC is crucial not only for guiding the optimization, but also for

CHAPTER 1. INTRODUCTION 10

1

2 4

3

1 23 4

G T5

6 5 6

Figure 1.7: Calculating the HC cost function of Dasgupta. Edge {3, 5} is cut at the root of T and
incurs a cost of 6. Edges {1, 2}, {2, 3}, {3, 4} each incur a cost of 4, and the remaining three edges
cost 2 apiece. Thus costG(T) = 6 + 3⇥ 4 + 3⇥ 2 = 24.

having theoretically grounded solutions and comparing di↵erent algorithms. This may be obvious

since much of the theory of standard flat clustering has been developed around objectives like k-

means etc., however for HC it wasn’t until 2016 that this lack of global optimization objectives was

addressed by Dasgupta [43].

While optimizing this cost is NP-hard, approximation algorithms provide good approximation

factors of the unknown optimum solution. In particular, one interesting aspect of this objective, as

we will see, is that running Recursive Sparsest Cut (an important algorithm in theoretical computer

science and in practice) would produce a HC with provable guarantees with respect to his cost

function [27]. Subsequent work was able to shed light to Average Linkage performance, which is a

common algorithm for HC; specifically, [78] studied the complement to Dasgupta’s cost function and

showed that Average Linkage will find a solution within 33% of the optimizer. Further techniques

based on semidefinite programming relaxations led to improved approximations [28, 2], however with

a significant overhead in runtime.

Another positive side-e↵ect of having an objective for a problem is that faster continuous meth-

ods can be deployed giving rise to gradient-descent-based Hierarchical Clustering, e.g., see Monath

et al. [77] who propose a di↵erentiable HC objective by representing intermediate nodes in trees

using hyperbolic embeddings and optimizing such embeddings. While this approach yields improve-

ments in scalability and downstream task performance, it also has several limitations: this method

requires additional post-processing to map the learned continuous tree representation to an exact

tree structure. However, recently hyperbolic hierarchical clustering has received a lot of attention

and is in the center of current research focus especially for ontology graphs that are common for

networks [79].

1.3 Heuristics for Hierarchical Clustering

Many di↵erent heuristics have been proposed based on the idea that similar points should be merged

further down the tree, i.e., earlier than less similar points (or clusters of points). Many di↵erent ways

CHAPTER 1. INTRODUCTION 11

can be used based on the idea of merging “nearest neighbours” according to what one defines as

the next nearest pair to be merged. These constitute a family of algorithms that build the tree in a

bottom-up manner and are usually called agglomerative algorithms. One could also use a top-down

approach to build the tree which splits the data set into two (or more) clusters and then recursively

continues in each of the produced clusters.

Bottom-up Algorithms: Single, Complete, Average Linkage

We briefly describe algorithms that have been used as bottom up approaches to construct a tree

and that originated in Biology and Phylogenetics. Agglomerative Hierachical Clustering is one of

the first suite of algorithms developed to solve HC (also referred to as bottom-up linkage methods).

These are simple and easy to implement algorithms that recursively merge similar data points to

form some small clusters and then gradually larger and larger clusters emerge. Well-known heuristics

include Single-Linkage, Complete-Linkage and Average-Linkage, that we briefly describe here. All

three heuristics, start with n datapoints forming singleton clusters initially and perform exactly n�1

merges in total until they produce a binary tree corresponding to the HC output. At any given step,

if A and B denote two already formed clusters, the criterion for which clusters to merge next is to

minimize the minimum, maximum and average distance within clusters, for Single, Complete and

Average Linkage respectively.

• For Single Linkage: mina2A,b2B dist(a, b)

• For Complete Linkage: maxa2A,b2B dist(a, b)

• For Average Linkage:
P

a2A,b2B
dist(a, b)

If instead of pairwise distances, the input was given as a similarity graph, analogous formulas

can be used, where the criterion is to maximize the respective quantities. These algorithms can be

made to run in time O(n2 log n). Recent work has also made it possible to run approximate versions

of such algorithms in sub-quadratic time [1] when the data are Euclidean. As we will use them in

the context of similarities we also provide the pseudocode for them in terms of similarities and some

comments for each of them.

Average-Linkage: One of the main algorithms used in practice for HC, it starts by merging

clusters of data points that have the highest average similarity. As we shall see, it can be shown

that it achieves 1/3 approximation for the Moseley-Wang objective (one of the HC global objectives

that we study in the thesis) and this is tight in the worst case. For a formal description, please refer

to Algorithm 1.

Single-Linkage: One of the simplest algorithms used in practice for HC. For a formal de-

scription, please refer to Algorithm 2. This was the only HC algorithm associated with a global

optimization objective before Dasgupta’s work. This simple algorithm is equivalent to Kruskal’s

algorithm that builds the maximum spanning tree (viewed of course as a hierarchical clustering).

CHAPTER 1. INTRODUCTION 12

Complete-Linkage: Another algorithm that sometimes does better in presence of outliers by

avoiding long chains of points due to noisy unreliable edges is Complete-Linkage. For a formal

description, please refer to Algorithm 3.

Algorithm 1 Average-Linkage

1: input: Similarity matrix w 2 Rn⇥n

�0
.

2: Initialize clusters C [v2V {v}.
3: while |C| � 2 do
4: Pick A, B 2 C to maximize:

w(A, B) := 1

|A||B|

P
a2A,b2B

wab

5: Set C C [{A [B} \ {A, B}

6: end while

Algorithm 2 Single-Linkage

1: input: Similarity matrix w 2 Rn⇥n

�0
.

2: Initialize clusters C [v2V {v}.
3: while |C| � 2 do
4: Pick A, B 2 C to maximize:

w(A, B) := maxa2A,b2B wab

5: Set C C [{A [B} \ {A, B}

6: end while

Algorithm 3 Complete-Linkage

1: input: Similarity matrix w 2 Rn⇥n

�0
.

2: Initialize clusters C [v2V {v}.
3: while |C| � 2 do
4: Pick A, B 2 C to maximize:

w(A, B) := mina2A,b2B wab

5: Set C C [{A [B} \ {A, B}

6: end while

Top-down Algorithms: Sparsest/Balanced Cut, Bisecting k-means

Sparsest and Balanced cut are two problems that have been studied for many years in theoretical

computer science. We defer the formal definitions to the Preliminaries Section as they will both be

important in our later discussions for Dasgupta’s objective. The idea behind both of them is to split

a given data set into two clusters so that points inside the clusters are more similar to each other

compared to points outside the clusters. The way to formalize this is based on the size of the cut

normalized by the sizes of the two sides. These can be used to generate HC, simply by recursively

splitting each of the two produced clusters. As these algorithms may be slow or require special

engineering to accelerate, simpler variants can be used like Bisecting k-means, which simply is the

CHAPTER 1. INTRODUCTION 13

recursive 2-means algorithm based for example on standard implementations of Lloyd’s k-means

algorithm [63] with the parameter k = 2.

Remark 1 We would like to note that depending on the input characteristics, di↵erent algorithms

may have better or worse performance and there is no single silver bullet. During my internships

at Facebook and Google, I came to realize the many di↵erent variations of bottom-up or top-down

algorithms that can be deployed each having drawbacks or advantages. One interesting family of vari-

ants is so-called “percentage-linkage” algorithms which is defined similarly to aforementioned linkage

heuristics, except that only some top percentile X% (e.g., 50%, 75% or 95%) of points contribute to

the calculation of the linkage or cut criterion. This can have some robustness advantages in practice

due to the presence of outliers.

1.4 Constrained Hierarchical Clustering

So far, we thought of the input as being presented in the form of pairwise similarities or distances.

This is the standard way of collecting the input for clustering. However, hierarchies are much

richer objects than partitions and the input can be given in other forms as well. Specifically,

information can take the form of triplets or quartets which are extremely useful in phylogenetic tree

reconstruction [50, 3].

1.4.1 Connections to Consistency in Phylogenetics

The three unrooted trivalent (i.e., internal nodes having degree 3) trees with four leaves are called

quartets. These are ab|cd or ac|bd or ad|bc (see also Figure 1.8). We say that a quartet ab|cd is

obeyed (or satisfied or followed) by a tree T if the path from a to b in T does not intersect the path

from c to d in T . If this is not the case, we say a quartet was disobeyed (or violated or not satisfied)

by the tree.

Figure 1.8: Resolved quartets on three elements are basic building blocks for phylogenetic tree
reconstruction.

Similarly, a rooted triplet (see Figure 1.9) is obeyed/violated by a binary rooted tree T if the path

from a to b does not share any vertices with the path from c to the root. In other words, the rooted

CHAPTER 1. INTRODUCTION 14

triplet indicates which of the three nodes is least similar (or the “odd” element among the three)

and should be separated first. For example, we could have the triplet {Tuna, Salmon|Lion}.

Figure 1.9: Resolved triplets on three elements are basic building blocks for binary HC.

Triplets and quartets can be thought as the basic building block for conveying local qualitative

information on 3 or 4 elements respectively. They are also easy to obtain via experiments or expert

advice. However, many interesting questions arise: given a set of triplets or quartets, can we combine

them in a tree consistently? If not, can we maximize agreements or minimize disagreements with

the given triplets/quartets?

These are all old questions in the field of Phylogenetics and form interesting combinatorial

problems. We briefly review some results here that are relevant for our discussion and our later

results.

All 4 problems (max satisfied triplets/quartets or min violated triplets/quartets) are NP-hard.

Detecting consistency can be done in polynomial time only for the triplets case and a simple algorithm

for this is BUILD from Aho et al. [3]. For the maximization version both of triplets or quartets

consistency, it is easy to see that a random solution (i.e., a random rooted or unrooted binary tree

respectively) will achieve a 1

3
-approximation. This is also obtained by simple greedy bottom-up

or top-down heuristics, however no one till this day was able to find a better algorithm, despite

significant e↵orts in di↵erent communities [37, 23, 89]. Here we will show that there is reason for

that as perhaps a better algorithm would imply that the Unique Games Conjecture is false. Here

we show that no polynomial time can obtain better than a 2

3
-approximation (assuming the Unique

Games Conjecture to be defined in the Preliminaries) and we conjecture that 1

3
is the best constant

one can achieve in polynomial time.

In fact, even more variations can be defined since we may want to avoid a triplet or quartet,

i.e., not include it in the final tree. This captures scenarios where a certain triplet/quartet is highly

unlikely to be what one is looking for. This problem is called the forbidden triplets or forbidden

quartets problem. Again a random solution achieves a 2

3
-approximation and this is currently the

best performance. As we prove later, assuming the Unique Games Conjecture [65], one cannot hope

CHAPTER 1. INTRODUCTION 15

to beat this trivial baseline, in polynomial time (see also Conjecture 1 in Chapter 7).

For the minimization versions, the situation is slightly clearer. As said previously, detecting

consistency in quartets is NP-complete, so there is no hope for multiplicative factor approximation

algorithms. For minimizing violated triplets, there is a hardness result due to [37], saying that

for every ✏ > 0, the problem is hard to approximate within a factor of 2log
1�✏

n, where n are the

number of leaves, even on trees formed by multi-edges (coincidentally, and perhaps ironically, I had

been working for this problem several months now and while writing the acknowledgments for this

thesis, I realized I had stumbled upon the work of [37], years back, as their reduction is inspired

by influence maximization that was the start of my undergraduate thesis [32, 57]). This means

that there is no sub-linear approximation factor for MinRTI, matching the best (and relatively

straightforward) approximation so far which is an n-approximation, based on recursively taking

Min-Cuts [60]. Here, we mention a novel and easy way of getting O(log n log log n)-approximation in

the special case of caterpillar trees: we give a reduction to Feedback Arc Set (FAS); simply introduce

two arcs a ! b and a ! c for every triplet bc|a in the input of the triplets consistency problem

and run approximately the FAS algorithm to produce an ordering. This closes this problem almost

completely as an improved algorithm would imply better Feedback Arc Set algorithms which would

be a big deal in the approximation algorithms literature, as Feedback Arc Set is a fundamental

problem (see [48]).

1.4.2 Connections to Correlation Clustering and Rankings

The triplets and quartets constraints have their analogue in standard clustering and in rankings (i.e.,

permutations on n labels). These constraints sometimes are referred to as qualitative constraints or

ordinal constraints and are used in correlation clustering and voting schemes.

“Must-link/Cannot-Link”

In clustering, the most common types of such qualitative information are “must-link/cannot-link”

constraints, specifying that in the desired ground-truth clustering two data points should be in the

same or in di↵erent clusters. This naturally gives rise to instances of Correlation Clustering [17, 4]

and constrained clustering [97, 98] which are both important and well-studied problems in data

analysis.

Betweenness and other Ordering Constraint Satisfaction Problems (CSPs)

When talking about ranking players in a tournament or ranking ads in an ad platform, or ranking

presidential candidates according to votes etc. it is usually the case that we have ordering constraints.

The simplest ordering constraint takes the form of a pairwise relationship a < b indicating that in

the output permutation, a should be before b. This is a fundamental problem in computer science

CHAPTER 1. INTRODUCTION 16

called the Maximum Acyclic Subgraph or Minimum Feedback Arc Set which is related to topological

sorting. Again let’s discuss about consistency. When the given constraints are consistent, i.e., there

exists one permutation satisfying all of them, then a simple linear time algorithm based on Depth-

First-Search can find the optimum solution. In the case of inconsistencies, we try to maximize the

number (or weight) of forward edges or minimize the number of backward edges in a permutation.

Surprisingly, again a random solution is the best one can achieve for the maximization version

of Maximum Acyclic Subgraph [59], in polynomial time (assuming the Unique Games Conjecture).

A random solution achieves a 1

2
-approximation and the same guarantee is actually obtained by an

arbitrary permutation or its reversed. For the Feedback Arc Set problem, the current best is an

O(log n log log n)-approximation [48].

Going from pairs to triplet constraints in the case of rankings, one common constraint is that

of a betweenness constraint a|b|c, indicating that b should be between a and c in the optimum per-

mutation. Even though it may seem as a simple problem, checking consistency of a set of between-

ness constraints is NP-complete. Furthermore, a random permutation obtains a 1

3
-approximation

for maximizing obeyed triplets by the permutation, and this is the best we can do in polynomial

time [58].

Part of our contribution in the later chapters in this thesis, is to formally make a connection

between ordering problems on permutations (so-called ordering CSPs [58]) and ordering problems

on trees, getting near-optimal hardness results for the latter.

1.5 Further Related Work

As we mentioned, there is a large body of literature on HC (we refer the reader to [19] for a

survey) starting with early works in phylogenetics by [88, 61]. Average-Linkage was one of several

methods originating in this field that were subsequently adapted for general-purpose data analysis.

Other major applications include image and text classification [90], community detection in social

networks [70, 75], bioinformatics [45], finance [94] and more.

Following the formulation of HC as a combinatorial optimization problem, and escaping from

worst-case analysis Cohen-Addad et al. [38] studied hierarchical extensions of the stochastic block

model and showed that an older spectral algorithm of [76] augmented with linkage methods results

in an O(1)-approximation to Dasgupta’s objective.

In another line of work, hierarchical clustering in the context of “dynamic” or “incremental”

clustering, using standard flat-clustering objectives like k-means, k-median or k-center as proxies,

has been studied ([30, 42, 81, 72]). Furthermore, there has been recent attention on the “semi-

supervised” or “interactive” versions of HC by [12, 13, 15, 16], showing that interactive feedback in

the form of cluster split/merge requests can lead to significant improvements, and by [96], providing

techniques for incorporating prior knowledge to get better hierarchical trees.

CHAPTER 1. INTRODUCTION 17

1.6 Structure of this PhD Thesis

In the next chapter, we give a gentle, yet technical overview of our main results by providing the

statements of our main theorems all concentrated together. In Chapter 3, we provide the necessary

technical background and preliminaries from the areas of approximation algorithms and hardness of

approximation. The main part of the thesis starts in Chapter 4, where we present our findings on

approximation algorithms for HC based on standard primitives from graph partitioning and convex

optimization, together with some negative impossibility results. Continuing in Chapter 5, we study

a variation where input points have features and we want a fast HC algorithm. In the last technical

chapter of the main body, Chapter 6, we study HC with constraints that constitute a common

way of incorporating prior knowledge or expert advice in biology and make progress in old Biology

problems especially giving hardness for maximizing triplets consistency. Chapter 7 contains a list

of future research questions and conjectures. Finally, omitted proofs and experiments are given in

Appendix A.

Chapter 2

Gentle Overview of Main Results

I often quote myself.

It adds spice to my conversation.

-George Bernard Shaw

This chapter is meant to serve as a brief, yet technical summary of the thesis for someone who

just wants to dive into our main results about Hierarchical Clustering. We assume some familiarity

with graph algorithms as our purpose is to only state our main theorems.

2.1 Black-box Approximations for Hierarchical Clustering

Hierarchical Clustering (HC) objectives are defined and optimized over the space of binary trees

with n leaves, where n is the number of data points. Every binary tree with n leaves can be seen as

indicating a series of exactly n�1 splits: at each internal node of the tree, simply group together the

leaves that belong to the left or right child. The main message of this section is that we can exploit

well-known techniques for graph partitioning in a black-box manner and get approximation algo-

rithms for the HC objectives. These well-known techniques include algorithms like Sparsest Cut,

Balanced Cut, Max Cut, Max Uncut Bisection or spreading metrics semidefinite program-

ming (SDPs) relaxations and randomized hyperplane rounding. For the hardness of approximation

results, we rely on the Minimum Linear Arrangement problem and Small-Set Expansion

hypothesis.

18

CHAPTER 2. GENTLE OVERVIEW OF MAIN RESULTS 19

2.1.1 Minimizing Dasgupta’s cost via Graph Cuts and Spreading Metrics

Recall that on an input similarity graph G, the Dasgupta’s cost for a given tree T is the following:

cost(T) =
X

(i,j)2E

wij |Tij | (2.1)

where wij are pairwise similarities and |Tij | is the number of leaves contained in the subtree rooted

at the lowest common ancestor of i, j. Finding the optimum tree is an NP-hard task so we need

to result in approximate solutions. We prove that repeatedly using Sparsest Cut or Balanced

Cut to generate a candidate tree T will produce a good solution for Dasgupta’s objective:

Theorem 2.1.1 Given a weighted graph G and access to an ↵n-approximation of either Sparsest

Cut or Balanced Cut, we can get an O(↵n) approximation for the hierarchical clustering problem

based on Dasgupta’s objective.

The current best known value for ↵n is O(
p

log n). The above theorem may come as a surprise

because both algorithms are looking for small cuts normalized by sizes, i.e., ratio cuts, even though

there is nothing in Dasgupta’s cost function that involves any ratio cuts; the ratio aspect is just

emerging organically from it because the penalties depending on the leaves |Tij | are accumulated

in a hierarchical manner. The above theorem is also a justification for recursive top-down parti-

tioning methods that have been previously proposed in practice. Independently of our work, Roy

and Pokutta [85] achieved a O(log n)-approximation using a spreading metrics linear programming.

Shortly after our publication, and independently, Cohen-Addad et al. [39] also presented the same

theorem, however with a di↵erent proof approach.

We note here that similar results hold for a more general version of the HC objective given by:

cost(T) =
X

(i,j)2E

wij f(|Tij |) (2.2)

where f is defined on the nonnegative reals, is strictly increasing, and has f(0) = 0. For instance,

we could take f(x) = log(1 + x)orf(x) = x2. We have:

Theorem 2.1.2 Given a weighted graph G and access to an ↵n-approximation of either Sparsest

Cut or Balanced Cut, we can get an O(cf · ↵n) approximation for the hierarchical clustering

problem based on Dasgupta’s objective (2.2), where cf , max1rn

f(r)

f(r/2)�f(r/4)
.

A natural way to attack the question of approximating the HC cost function (2.1) is by formu-

lating a linear programming (LP) or a semidefinite programming (SDP) relaxation. In fact, our

Theorem 2.1.1 was originally inspired by our analysis of a hierarchical SDP with spreading metrics.

Using our SDP and exploiting a connection with k-Balanced Partitioning studied in [67], we

prove that it is an O(
p

log n) approximation for both the simple and the generalized cost function.

CHAPTER 2. GENTLE OVERVIEW OF MAIN RESULTS 20

The advantage of the SDP relative to the Sparsest Cut or Balanced Cut is that it provides

an explicit lower bound on the optimal solution and could potentially yield an even better approxi-

mation for hierarchical clustering. Finally, before considering an SDP, one can analyze a spreading

metric Linear Programming (LP) relaxation and show that it has integrality gap O(log n), hence it

gives an O(log n) approximation for Dasgupta’s objective.

Theorem 2.1.3 Using the vectors returned by SDP-HC, and a rounding algorithm for the k-

Balanced Partitioning propblem, we can produce a tree within a factor of O(
p

log n) from the

optimum tree, as measured by (2.1).

Below we give the SDP-HC formulation, although a detailed presentation behind each of the

constraints will be postponed until Chapter 4.

We view a hierarchical clustering of n data points as a collection of partitions of the data, one

for each level t = n�1, . . . , 0. The partition at level (t�1) is a refinement of the partition at level t.

A level t defines a partitioning of the data points into maximal clusters of size at most t. Note that

the partition corresponding to t = 1 must consist of n singleton clusters. We represent the partition

at level t by the set of variables xt

ij
, i, j 2 V , where xt

ij
= 1 if i and j are in di↵erent clusters in the

partition at level t and xt

ij
= 0 if i and j are in the same cluster. Each of the vectors vt

i
lies in Rn.

min
n�1X

t=0

X

ij2E

xt

ij
wij = min

n�1X

t=0

X

ij2E

1

2
kvt

i
� vt

j
k
2

2
wij , (2.3)

such that: xt

ij
 xt�1

ij
, t = n� 1, n� 2, . . . , 1 (SDP-HC)

x0

ij
= 1, 8i, j 2 V and xt

ij
 1, 8i, j, t

xt

ij
=

1

2
kvt

i
� vt

j
k
2

2
and kvt

i
k
2

2
= 1, 8i, t 2 V

xt

ij
 xt

jk
+ xt

ik
, 8i, j, k 2 V, 8t and

X

j

xt

ij
� n� t, 8i, t

The constraints
P

j
xt

ij
� n� t, 8i, t try to impose the vectors to separate encoding the fact that

a tree splits data points as we move towards the leaves. These are the so-called spreading constraints

and that’s why we say that spreading metrics are used in the relaxation.

2.1.2 Maximization HC: Variations on a Theme

As we all know, in flat clustering and graph partitioning there is not just one objective to optimize.

One may study Mininum Cut, Maximum Cut, k-means, k-median and many more. Each objective

may be relevant in di↵erent contexts or may serve di↵erent purposes, like explaining the success of

a popular algorithm used in practice. The situation was no di↵erent for hierarchical clustering and

shortly after Dasgupta’s proposal for an HC objective, several works proposed variations on it. The

CHAPTER 2. GENTLE OVERVIEW OF MAIN RESULTS 21

two most important were the maximization objective by Moseley and Wang [78] and the dissimilarity

objective by Cohen-Addad et al. [39], which was also a maximization problem.

The objective that Moseley and Wang proposed is the following:

reward(T) =
X

(i,j)2E

wij (n� |Tij |) (2.4)

Again here the graph is given as pairwise similarities wij and the term (n � |Tij |) denotes the

number of non-leaves of the lowest common ancestor of i, j, i.e., the number of data points lying

outside Tij . We note that this is a maximization and not a minimization problem as we had

previously. It is easy to see that this objective is the complement of Dasgupta’s cost function, hence

the two optimization problems have the same optimum solution.

The objective that Cohen-Addad et al. proposed is useful whenever the input has pairwise

dissimilarities dij instead of similarities:

score(T) =
X

(i,j)2E

dij |Tij | (2.5)

This is again a maximization problem. We prove the following results:

Theorem 2.1.4 In the worst case, the approximation ratio achieved by Average-Linkage is no better

than 1/3 for the Moseley-Wang maximization objective (2.4) and no better than 2/3 for the Cohen-

Addad et al. maximization objective (2.5).

Theorem 2.1.5 We beat the approximation guarantees of Average-Linkage for both objectives: for

the Moseley-Wang maximization objective (2.4) we use the hierarchical SDP-HC to get a 0.336379-

approximation and for the Cohen-Addad et al. maximization objective (2.5) we use Max Cut to

get a 0.667078-approximation.

Finally, the SDP-HC used in the analysis for the 0.336379-approximation also paved the way to

get improved guarantees for objective (2.4) via a black-box connection to Max Uncut Bisection:

Theorem 2.1.6 For objective (2.4), one can get a 0.4246-approximation via Max Uncut Bisec-

tion.

Remark 2 Subsequent work by Alon et al. [5], during the writing of this thesis, showed that our

algorithm based on Max Uncut Bisection actually yields a 0.585-approximation, thus improving

our analysis from 0.4246.

2.1.3 Two Hardness Results from Small-Set Expansion

All 3 objectives defined previously are NP-hard to optimize exactly, but what about inapproximabil-

ity? Our two hardness of approximation results in this section are based on the Minimum Linear

CHAPTER 2. GENTLE OVERVIEW OF MAIN RESULTS 22

Arrangement problem and the Small-Set Expansion (SSE) Hypothesis. They hold even for

unweighted graphs (i.e., wij is either 0 or 1) and are the following:

Theorem 2.1.7 For Dasgupta’s cost (2.1), for every ✏ > 0, it is SSE-hard to distinguish between

the following two cases for a given graph G = (V, E), with |V | = n:

Yes: There exists a decomposition tree T of the graph such that costG(T)  ✏n|E|

No: For any decomposition tree T of the graph costG(T) � c
p

✏n|E|.

In other words, this implies that no constant factor approximation algorithm can exist that runs in

polynomial time, as this would refute the Small-Set Expansion hypothesis.

Theorem 2.1.8 Assuming Small-Set Expansion, there exists ✏ > 0, such that it is NP-hard to

approximate the Moseley-Wang objective (2.4) function within a factor (1� ✏).

In other words, this is an APX-hardness result for objective (2.4).

Finally, regarding the dissimilarity objective (2.4), a similar APX-hardness result can be proved

based on the Unique Games Conjecture. As this is unpublished work in progress [33], we omit

the details in this thesis.

2.2 Hierarchical Clustering for Euclidean Data

In the previous sections, we focused on optimizing the various HC objective functions under arbi-

trary similarity measures wij or dissimilarities dij . Although this is a general setting, in practice

more information is sometimes provided for our data points: specifically, each data point is usually

represented with a vector whose coordinates represent features and we need a scalable algorithm.

Experimental evidence in small and large datasets (up to 10 million data points) demonstrate orders

of magnitude improvement in speed-ups while still maintaining the quality of the output compared

to more expensive methods.

Our main result here is a fast, one-pass algorithm to handle the high-dimensional case and gets

a slightly better approximation factor compared to the slower Average-Linkage:

Theorem 2.2.1 For any input set of vectors v1, . . . , vn 2 Rd the algorithm Projected Random

Cut gives an ↵-approximation (in expectation) for the objective (2.4) under the Gaussian kernel

similarity measure wij ⇠ e�kvi�vjk
2
2/2�

2

where ↵ = (1 + �)/3 for � = mini,j exp(�kvi�vjk
2
2

2�2).

More details about the Projected Random Cut algorithm and the motivation behind the

Gaussian kernel use, are deferred to the relevant section. Here we also analyzed Average-Linkage

and its performance guarantees for di↵erent dimensions:

Theorem 2.2.2 For d = 1, under monotone distance-based similarity measures wij = w(kvi�vjk),

Average-Linkage is a 1

2
-approximation for the objective (2.4). Moreover, there exists a set of

CHAPTER 2. GENTLE OVERVIEW OF MAIN RESULTS 23

vectors v1, . . . , vn 2 Rd for d = poly(log n) for which Average-Linkage gets at most 1

3
+ o(1) of

the optimum.

2.3 Hierarchical Clustering with Structural Constraints

In this final section of the thesis, we explore the question of approximation algorithms for con-

strained hierarchical clustering and as it turns out we uncover interesting relations with some old

computational biology problems. Furthermore, we provide some experimental evidence that the final

hierarchical clustering gets improved when on top of the geometry of the data (i.e., pairwise similar-

ities wij), the input contains triplet constraints as they can guide the algorithm towards better trees

overall. What is a constraint in this context? In several applications it may be easier to acquire

information on triplets of points, instead of pairwise information wij . The triplet information is of

the form ab|c indicating that a, b are closer in the hierarchy than a, c or a, b. For example, in the

Tree of Life, such a constraint could be {lion, tiger}|penguin since species like lions and tigers share

a common genetic signature compared to penguins. How can we change the algorithms mentioned

so far to incorporate these triplet constraints? Can we achieve approximation guarantees subject to

satisfying all triplet constraints? The answer depends on the consistency of the triplet constraints

and the objective at hand. We say the constraints are consistent if there exists a tree compatible

with all the given triplets.

Our main result here is that a modified version of Sparsest Cut and Balanced Cut will still

be reasonably good approximation algorithms:

Theorem 2.3.1 Given a weighted graph G(V, E, w) with k consistent triplet constraints ab|c for

a, b, c 2 V , the Constrained Sparsest Cut algorithm outputs a HC respecting all triplet con-

straints and achieves an O(k↵n)-approximation for Dasgupta’s objective (2.1), where ↵n =
p

log n.

Similar results can be achieved in the case some of the triplets may be inconsistent. This happens

for example when the triplets are generated by asking users or domain experts and there is some

conflicting opinion regarding some of them. For this, we need to modify Dasgupta’s objective

accordingly to reflect the fact that we would like to satisfy as many constraints as possible, as early

in the hierarchy as possible, or in other words, to violate as few as possible as late as possible. We

postpone the formal definition of the modified objective to the relevant section.

2.3.1 Connections to Rankings, Correlation Clustering and Phylogeny

Reconstruction

Here we present mainly hardness results for important problems in computational biology and bioin-

formatics on triplets and quartets consistency. As our paper is currently under submission [34], here

CHAPTER 2. GENTLE OVERVIEW OF MAIN RESULTS 24

we will only informally state the results and later provide some proofs. We defer the complete proofs

to the final version of our paper.

By exploiting a connection with ordering constraint satisfaction problems [58], we are able to

obtain near-optimal (optimal in some cases) hardness of approximation, thus giving an explanation

for why many e↵orts were stuck at the approximation thresholds obtained by trivial baselines like

random solutions.

Theorem 2.3.1 For maximizing rooted triplets consistency or forbidden triplets, one cannot achieve

better than 2

3
-approximation, in polynomial time. For the second problem, this is tight as it is obtained

by a random tree. Similar results, hold for maximizing quartets consistency.

In our ongoing work [34], we show how to beat the trivial random baselines in a simple random

access model, where we can ask noisy queries and obtain triplets or quartets or ordering constraints.

Our approach uses interesting variants of Max Cut with negative weights and can also be extended to

correlation clustering where we are able to beat the current best 0.766-approximation of Swamy [91].

Finally, we unveil some interesting connection between the recent global objectives that are the focus

of this thesis (Dasgupta, Moseley-Wang and Cohen-Adad et al. objectives) with the aforementioned

triplets consistency problems. As a byproduct we get a polynomial time approximation scheme for

HC instances that are dense. We omit details from the current thesis.

Chapter 3

Preliminaries

You shall know a word by the company it

keeps.

- John Rupert Firth

Here, we would like to briefly discuss some important problems and definitions that will frequently

come up in the rest of the thesis. Some additional definitions and facts may be presented in the

sections for which they are relevant. Section 3.2 where we introduce the Hierarchical Clustering

global objectives should be new to most readers; however, a reader with background in theoretical

computer science is most likely familiar to the majority of the problems and results presented here.

3.1 Background in Algorithms and Hardness

Linkage-based hierarchical clustering. Among various algorithms popular in practice for HC,

we focus on two very popular ones: Single-Linkage and Average-Linkage which are two simple

agglomerative clustering algorithms that recursively merge pairs of nodes (or super nodes) to create

the final binary tree. Recall that Single-Linkage picks the pair of super nodes with the maximum

similarity weight between their data points, i.e., merges A and B maximizing maxi2A,j2B wij . On

the contrary, Average-Linkage picks the pair of super-nodes with maximum average similarity

weight at each step, i.e., merges A and B maximizing wAB

|A|·|B|
, where wAB :=

P
i2A,j2B

wij .

Basic Graph Primitives. All approximations mentioned in this thesis will be multiplicative fac-

tor approximations with respect to the unknown optimum solution. Let’s review some standard

graph partitioning problems:

25

CHAPTER 3. PRELIMINARIES 26

Sparsest Cut. Given a weighted, undirected graph G = (V, E, w) (|V | = n) we want to find

a set S 6= ;, V that minimizes the ratio: w(S,V \S)

|S|·|V \S|
. It is an NP-hard problem for which many

important results are known including the LP relaxation of Leighton-Rao [69] with approximation

ratio O(log n) and the SDP relaxation with triangle inequality of Arora, Rao, Vazirani [8] with

approximation ratio O(
p

log n); it is a major open question if we can improve this approximation

ratio.

c-Balanced Cut. This is another variation of balanced partitioning where we want to have

some kind of guarantee on the size of the smallest part produced by the cut. Formally, we are given

a weighted undirected graph G on n vertices and the goal is to partition the vertices into 2 pieces

(S, S̄) with sizes cn  |S|, |S̄|  (1� c)n and of course with the total weight of the edges connecting

the 2 components being small. It is known ([8]) how to get an O(
p

log n) pseudo-approximation

algorithm for this problem, in the sense that the algorithm will produce a c0-Balanced Cut for

some constant c0 < c and such that the cost of the solution is at most O(
p

log n) times the optimum

c-Balanced Cut. Here c0 and c are constants in (0, 1/2]. We note that the above two problems

(Sparsest and Balanced Cut) can be approximated up to a O(
p

log n/✏) factor in time Õ(m+ n1+✏)

by combining [86] with [87] or [64] (see also [80]).

k-Balanced Partitioning. Given a weighted undirected graph G on n vertices, the goal is to

partition the vertices into k equally sized components of size roughly n/k so that the total weight of

the edges connecting di↵erent components is small. It is an important generalization of well-known

graph partitioning problems, including minimum bisection (k=2) and minimum balanced cut and

it has applications in VLSI design, data mining (clustering), social network analysis etc. It is an

NP-hard problem and the authors of [67] present a bi-criteria (which means that pieces may have

size 2n/k rather than n/k) approximation algorithm achieving an approximation of O(
p

log n log k).

Their result will be useful in our analysis for our spreading metrics SDP in Section 4.1.4. However,

for us the dependence on k will be unimportant since in our analysis we only need k to be a small

constant (e.g. k=4).

Hardness. We will make use in two places of this thesis of the so-called Small Set Expansion

(SSE) Hypothesis [82, 83] that is tightly related with an important question in approximability and

hardness of approximation called the Unique Games Conjecture (UGC) [65]. As we will not rely on

UGC directly, we omit technical details from here and focus only on SSE.

Small-Set Expansion. SSE is a hardness assumption that informally tells us the following:

Given a graph G, it should be hard to distinguish between the case where there exists a small set

S that has only a few edges leaving it versus the case where for all small sets S there are many

edges leaving the sets. For a formal statement see Section 4.2.6. This hardness assumption is closely

connected to the Unique Games Conjecture (UGC) of [65] and its variants. In particular, the SSE

Hypothesis implies UGC([82]) and it has been used to prove many inapproximability results for

CHAPTER 3. PRELIMINARIES 27

problems like balanced separator and minimum linear arrangement ([83]).

Minimum Linear Arrangement. Given a weighted undirected multigraph G(V, E, w) (|V | =

n) we want to find a permutation ⇡ : V ! {1, 2, . . . , |V |} that minimizes:
P

(x,y)2E,x<y
w(x, y) ·

|�(y) � �(x)|. A factor O(
p

log n log log n) approximation for MLA was shown in [31, 49]. In

addition, some recent hardness results are also known: in [83] it is shown that it is SSE-hard to

approximate MLA to within any fixed constant factor and in [6] the authors prove that MLA has no

polynomial time approximation scheme, unless NP-complete problems can be solved in randomized

subexponential time.

Gaussian Graphs. For a constant ⇢ 2 (�1, 1), let G(⇢) denote the infinite graph over R where

the weight of an edge (x, y) is the probability that two standard Gaussian random variables X, Y

with correlation ⇢ equal x and y respectively. The expansion profile of Gaussian graphs is given by

�G(⇢)(µ) = 1� �⇢(µ)/µ where the quantity �⇢(µ) defined as

�⇢(µ) , P(x,y)⇠G⇢
(x � t, y � t),

where G⇢ is the 2-dimensional Gaussian distribution with covariance matrix:

"
1 ⇢

⇢ 1

#

and t � 0 is such that P(x,y)⇠G⇢
{x � t} = µ

3.2 Global Objectives for Hierarchical Clustering

Recall the setting for Dasgupta’s cost function [43]. The edges {i, j} in G, and their strengths

wij , reflect similarity. When clustering, we would like to avoid cutting too many edges. But in a

hierarchical clustering, all edges do eventually get cut. All we can ask, therefore, is that edges be

cut as far down the tree as possible. Accordingly, he defined the cost of T to be

costG(T) =
X

{i,j}2E

wij |leaves(T [i _ j])|. (3.1)

where from now on we will simply use |Tij instead of |leaves(T [i _ j])|.

Shortly after Dasgupta’s work, two recent (and independent) works took this objective function

viewpoint to understand the performance of Average-Linkage. In the first work, Moseley and Wang

[78] introduced a new objective that explicitly favors postponing the cutting of “heavy” edges to

CHAPTER 3. PRELIMINARIES 28

when the clusters become small, which is in some sense dual to the objective introduced by Dasgupta:

T ⇤ = argmax
all trees T

X

(i,j)2E

wij · (n� |Tij |) (3.2)

In many applications, the geometry in the data is given by dissimilarity scores instead of simi-

larities. In the second work, Cohen-Addad, Kanade, Mallmann-Trenn and Mathieu [39] took this

view and studied a maximization version of Dasgupta’s objective where pairwise weights wij denote

dissimilarities between the endpoints:

T ⇤ = argmax
all trees T

X

(i,j)2E

wij · |Tij | (3.3)

For maximizing the similarity-based objective, the first work showed that Average-Linkage obtains

a 1

3
-approximation. Interestingly, for maximizing the dissimilarity-based objective, the second work

also showed that Average-Linkage gives a 2

3
-approximation [39]. Besides helping with understanding

the performance of Average-Linkage, a comprehensive list of desirable properties of the aforemen-

tioned objectives together with their proofs can be found in [43, 78, 39, 38]. Here we will only

mention some key properties to give some intuition:

• Relations of di↵erent objectives: As can be seen by the formulations in 3.1, 3.2, 3.3, all three

objectives look similar. Indeed in terms of optimization these are equivalent. However, in

terms of approximation the landscapes change as is common in approximation algorithms.

• Interpretation of 3.1: A natural interpretation of the cost function is in terms of cuts. Each

internal node of the tree corresponds to a split in which some subset of nodes S ✓ V is

partitioned into two or more pieces. For a binary split S ! (S1, S2), the splitting cost is

|S| w(S1, S2), where w(S1, S2) is the weight of the cut,

w(S1, S2) =
X

{i,j}2E: i2S1,j2S2

wij .

This extends in the obvious way to k-ary splits S ! (S1, S2, . . . , Sk), whose cost

is |S|w(S1, . . . , Sk), with

w(S1, . . . , Sk) =
X

1i<jk

w(Si, Sj).

The cost of a tree T is then the sum, over all internal nodes, of the splitting costs at those

nodes:

cost(T) =
X

splits S ! (S1, . . . , Sk) in T

|S|w(S1, . . . , Sk). (3.4)

CHAPTER 3. PRELIMINARIES 29

We would like to find the hierarchy T that minimizes this cost.

• NP-hardness: A consequence of the above discussion is that the optimum tree can always be

assumed to be binary. However, still the problem is computationally hard. Dasgupta showed

via a reduction from not-all-equal SAT that optimizing for his objective is NP-hard.

• Recovery of Planted Partitions: In the case the graph has disconnected components, one

can prove that the optimum tree will first split apart these disconnected components. This

agrees with intuition as they encode di↵erent clusters. A strengthening of this argument was

also given under a probabilistic generative model for the input graph, the Stochastic Block

Model. For more details see [43]. Moreover, an even stronger version of the recovery result

under planted partitions, is the one in [39] where they define a notion of Hierarchical Stochastic

Block Model (HSBM). This is a probabilistic model suitable to capture hierarchical structures;

they assume that the ground-truth is given by a binary tree (similar to assuming the ground

truth is a balanced bipartition in the standard stochastic block model) and the uncertainty for

the presence of edges is modeled under the assumption that for two nodes their probability of

being connected or not, only depends on their lowest common ancestor in the ground-truth tree.

They show that for instances drawn from the HSBM, one can achieve better approximations

than what is possible in the worst-case and also that Dasgupta’s optimizer recovers (almost)

the ground truth.

• Axiomatic Approach to HC: In [39], they also take an axiomatic approach to HC objectives,

trying to formulate specific desiderata that should be satisfied by any “reasonable” objective.

For example, one of these desiderata is that whenever the input similarities are generated

from a ground-truth instance (that they define based on the notion of ultrametrics), then the

optimizer of 3.1 should coincide with the ground-truth. An interesting condition that arises in

their framework as a necessary property of such “reasonable” HC objectives, is the fact that

when the input is a unit-weight clique, then every tree has the same cost exactly. In some

sense, this captures that cliques have no hierarchy to be found.

Chapter 4

Black-box Approximations for

Hierarchical Clustering

Nice theorem; it seems that we now have two

proofs for it, and one counterexample.

-Telemachos

This chapter is the main part of the thesis where we study 3 di↵erent global objectives for Hier-

archical Clustering from a worst-case analysis perspective. We will devise approximation algorithms

based on standard graph partitioning tools like Sparsest Cut or Balanced Cut, we will review

certain related work about Average-Linkage and also give several hardness results.

4.1 Minimizing HC cost: Graph Cuts and Spreading Metrics

HC via Sparsest Cut and Balanced Cut

Given a graph G with weighted edges, we have seen that it is NP-hard to find a tree that minimizes

cost(T). We now consider top-down heuristics that begin by choosing a split V ! (S, V \S) according

to some criterion, and then recurse on each half. What is a suitable split criterion?

The cost of a split (S, V \ S) is |V | · w(S, V \ S). Ideally, we would like to shrink the node set

substantially in the process, since this reduces the multiplier on subsequent splits. For a node chosen

at random, the expected amount by which its cluster shrinks as a result of the split is

|S|

|V |
· |V \ S| +

|V \ S|

|V |
· |S| =

2|S||V \ S|

|V |
.

A natural greedy criterion would therefore be to choose the split that yields the maximum shrinkage

30

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 31

per unit cost, or equivalently, the minimum ratio

w(S, V \ S)

|S| · |V \ S|
.

This is known as the sparsest cut and has been studied intensively in a wide range of contexts.

Although it is NP-hard to find an optimal cut, a variety of good approximation algorithms have

been developed [73, 9]. We will assume simply that we have a heuristic whose approximation ratio,

on graphs of n nodes, is at most ↵n times optimal, for some positive nondecreasing sequence (↵n).

For instance, the Leighton-Rao algorithm [73] has ↵n = O(log n) and the Arora, Rao, Vazirani

algorithm [9] has ↵n = O(
p

log n).

function MakeTree(V)
If |V | = 1: return leaf containing the singleton element in V
Let (S, V \ S) be an ↵n-approximation to the sparsest cut of V
LeftTree = MakeTree(S)
RightTree = MakeTree(V \ S)
Return [LeftTree, RightTree]

Figure 4.1: A top-down heuristic for finding HC that approximately minimizes cost(T).

The resulting hierarchical clustering algorithm is shown in Figure 4.1. The output can be thought

of as a binary tree of the sequence of cuts performed by the algorithm. It is interesting that even

though the cost function over hierarchies does not explicitly ask for sparse cuts (costG(T) contains no

ratios), the sparsest cut objective emerges organically when one adopts a greedy top-down approach

to constructing the tree. We will now see that this algorithm returns a tree of cost at most O(↵n)

times the optimal.

4.1.1 Recursive Sparsest Cut

Initially, Dasgupta [43] showed that this simple top-down recursive Sparsest Cut (RSC) heuris-

tic, that uses an ↵n-approximation algorithm for uniform sparsest cut gives an approximation of

O(↵n log n) for hierarchical clustering.

In this section, by drawing inspiration from our SDP construction and analysis presented later in

Section 4.1.4, we present an improved analysis for this simple heuristic, dropping the log n factor and

showing that it actually yields an O(↵n) approximation. This is satisfying since any improvement

for Sparsest Cut would immediately yield a better approximation result for hierarchical clustering.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 32

Analysis of RSC heuristic

Let the given graph be G = (V, E). We suppose for clarity of presentation that it is unweighted; the

analysis applies directly to weighted graphs and later, we see how to generalize it for more general

cost functions. Let OPT be the optimal solution for hierarchical clustering (we abuse notation

slightly by using OPT to denote both the solution as well as its objective function value). Let

OPT(t) be the maximal clusters in OPT of size at most t. Note that OPT(t) is a partition of V .

We denote EOPT(t) the edges that are cut in OPT(t), i.e. edges with end points in di↵erent

clusters in OPT(t). For convenience, we also define EOPT(0) , E (see Figure 4.2).

size  t

size  2t

size  4t

Figure 4.2: Illustration for the sets EOPT(t), EOPT(2t), EOPT(4t). Looking at clusters that are max-
imal and of size at most t (filled in blue), 2t (yellow border), 4t (brown border), we have that the red
edges belong to EOPT(2t), whereas in EOPT(t), we have the red and the green edges. Any edge that
goes out of the big cluster of size  4t (brown) contributes to all terms EOPT(t), EOPT(2t), EOPT(4t).

Claim 4.1.1 OPT =
P

n�1

t=0
|EOPT(t)|.

Proof. Consider any edge (u, v) 2 E. Suppose that the size of the minimal cluster in OPT that

contains both u and v is r. Then the contribution of (u, v) to the LHS is r. On the other hand,

(u, v) 2 EOPT(t) for all t 2 {0, . . . , r � 1}. Hence the contribution to the RHS is also r.

It will be convenient to use the following bound that is directly implied by the above claim:

2 · OPT = 2 ·

n�1X

t=0

|EOPT(t)| �
nX

t=0

EOPT(bt/2c) (4.1)

Let’s look at a cluster A with size |A| = r in the solution produced by RSC. Using a sparsest

cut approximation algorithm, we create two clusters B1, B2 with sizes s, (r � s) respectively, with

B1 being the smaller, i.e. s  br/2c. The contribution of this cut to the hierarchical clustering

objective function is: |E(B1, B2)| · r. We basically want to charge this cost to OPT(br/2c) and for

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 33

that we first observe that the edges cut in OPT(br/2c), when restricted to the cluster A (i.e. having

both endpoints in A), satisfy the following:

s · |EOPT(br/2c) \A| 

rX

t=r�s+1

|EOPT(bt/2c) \A| (4.2)

This follows easily from the fact that |EOPT(t)\A|  |EOPT(t�1)\A| (by definition, the smaller

the value of t, the more edges are cut). Now in order to explain our charging scheme, let’s look at

the partition A1, ..., Ak induced inside the cluster A by OPT(br/2c) \ A, where by design the size

of each |Ai| = �i|A|, �i  1/2. We have:

|E(Ai, A \ Ai)|

|Ai||A \ Ai|
=

|E(Ai, A \ Ai)|

�i(1� �i)r2
, 8i 2 {1, . . . , k}

We take the minimum over all i (an upper bound on the sparsest cut in A) and we have:

min
i

|E(Ai, A \ Ai)|

�i(1� �i)r2


P
i
|E(Ai, A \ Ai)|P
i
�i(1� �i)r2

 2 ·
|EOPT(br/2c) \A|

r2/2
= 4 ·

|EOPT(br/2c) \A|

r2

The first inequality above, trivially follows by definition for the minimum and the second in-

equality holds because
P

k

i=1
�i = 1,

P
k

i=1
�2

i
 1/2 (note that all �i  1/2) and the factor of 2

is introduced since we double counted every edge. We partition A using an ↵r-approximation for

sparsest cut and we get (since ↵r  ↵n):

|E(B1, B2)|

s(r � s)
 ↵n ·

4

r2
· |EOPT(br/2c) \A|

since the RHS (without the ↵n factor) is an upper bound of the optimal sparsest cut value. The

contribution of this step to the hierarchical clustering objective function is:

r|E(B1, B2)| 
4↵ns(r � s)

r
· |EOPT(br/2c) \A|  4↵ns · |EOPT(br/2c) \A| (4.3)

We claim the following:

Claim 4.1.2 Let A be a cluster of size rA in our hierarchical clustering solution, that we split into

2 pieces (B1, B2) of sizes sA, rA � sA respectively with |B1|  |B2| (so sA stands for the size of the

small piece B1 after we split A). Then, summing over all clusters A we get:

X

A

rAX

t=rA�sA+1

|EOPT(bt/2c) \A| 

nX

t=0

|EOPT(bt/2c)|

Proof. For a fixed value of t and A, the LHS is: |EOPT(bt/2c) \ A|. Consider which clusters A

contribute such a term to the LHS. From the fact that rA � sA + 1  t  rA, we need to have that

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 34

|B2| < t and since B2 is the larger piece that was created when A was split, we deduce that A is

a minimal cluster of size |A| � t > |B2| � |B1|, i.e. if both A’s children are of size less than t,

then this cluster A contributes such a term. The set of all such A form a disjoint partition of V

because of the definition for minimality (in order for them to overlap in the hierarchical clustering,

one of them needs to be ancestor of the other and this cannot happen because of minimality). Since

EOPT(bt/2c) \ A for all such A forms a disjoint partition of EOPT(bt/2c), the claim follows by

summing up over all t.

Theorem 4.1.3 Given an unweighted graph G, the Recursive Sparsest Cut algorithm achieves an

O(↵n) approximation for the hierarchical clustering problem.

Proof. The proof follows easily by combining (4.1), (4.2), (4.3), Claim 4.1.2 and summing over

all clusters A created by RSC. In particular, we get the following result for the overall performance

guarantee:

costRSC =
X

A

rA · |E(B1, B2)| 
X

A

4↵nsA|EOPT(brA/2c) \A| 

 4↵n

P
A

P
rA

t=rA�sA+1
|EOPT(bt/2c) \A|  4↵n

P
n

t=1
|EOPT(bt/2c)|  8↵n · OPT.

4.1.2 Using Balanced Cut instead of Sparsest Cut

We are going to give an analysis similar to the above, but instead of using the Sparsest Cut, we are

going to use c-Balanced Cut as a black box. We will get the same approximation factor and at

the end, we will have a brief discussion on comparing the two approaches.

We will follow the same notation as above and we will use some of the facts and inequalities

we previously proved about EOPT(t). Suppose again that we have a cluster A of size r and take

|EOPT(br/2c) \ A|. The important observation here is that the partition A1, ..., Ak induced inside

the cluster A by OPT(br/2c) \ A (where by design the size of each |Ai| = �i|A|, �i  1/2), can be

separated into two groups, let’s say (C1, C2) such that r/3  |C1|, |C2|  2r/3 (see Figure 4.3). In

other words we can demonstrate a c-Balanced Cut for c = 1/3. We know that:

|E(C1, C2)|  |EOPT(br/2c) \A|

since we cut fewer edges when creating C1, C2.

At this point, we can invoke an ↵-pseudo-approximation algorithm for Balanced Cut [8] for the

cluster A (let OPTBC be the optimal cost of partitioning A into two clusters with sizes at least r/3)

and we can get a partition into (B1, B2) with c0r  |B1|, |B2|  (1� c0)r, (the constant c0 depends

only on c and c0 < 1/3, that’s why we call it pseudo-approximation) with the cost guarantee of:

|E(B1, B2)|  ↵ · OPTBC  ↵ · |E(C1, C2)| 

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 35

size  r

size  r

2

Figure 4.3: An illustration of |EOPT(r/2)\A| for a cluster A with size r. The small clusters have size


r

2
and the induced partition can be separated into two groups (C1, C2) that are 1

3
: 2

3
balanced.

The edges between those two groups (red) are also present in EOPT(r/2) (red and green).

 ↵ · |EOPT(br/2c) \A|

Looking at the cost of the hierarchical clustering which is r · |E(B1, B2)| and charging it as we did

before to s · |EOPT(br/2c) \A| where now s � c0r =) r  s/c0 we get:

r · |E(B1, B2)|  ↵r · |E(C1, C2)|  ↵
s

c0
· |E(C1, C2)| 

 ↵
s

c0
· |EOPT(br/2c) \A| 

↵

c0

rX

t=r�s+1

|EOPT(bt/2c) \A|

Finally, all we have to do is sum up over all the clusters A (now in the summation we should write

rA, sA instead of just r, s, since there is dependence in A) produced by the recursive Balanced Cut

algorithm for Hierarchical Clustering and we get that we can approximate the HC objective function

up to O(
p

log n) (here we just substituted the best known value for the approximation guarantee

↵).

Remark 3 The results for Balanced Cut generalize for the weighted case and for general cost func-

tions. The reason we were interested in Balanced Cut is twofold: Firstly, recall that the running

time for Sparsest Cut and Balanced Cut on a graph with n nodes and m edges is Õ(m+n1+✏). Now,

the running time of Recursive Sparsest Cut might be worse o↵ by a factor of n (you could have very

unbalanced splits at every step) in the worst case. However, the running time for Recursive Balanced

Cut is still Õ(m+n1+✏), because at each step you ensure that you have similar sized pieces and thus

you make progress in the recursion. Secondly, we know that an ↵n-approximation for Sparsest Cut

yields an O(↵n)-approximation for Balanced Cut, but not the other way. This means that if we could

find a better Balanced Cut algorithm without improving Sparsest Cut, we could still use it for better

Hierarchical Clustering.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 36

4.1.3 Generalized HC Cost Function Approximation

In the original [43] paper introducing the objective function of hierarchical clustering, Dasgupta also

considered the more general cost function: costG(T) =
P

ij2E
wijf(|leaves(T [i _ j])|), where f is

defined on the non-negative reals, is strictly increasing, and has f(0) = 0 (e.g. f(x) = ln(1 + x) or

f(x) = x2). For this more general cost function, he proved that a slightly modified greedy top-down

heuristic (using w(S,V \S)

min((f |S|),f(|V \S|))
with 1

3
|V |  |S| 

2

3
|V |, instead of Sparsest Cuts) continues to

yield an O(↵n · log n · cf) approximation1, where cf , max1n0n

f(n
0
)

f(n0/3)
). Now, we analyze the

previous RSC algorithm (with no modifications), but in the case of a weighted graph G and when

we are trying to optimize the generalized cost function.

We again make the natural assumptions that the function f acting on the number of leaves in

subtrees, is defined on the nonnegative reals, is strictly increasing and f(0) = 0 (also see Remark 4).

We also define: cf , max1n0n

f(n
0
)

f(bn0/2c)�f(bn0/4c)
. For what follows, we abuse notation slightly for

ease of presentation and write r/2, r/4 etc. instead of br/2c, br/4c etc. As in the simple unweighted

case, we use here the same definitions for OPT and EOPT(t). Let w(EOPT(t)) denote the total

weight of the edges EOPT(t), i.e. the edges cut by OPT at level t, where we define w(;) = 0 and we

also define g(t) , f(t + 1)� f(t). We note that
P

r�1

t=0
g(t) = f(r)� f(0) = f(r).

Claim 4.1.4
P

n�1

t=0
w(EOPT(t)) · g(t) = OPT

Proof. We will prove that the contributions of an edge e = (u, v) to the LHS and RHS are equal. Let

A (|A| = re) be the minimal cluster in the optimal solution that contains both u, v. The contribution

of e to the RHS is: we · f(re). As for the contribution to the LHS, since A is minimal and |A| = re,

we deduce that e 2 OPT(t), 8t < re. Also for levels t � re we have e 2 A or some superset of A and

thus e 62 OPT(t) Hence the contribution to the LHS is: we ·
P

re�1

t=0
g(t) = we · f(re).

Focus on a cluster A (|A| = r) in the solution produced by the algorithm. Let cut(A) denote the

edges in A cut by partitioning A. This contributes w(cut(A)) · f(r) to the objective. We will charge

our cost using the following quantity related to the optimum solution:
Pr/2�1

t=r/4
w(EOPT(t)\A) ·g(t).

For that, we look at OPT(r/2) \A and let’s say that clusters A1, A2, ..., Ak are induced by this

partition, each being of size |Ai| = �i|A|  |A|/2 = r/2 (�i  1/2). Then,

SC(A) 

P
i
w(Ai, A \ Ai)

r2
P

i
�i(1� �i)


2 · w(EOPT(r/2) \A)

r2 · 1/2

where SC(A) is the optimum sparsest cut (value) for A. Since we used an ↵n-approximation,

w(cut(A))

s(r � s)
 ↵nSC(A) 

4↵n(w(EOPT(r/2) \A)

r2
=)

w(cut(A))f(r) 
4↵ns

r
w(EOPT(r/2) \A)f(r) (4.4)

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 37

Since w(EOPT(t) \A) � w(EOPT(t + 1) \A), we have:

r/2�1X

t=r/4

w(EOPT(t) \A)g(t) � w(EOPT(r/2) \A)

r/2�1X

t=r/4

g(t) = (f(r/2)� f(r/4))w(EOPT(r/2) \A)

(4.5)

Using equations (4.4), (4.5), we get that:

w(cut(A)) · f(r)  4↵n ·
s

r
·

f(r)

f(r/2)� f(r/4)
·

r/2�1X

t=r/4

w(EOPT(t) \A) · g(t) (4.6)

We now sum up the cost contributions of all clusters created in our hierarchical clustering solution.

Let s(A) be the size of the smaller piece produced in partitioning A.

costRSC =
X

A

w(cut(A)) · f(|A|)  4↵n · cf
X

A

s(A)

|A|

|A|/2�1X

t=|A|/4

w(EOPT(t) \A) · g(t) (4.7)

To complete our argument we need to make the comparison between OPT which is:
P

n�1

t=0
w(EOPT(t))·

g(t) and the sum

X

A

s(A)

|A|

|A|/2�1X

t=|A|/4

w(EOPT(t) \A) · g(t) (4.8)

where the first summation goes over all clusters A in the solution we produce.

Claim 4.1.5
P

A

s(A)

|A|

P|A|/2�1

t=|A|/4
w(EOPT(t) \A) · g(t)  2 ·

P
n�1

t=0
w(EOPT(t)) · g(t)

Proof. Consider some edge e = (u, v) 2 EOPT(t). Focus on sets A in the solution produced such

that e 2 EOPT(t) \A so that e contributes to the term
P|A|/2�1

t=|A|/4
w(EOPT(t) \A) · g(t) in the LHS.

For all such clusters A, we need to have: |A|/4  t < |A|/2 =) 2t < |A|  4t.

Let A1, A2, ..., Ak�1 be the sets for which the term w(EOPT(t) \ A) appears: A1 is the largest

cluster (satisfying 2t < |A1|  4t) that contains the edge e = (u, v) and when split we call its larger

piece A2 (again this set contains e) etc., Ak�1 is the last set for which the term appears and (u, v)

does not appear in Ak (Ak is the larger piece of the two that we got when we partitioned Ak�1).

We have:

k�1X

i=1

s(Ai)

|Ai|
=

|A1|� |A2|

|A1|
+

|A2|� |A3|

|A2|
+ ... +

|Ak�1|� |Ak|

|Ak�1|


P
k�1

i=1
|Ai|� |Ai+1|

mini |Ai|


|A1|

2t
 2.

(4.9)

(the constant can be optimized, but it does not change the asymptotic bound). Thus the contribution

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 38

of every edge e 2 EOPT(t) to the LHS is at most 2weg(t). Note that this is exactly the contribution

to the RHS. This establishes the claim.

Theorem 4.1.6 RSC achieves an O(cf ·↵n) approximation of the generalized objective function for

Hierarchical Clustering.

Proof. We will prove the theorem by combining (4.7), Claim 4.1.5 and Claim 4.1.4. In particular,

from (4.7),

costRSC  4↵n · cf
X

A

s(A)

|A|

|A|/2�1X

t=|A|/4

w(EOPT(t) \A) · g(t)

Combining the above with Claim 4.1.5, we get that the total cost of the RSC is at most:

costRSC  8cf↵n ·

n�1X

t=0

w(EOPT(t)) · g(t)

Finally, using the Claim 4.1.4 we get: costRSC  (8cf↵n) · OPT = O(cf · ↵n) · OPT.

Remark 4 In order for our guarantee to be useful, we need cf to be a constant (or a slowly growing

quantity). This would mean that f is polynomially growing. We observe that in the case where the

function f is exponentially growing then our guarantee is not interesting (and in fact we may need

to use a di↵erent strategy than RSC) and in the case f is logarithmic, then we would get a factor

⇡ O(↵n log n) approximation, which is the same guarantee as [43].

4.1.4 Convex Relaxations for HC

In this section, we present our SDP relaxation for HC based on spreading metrics, we point out

its relation with the SDP relaxation of k-balanced partitioning in [67] and we prove that it is an

O(
p

log n) approximation for both the simple and the generalized cost function.

Writing the SDP

We view a hierarchical clustering of n data points as a collection of partitions of the data, one for

each level t = n� 1, . . . , 0 (where level 0 is identical to level 1, for convenience). The partition for a

particular level t satisfies the property that every cluster has size at most t; additionally, for every

vertex i, the cluster containing vertex i at level t is the maximal cluster in the hierarchy with size

at most t. The partition at level (t � 1) is a refinement of the partition at level t. Note that the

partition corresponding to t = 1 must consist of n singleton clusters. We represent the partition at

level t by the set of variables xt

ij
, i, j 2 V , where xt

ij
= 1 if i and j are in di↵erent clusters in the

partition at level t and xt

ij
= 0 if i and j are in the same cluster. We point out some properties of

these variables xt

ij
satisfied by an integer solution corresponding to an actual hierarchical clustering:

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 39

1. refinement: xt

ij
 xt�1

ij
. If i and j are separated at level t, then they continue to be separated

at level t� 1.

2. triangle inequality: xt

ij
+ xt

jk
� xt

ik
. In the clustering at level t, if i and j are in the same

cluster, j and k are in the same cluster, then i and k are in the same cluster.

3. `2
2
metric: The triangle inequality condition implies that xt

ij
is a metric. Further, we can

associate unit vectors vt
i

with vertices i at level t such that xt

ij
= 1

2
||vt

i
� vt

j
||
2
2
. In order to

do this, all vertices in the same cluster at level t are assigned the same vector, and vertices in

di↵erent clusters are assigned orthogonal vectors.

4. spreading:
P

j
xt

ij
� n � t. For the clustering at level t, there are at most t vertices in the

same cluster as i. Hence there are at least n � t vertices in di↵erent clusters. For each such

vertex j, xt

ij
= 1 implying the inequality.

5. cluster size: The size of the smallest cluster in the hierarchy containing both vertices i and

j is given by 1 +
P

n�1

t=1
xt

ij
. Suppose C is the smallest cluster containing both i and j. Then

for t � |C|, the partition at level t must contain C or some superset of C. Hence xt

ij
= 0 for

t � |C|. For t < |C|, the clustering at level t must have i and j in di↵erent clusters, hence

xt

ij
= 1. Hence

P
n�1

t=1
xt

ij
= |C| � 1. Finally, we can write the SDP relaxation SDP-HC as

follows:

min
n�1X

t=0

X

ij2E

xt

ij
wij = min

n�1X

t=0

X

ij2E

1

2
kvt

i
� vt

j
k
2

2
wij ,

such that: xt

ij
 xt�1

ij
, t = n� 1, n� 2, ...1 (SDP-HC)

x0

ij
= 1, 8i, j 2 V and xt

ij
 1, 8i, j, t

xt

ij
=

1

2
kvt

i
� vt

j
k
2

2
and kvt

i
k
2

2
= 1, 8i 2 V

xt

ij
 xt

jk
+ xt

ik
, 8i, j, k 2 V, 8t and

X

j

xt

ij
� n� t, 8i, t

It is easy to see that an optimal solution to SDP-HC can be computed in polynomial time (see

for example the arguments in [67]). By the preceding discussion, we have shown that SDP-HC is a

valid relaxation for HC:

Lemma 4.1.7 The value of an optimal solution to SDP-HC can be computed in polynomial time,

and gives a lower bound on the cost of an optimal solution to the hierarchical clustering problem.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 40

Connections of SDP-HC with Balanced Partitioning

The authors of [67] write an SDP relaxation for the problem of k-Balanced Partitioning (k-BP)

which was the following (SDP-k-BP):

min
X

ij2E

wij ·
1

2
kvi � vjk

2

2
, (SDP-k-BP)

such that: kvi � vjk
2

2
+ kvj � vkk

2

2
� kvi � vkk

2

2
, 8i, j, k 2 V

X

j2S

1

2
kvi � vjk

2

2
� |S|�

n

k
, 8S ✓ V, i 2 S

Their result was that the above relaxation is an O(
p

log k log n) approximation (bi-criteria ⌫ = 2)

algorithm for k-BP, that will create pieces of size at most 2n/k.

Claim 4.1.8 Let A be a cluster of size r. SDP-HC solution restricted to set A, at level t = r/4 is

a valid solution for k-balanced partitioning based on the SDP-k-BP relaxation, where k = 4.

Proof. First of all, we have that:

SDPA(t) ,
X

ij2E,i,j2A

xt

ij
wij =

X

ij2E,i,j2A

1

2
kvt

i
� vt

j
k
2

2
wij

Basically, we take the SDP-HC solution for the entire instance and we focus on some part of it, i.e.

we focus on the terms of the objective function that are relevant for the cluster A.

To prove the claim all we need to do is to compare the set of constraints imposed by SDP-HC

and SDP-k-BP. In SDP-HC, we have some additional constraints: xt

ij
 1 and vt

i
 1, but that is

fine since imposing extra constraints just makes a stricter relaxation. Now let’s look at the spreading

constraints: In SDP-HC we have
P

j
xt

ij
� n � t =)

P
j2S

xt

ij
� |S| � t which is basically the

SDP-k-BP spreading constraints. Thus, by looking at the SDP-HC solution restricted to set A

(|A| = r), at level t = r/4, we can get a valid 4-balanced partitioning solution of A.

In order to produce a hierarchical clustering from the SDP solution, we recursively partition V

in a top down fashion: while partitioning a cluster A, we use the SDP-HC solution restricted to

set A at level t = |A|/4 as a valid solution for 4-balanced partitioning and invoke the algorithm of

[67] as a black box. Let EA be the edges cut by the algorithm when splitting cluster A. From the

analysis of [67] , we get that (for us k = 4, so log k is constant):

w(EA)  O(
p

log n) · SDPA(r/4) (4.10)

and we partition A into pieces of size at most  2 · r/4 = r/2 (bi-criteria). In the analysis that

follows, we will use this result as a black box.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 41

4.1.5 O(
p
log n) approximation for Hierarchical Clustering

Now we go on to see that the integrality gap of our SDP-HC is O(
p

log n). Let rA be the size of a

cluster A in the solution produced. For our charging argument, we observe that we pay rA · w(EA)

where EA are the edges cut by the KNS [67] algorithm when partitioning A. We will charge

this cost to
PrA/4

t=rA/8+1
SDPA(t) �

rA
8

SDPA(rA/4) (note that as t decreases more edges are cut).

Thus, using [67], the total cost of the solution produced (where costHC is the cost of the rounding

algorithm’s solution and rA depends on A):

costHC =
X

A

rA · w(EA)  O(
p

log n)
X

A

rA/4X

t=rA/8+1

SDPA(t) (4.11)

Claim 4.1.9
P

A

P|A|/4

t=|A|/8+1
SDPA(t)  O(SDP-HC).

Proof. The flavor of this analysis is similar to our RSC result from Section 4.1.1. Let’s look at

an edge e = (u, v) at a fixed level t. For which sets A do we get the term SDPA(t) (i.e. both

endpoints u, v 2 A) ? Since t 2
�
|A|/8, |A|/4

⇤
=) 4t  |A| < 8t. There can be at most one such

|A| containing both u, v, so LHS is charged only once (of course the RHS is charged xt

ij
wij for that

edge). To see why A is unique, suppose we had two such clusters |A1|, |A2| that both contained u, v

with their sizes |A1|, |A2| 2 [4t, 8t). Since we have a hierarchical decomposition, one of A1, A2 is

ancestor of the other. Let’s say, wlog, A1 is ancestor of A2. But then, all of its descendants are of

size below the range [4t, 8t) due to the 4-partition, which is a contradiction.

Remark 5 In the above analysis, whenever we write |A|/4 we mean b|A|/4c. However, this will not

a↵ect the result. Additionally, we used the bound O(SDP-HC), because some extra constants might

be introduced whenever the set A is small (|A| < 8).

Theorem 4.1.10 The cost of the solution produced by the SDP-HC rounding algorithm is within a

factor of O(
p

log n) from the SDP value.

Proof. Using Claim 4.1.9 and (4.11) we get that costHC  O(
p

log n)·SDP-HC.

The case of the generalized cost function

Now, we consider the performance of SDP-HC-gen for the generalized cost function and we show

essentially the same approximation guarantees. We note that the SDP-HC-gen is essentially the

same as SDP-HC where each term in the objective function is multiplied by g(t) = f(t + 1)� f(t).

Formally:

min
n�1X

t=0

g(t)
X

ij2E

xt

ij
wij = min

n�1X

t=0

g(t)
X

ij2E

1

2
kvt

i
� vt

j
k
2

2
wij (SDP-HC-gen)

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 42

We can easily prove the following claim for the generalized cost:

Claim 4.1.11
P

A

P|A|/4

t=|A|/8+1
SDPA(t) · g(t)  O(SDP-HC-gen).

Proof. The proof of the claim is identical to the proof we gave above for Claim 4.1.9 with only

di↵erence being that we need to multiply by g(t) each term.

Theorem 4.1.12 The cost of the solution produced by the SDP-HC-gen rounding algorithm is within

a factor of O(
p

log n · cf) from the SDP value where cf , maxr2{1,...,n}

f(r)

f(r/4)�f(r/8)
.

Proof. Let A be a cluster of size |A| = r and let g(t) = f(t+1)�f(t). We want to compare the cost

of OPT for splitting A with our solution SDPA(t) for levels t = r/8 + 1, ..., r/4. Using (4.10) (once

again costHC(A) is just the cost incurred by the rounding algorithm when we partitioned cluster

A):

costHC(A) = f(r) · w(EA)  O(
p

log n)f(r) · SDPA(r/4) 

 O(
p

log n)
f(r)

f(r/4)� f(r/8)

r/4X

t=r/8+1

SDPA(t) · g(t)  O(
p

log n) · cf

r/4X

t=r/8+1

SDPA(t) · g(t).

Using now Claim 4.1.11 and summing over all clusters A in the hierarchical clustering we get (for

the sum we should substitute r by rA): costHC  O(
p

log n) · cf · SDP-HC-gen.

Remark 6 As in Remark 4, here f should be polynomially growing.

4.1.6 An LP-based O(log n) approximation via spreading metrics

In this section, we present an approximation algorithm with ratio O(log n) based on an LP relax-

ation. The key ingredients for our purposes are the spreading metrics paradigm of [48] and a graph

decomposition lemma by Bartal ([18]).

A similar analysis and a O(log n) approximation guarantee was obtained independently from Roy

and Pokutta [85] who derived a similar Linear Programming formulation based on ultrametrics and

using the idea of sphere growing ([68, 53]) from graph partitioning for the rounding step. They also

performed a series of experiments (on synthetic and real data) which suggest that the hierarchies

found by using their LP formulation and their rounding algorithm are close to the true optimum

(according to the hierarchical clustering cost function) and often have better projections into flat

clusters than the standard linkage based algorithms or the k-means algorithm.

Bartal’s decomposition

Bartal presented a graph decomposition lemma and used it in order to prove an O(log n) approxi-

mation guarantee for the spreading metrics paradigm in undirected graphs; thus, he improved the

results for many problems considered in [48]. How does the decomposition work? At a high level,

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 43

it tries to find a low diameter cluster within the graph, such that the weight of the cut created is

small with respect to the weight of the cluster. The decomposition is essentially based on a careful

implementation of the decomposition of [53]. In what follows, we state Bartal’s improved approxi-

mation guarantee, summarized in the following theorem, and then briefly highlight the main steps

in achieving it; proofs can be found in [18].

Theorem 4.1.13 There exists an O(log n) approximation for problems in the spreading metrics

paradigm.

We first need to introduce some notation, before explaining the main steps of the proof. Let G =

(V, E) be an undirected graph with two weight functions w, l : E ! R+. We interpret l(e) to be

the length of the edge e, and the distance d(u, v) between pairs of vertices u, v in the graph, is

determined by the length of the shortest path between them. Given a subset S ✓ V , G(S) denotes

the subgraph of G induced by S. Given partition (S, S̄), let �(S) = {(u, v) 2 E; u 2 S, v 2 S̄}

and cut(S) =
P

e2�(S)
w(e). Given a subgraph H = (VH , EH) of G, let dH denote the distance

in H, let �(H) denote the diameter of H, and � = �(G). We also define the volume of H,

�(H) =
P

e2EH
w(e)l(e).

Informally, the first step needed is to find in G, a partition (S, S̄) which is “good”, i.e. with low cut

value cut(S) with respect to a generalized notion of its volume. The decomposition becomes useful

when it is applied recursively. Note, that this is particularly important for our main application

which is hierarchical clustering. This gives rise to a recursive approach where we find a good cut,

creating two subgraphs and then recuse on each of them. Towards this direction, for the second step

needed, we focus on applications which are associated with a cost function cost over subgraphs bG of

G, that is nonnegative, 0 on singletons and obeys the following natural recursion rule:

cost(bG)  cost(bG(S)) + cost(bG(S̄)) + �(bG) · cut(S). (4.12)

Lemma 4.1.14 Any cost function defined by the above recursion rule obeys cost(G)  O(log(�/�0))·

�(G), where � = �(G) and �0 is the minimum value of �(bG) on non-singleton subgraphs bG.

Finally, we can obtain a O(log n) approximation bound (depending only on n), by modifying the

above lemma slightly, by associating a volume �(G)/n with the nodes, like in [53]. This ensures that

�0 � �(G)/n and by substituting we get what we want:

Lemma 4.1.15 The function defined by the above recursion rule obeys cost(G)  O(log n) · �(G).

Now we turn our attention to the connection with the spreading metrics paradigm. Having the

definition of a spreading metric in mind (see Section 4.1.6) and the previous three steps, we may

obtain Theorem 4.1.13. For details see [18].

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 44

LP relaxation and the Spreading Metrics paradigm

We prove here that the hierarchical clustering objective function defined above falls into the divide

and conquer approximation algorithms via spreading metrics paradigm of [48].

The spreading metric paradigm applies to minimization problems on undirected graphs G =

(V, E) with edge weights w(e) � 1. We also have an auxiliary graph H and a scaler function on

subgraphs of H (e.g. size of the components of H). A decomposition tree T is a tree with nodes

corresponding to non-overlapping subsets of V , forming a recursive partition of the nodes V . For

a node t of T , we denote by Vt the set of vertices in the subtree rooted at t. Associated are the

subgraphs Gt, Ht induced by Vt. Let Ft be the set of edges that connect vertices that belong to

di↵erent children of t, and w(Ft) =
P

e2Ft
w(e). The cost of T is cost(T) =

P
t2T

scaler(Ht) ·w(Ft).

Definition 4.1.1 A spreading metric is a function on the edges of the graph l : E ! R+ satisfying

the following two properties:

1. Lower bound property: The volume of the graph
P

e2E
w(e)l(e) is a lower bound on the optimal

cost.

2. Diameter property: For any U ✓ V and HU , the subgraph of H induced by U , has diameter:

�(U) � scaler(HU)

We closely follow the formulation in [48] for the Linear Arrangement problem, which also falls

into the spreading metrics paradigm, but we make the necessary semantic changes. We need to show

the divide and conquer applicability and the spreading metrics applicability of their result for our

problem.

Firstly, to establish the divide and conquer applicability we consider any binary decomposition

tree T that fully decomposes the problem (we normalize the edge weights by dividing with the

minimum edge weight). Note that there is a 1 � 1 correspondence between the leaves of T and

the vertices of G. The solution to the hierarchical clustering problem that is represented by T

is easily given by the cuts, in G, induced by the internal nodes of T . The cost of the tree T is:

costG(T) =
P

t2T
|Vt|w(Ft), where Vt and Ft are the set of vertices and cut corresponding to the

tree node t and w(Ft) is the total weight of the edges cut at this internal node t. We need to show

that this cost bounds the cost of solutions built up from T . For this we prove that for every tree

node t the cost of the subtree rooted at t, denoted Tt, bounds the cost of solutions built up from Tt

to the hierarchical clustering problem for the subgraph of G induced by the set of vertices Vt. We

prove the claim by induction on the level of the tree nodes. The claim clearly holds for all leaves of

T . Consider an internal tree node t 2 T and denote its two children by tL and tR. By induction

the claim holds for both tL and tR. The solution represented by Tt is given by concatenating the

solutions represented by TtL
and TtR

. Note that the additional cost is at most |Vt| times the capacity

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 45

of the cut Ft that separates VtL
from VtR

. We get

costG(Tt)  costG(TtL
) + costG(TtR

) + |Vt|w(Ft).

The inductive claim follows.

We now show how to compute the spreading metric that assigns length l(e) to an edge e 2 E of

the graph. Consider the following linear program (LP1):

min
X

e2E

w(e) · l(e) such that: (4.13)

8U ✓ V, 8v 2 V :
X

u2U

distl(u, v) �
1

2
(|U |

2
� 1) (4.14)

8e 2 E : l(e) � 0 (4.15)

In the linear program, we follow the notation that regards l(e) as edge lengths, and distl(u, v) is the

length of the shortest path from u to v. We will refer to constraint (4.14) as the spreading constraint.

The linear program can be solved in polynomial time since we can construct a separation oracle. In

order to verify that the spreading constraint (4.14) is satisfied, for each vertex v, we sort the vertices

in V in increasing order of distance distl(u, v) and verify the spreading constraint for all prefixes U

of this sorted order.

Lemma 4.1.16 Let l(e) denote a feasible solution of the linear program. For every U ✓ V with

(|U | > 1), and for every vertex v 2 U there is a vertex u 2 U for which distl(u, v) �
1

2
(|U |� 1).

Proof. The average distance of a node u 2 U �{v} from v is greater than 1

2
(|U |�1), because of the

constraint corresponding to U and v. Therefore, there exists a vertex u 2 U whose distance from v

is at least the average distance from v, and the lemma follows, since distl(u, v) �
1

2
(|U |� 1).

Note that the previous lemma comes short of the diameter guarantee by a factor of 2: while the

diameter guarantee requires that the diameter of a subset U be greater than |U |, the proven bound

is only |U |/2. However, this only a↵ects the constant in the approximation factor. In the next

lemma, we prove that the volume of an optimal solution of the linear program satisfies the lower

bound property.

Lemma 4.1.17 The cost of an optimal solution of the linear program is a lower bound on the cost

of an optimal hierarchical clustering of G.

Proof. Consider any binary hierarchical clustering given by the sequence of cuts in the decom-

position tree T and define l(e) = |leaves(T [i _ j])| for edge e = (i, j) 2 E. It is easy to see that

this is indeed a metric and it is actually an ultrametric. We show that l(e) is a feasible solution for

the linear program above. The cost
P

e2E
w(e) · l(e) equals the cost of the hierarchical clustering

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 46

induced by the tree T . The feasibility of l(e) is proved as follows: Consider a subset U ✓ V and a

vertex v 2 U . We observe that the average distance from v of the vertices in U will be minimized

when U is “packed around” v, meaning that with each cut we peel o↵ only one vertex at a time.

We have that:

X

u2U

distl(u, v) = 2 + 3 + ... + |U | �
1

2
(|U |

2
� 2)

Hence, l(·) is a feasible solution and the lemma follows.

With the above two lemmas we have proved that our hierarchical clustering objective function falls

into the spreading metrics paradigm, because it satisfies the lower bound property and the diameter

property. Using Bartal’s decomposition and specifically Theorem 4.1.13 from Section 4.1.6 we get

an approximation guarantee of O(log n):

Theorem 4.1.18 There exists an O(log n) approximation for the hierarchical clustering objective

function defined by (1.1).

4.1.7 Hardness via Min Linear Arrangement and Small Set Expansion

SSE and hardness amplification

Given a graph G(V, E), define the following quantities for non-empty subsets S ⇢ V : normalized

set size µ(S) , |S|/|V |, and edge expansion �G(S) , |E(S, V \ S)|P
i2S di

(here di is the degree of i). The

Small Set Expansion hypothesis was introduced by Raghavendra and Steurer [82].

Problem 4.1.7.1 (Small-Set Expansion(⌘, �)) Given a regular graph G(V, E), distinguish be-

tween the following two cases:

Yes: There exists a non-expanding set S ✓ V with µ(S) = � and �G(S)  ⌘.

No: All sets S ✓ V with µ(S) = � are highly expanding with �G(S) � 1� ⌘.

Hypothesis 4.1.7.1 (Hardness of approximating Small-Set Expansion) For all ⌘ > 0, there

exists � > 0 such that the promise problem Small-Set Expansion(⌘, �) is NP-hard.

The authors of [82] showed that the Small Set Expansion Hypothesis implies the Unique Games

Conjecture of Khot [65]. A decision problem is said to be SSE-hard if Small-Set Expansion(⌘, �)

reduces to it by a polynomial time reduction for some constant ⌘ and all � > 0. Raghavendra,

Steurer and Tulsiani [83] showed the following hardness amplification result for graph expansion

(see Preliminaries for Gaussian Graphs definitions):

Theorem 4.1.19 For all q 2 N and ✏, � > 0, it is SSE-hard to distinguish between the following

two cases for a given graph H = (VH , EH):

Yes: There exist q disjoint sets S1, ..., Sq ✓ VH satisfying for all l 2 [q]: µ(Sl) = 1/q and �H(Sl) 

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 47

✏ + o(✏).

No: For all sets S ✓ VH : �H(S) � �G(1�✏/2)(µ(S)) � �/µ(S), where �G(1�✏/2)(µ(S)) is the

expansion of sets of volume µ(S) in the infinite Gaussian graph G(1� ✏/2).

Hierarchical Clustering Inapproximability based on SSE

Now we are ready to prove our SSE hardness result. Our proof follows the argument of [83] for

establishing the hardness of Minimum Linear Arrangement. We prove the following:

Theorem 4.1.20 (Hardness of Hierarchical Clustering). For every ✏ > 0, it is SSE-hard to

distinguish between the following two cases for a given graph G = (V, E), with |V | = n:

Yes: There exists a decomposition tree T of the graph such that costG(T)  ✏n|E|

No: For any decomposition tree T of the graph costG(T) � c
p

✏n|E|.

Proof. We apply Theorem 4.1.19 for the following values: q = d2/✏e, ✏0 = ✏/3 and � = ✏. We need

to first handle the Yes case. We get that the vertices can be divided into sets S1, S2, ..., Sq, each

having size n/q = n✏/2, such that at most ✏0 + o(✏0) fraction of edges leave the sets (i.e. go across

sets). Now consider the hierarchical clustering solution that first partitions the vertices into the sets

S1, S2, ..., Sq and then partitions each Si arbitrarily. Edges inside the set Si contribute at most |Si|

to the objective function and this is |Si| = n/q = ✏n/2. Moreover, edges whose endpoints are in

di↵erent sets will have contribution at most n; but there are at most ✏/2 fraction of such edges and

so the overall objective for this hierarchical clustering solution is at most ✏n|E|.

Now, we handle the No case by using the argument of [83] for Minimum Linear Arrangement

that follows from an observation of [44] and the fact that the objective function of Minimum Linear

Arrangement is always less than the cost of Hierarchical Clustering. To see the latter, observe

that when we have a hierarchical clustering tree T , if we consider the ordering of the vertices (leaves)

as in the DFS order, then the stretch of an edge (u, v) that is cut, can be at most the size of the

subtree which corresponds to that edge and this is exactly the quantity: |leaves(T [u _ v])|. Since

we know ([83, 44]) that in the No case, for all orderings ⇡ : V ! [n],E(u,v)⇠E [|⇡(u)�⇡(v)|] � c
p

✏n,

it immediately follows that: costG(T) � c
p

✏n|E|.

4.2 Maximization HC: Variations on a Theme

In this part of the thesis, we focus on the two maximization objectives, introduced recently to give

insight into the performance of average-linkage clustering: the similarity based HC objective pro-

posed by [78] and the dissimilarity based HC objective proposed by [39]. In both cases, we present

tight counterexamples showing that average-linkage cannot obtain better than 1

3
and 2

3
approxi-

mations respectively (in the worst-case), settling an open question raised in [78]. This matches the

approximation ratio of a random solution, raising a natural question: can we beat average-linkage for

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 48

these objectives? We answer this in the a�rmative, giving two new algorithms based on semidefinite

programming with provably better guarantees.

In particular, two recent (and independent) works took this objective function viewpoint to

understand the performance of Average-Linkage. Recall the two maximization objectives, the first

with similarity weights

T ⇤ = argmax
all trees T

X

(i,j)2E

wij · (n� |Tij |) (HC-OBJ-2)

and with dissimilarities:

T ⇤ = argmax
all trees T

X

(i,j)2E

wij · |Tij | (HC-OBJ-3)

For maximizing the similarity-based objective, the first work showed that Average-Linkage obtains

a 1

3
-approximation. Interestingly, for maximizing the dissimilarity-based objective, the second work

also showed that Average-Linkage gives a 2

3
-approximation [39]. These two works helped in under-

standing the performance of Average-Linkage. Here we build along this direction.

Our Contributions. In this paper, we shed further light on these two hierarchical clustering

objectives. Since both of the objectives were recently introduced in the context of explaining the

success of Average-Linkage, and as these objectives are NP-hard to optimize [43], it is natural

to ask how well these objectives can be approximated. Understanding the approximation factors

achievable by other algorithms for these objectives is important in evaluating the explanation for

the performance of Average-Linkage by these works.

It turns out that a random solution to both these optimization problems achieves an approxima-

tion ratio that matches the approximation guarantees established by the above works for Average-

Linkage [78, 39]. In particular, [78] suggest that the performance of Average-Linkage may be strictly

better than that of a random solution. Our first set of results is negative:

In the worst case, the approximation ratio achieved by Average-Linkage is no better than
1

3
for the maximization objective of Moseley and Wang [78] and no better than 2

3
for the

maximization objective of Cohen-Addad et al. [39].

This raises a natural question: is it possible to achieve an approximation factor strictly better

than that achieved by Average-Linkage (also by a random solution) for these two objectives? Or

is it the case that these objectives are approximation resistant (i.e., beating the performance of a

random solution is provably hard)? Our main result here is positive:

We show simple algorithms that achieve a 1

3
+ ✏ approximation for the maximization ob-

jective of [78] and an algorithm that achieves a 2

3
+� approximation for the maximization

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 49

objective of [39], for constants ✏, � > 0.

Our algorithms are conceptually very simple; in the former case, our algorithm is guided by a semidef-

inite programming (SDP) solution that has a vector representation for the hierarchical clustering for

every level of granularity, and uses spreading metric constraints to strengthen the solution. We use

the solution at level n/2 to make a judicious choice of initial partition, followed by a random solution

to refine each piece produced (see section 4.2.3 for details). In the latter case, our algorithm follows

a simple greedy peeling strategy, followed by a max-cut partition (see section 4.2.4 for details).

In addition to shedding light on the two objectives from the point of view of understanding

their approximability, an additional lens with which to view our results is a philosophical one: our

results raise the question about whether these objectives are indeed the right way to measure the

performance of Average-Linkage clustering.

Notations. We abuse notation and use OPT to refer to both the optimum solution and its value for

the HC problem at hand. Similarly, Average� Linkage denotes both the solution produced by the

Average-Linkage algorithm and its objective value. We emphasize that when dealing with similarity

weights, the Average-Linkage merging criterion is to maximize average similarity across the sub-

clusters available to the algorithm for merging, whereas when dealing with dissimilarity weights,

the Average-Linkage merging criterion is to minimize average dissimilarity. We term HC-OBJ-2

as similarity-HC and HC-OBJ-3 as dissimilarity-HC in this paper. We use W to denote the total

weight of the edges in the graph, i.e. W =
P

e2E
we.

We start by describing the constructions of two families of examples proving that the known per-

formance bounds for Average-Linkage for the two objectives, i.e. similarity-HC and dissimilarity-

HC, are tight.

4.2.1 Average-Linkage for similarity-HC is a tight 1
3-approximation

Fact 4.2.1 ([43]) If the graph is a clique with uniform weights for all of the edges, any clustering

tree T obtains exactly the same cost/reward. We occasionally use this fact in this section.

Average-Linkage for similarity-HC is a tight 1

3
-approximation We will provide a construc-

tion where the optimum solution OPT has value ⇡ nW, but where Average-Linkage only gets
1

3
nW (ignoring lower order terms). The construction does two things: 1) Most of the graph’s weight

is inside subclusters containing n2/3 nodes each. So there exists a solution merging almost all the

weight in low levels of the hierarchical decomposition, getting ⇡ nW total value. 2) Average-

Linkage cuts most of the graph’s weight in higher levels of the corresponding tree decomposition

so that according to HC-OBJ-2, the multiplier of the edge weights is small.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 50

Figure 4.4: The tight instance where Average-Linkage is a tight 1

3
-approximation. The graph

has n nodes organized in n1/3 vertical groups of n2/3 vertices. Each vertical group is a clique Kn2/3

on n2/3 nodes and there are n1/3 such groups. Each horizontal group is a clique on n1/3 nodes.
Every edge in the vertical groups has weight 1, whereas every edge in the horizontal groups has
weight 1 + ✏.

Construction of the tight instance. To achieve the above, our example (see Figure 4.4) will

have n nodes and will contain multiple copies of cliques each of which is either a copy of Kn1/3 or

Kn2/3 . In particular, the tight instance consists of n1/3 copies of Kn2/3 with unit weight. With

a slight abuse of notation, we fix an arbitrary ordering 1, 2, . . . , n2/3 for the nodes in each Kn2/3

and refer to them by their corresponding order in each clique. Now we augment this construction

by adding all pairwise edges connecting nodes of the same order across all the Kn2/3 cliques. This

creates n2/3 additional Kn1/3 cliques and we fix the weight of these additional edges to be 1 + ✏ (for

any small constant ✏ > 0). Note that the total number of nodes is n2/3
· n1/3 = n and that the

total weight of the graph is W = 1

2
n2/3

· (n2/3
� 1) · n1/3

· 1 + 1

2
n1/3

· (n1/3
� 1) · n2/3

· (1 + ✏) =
1

2
n5/3 + O(n4/3).

The following two lemmas compare OPT to Average-Linkage (proofs are deferred to Ap-

pendix A.3).

Lemma 4.2.1 In the above instance, the optimum obtains an objective of at least 1

2
n8/3
�O(n7/3) ⇡

nW.

Lemma 4.2.2 In the above instance, Average-Linkage gets at most 1

6
n8/3 + O(n7/3) ⇡ 1

3
nW.

Combining these lemmas, we settle a open question raised in [78]:

Proposition 4.2.2 There exists an instance for which Average-Linkage is a 1

3
+o(1)-approximation

for the similarity-HC objective (HC-OBJ-2) introduced in [78].

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 51

4.2.2 Average-Linkage for dissimilarity-HC is a tight 2
3-approximation

When the pairwise scores denote dissimilarities, we focus on HC-OBJ-3. [39] showed that running

Average-Linkage gives a 1

2
-approximation, and a slight modification of their proof (see journal

version of [39]) gives an improved 2

3
-approximation bound. Here we show that the 2

3
ratio is actually

tight.

Construction of the tight instance. Let the number of nodes n be even. We start with the

complete bipartite graph Kn/2,n/2 with unit weights (let L, R denote the two sides of the graph).

We then remove any perfect matching M crossing the (L, R) cut (see Figure 4.5). Note that the

total weight of the edges is W = n

2
·
n

2
�

n

2
⇡

1

4
n2.

The following two lemmas compare OPT to Average-Linkage (proofs are deferred to Ap-

pendix A.3).

Figure 4.5: The tight instance where Average� Linkage is a tight 2

3
-approximation. The graph is

a complete bipartite graph where we removed a perfect matching M denoted with the red dashed
edges. After one step of Average� Linkage , the instance is a clique on n

2
supernodes of size 2 with

doubled edge weights.

Lemma 4.2.3 In the above instance, the optimum HC decomposition obtains an objective value of

at least 1

4
n3
�O(n2) ⇡ nW.

Lemma 4.2.4 In the above instance, Average-Linkage gets at most 1

6
n3
⇡

2

3
nW.

Combining these lemmas, we get the following result:

Proposition 4.2.3 There exists an instance for which Average-Linkage is a 2

3
+o(1)-approximation

for the dissimilarity-HC objective (HC-OBJ-3), introduced by [39].

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 52

4.2.3 Beating Average Linkage via SDP for the Moseley-Wang HC Ob-

jective

In this section, we aim to design approximation algorithms for the similarity-based hierarchical

clustering, i.e., creating a hierarchical decomposition that approximately maximizes the objective

function HC-OBJ-2. To this end, we formulate a semidefinite programming (SDP) relaxation for

the problem. We show that using a well chosen set of vectors returned by this SDP and a simple

hyperplane rounding scheme, we can beat the average-linkage which is a tight 1

3
-approximation

algorithm. The main challenge in the analysis of the rounding scheme is in lower bounding the

probability of certain events related to the triplets of vertices and the order in which they get

separated; we do this by exploiting the specific geometry of the vectors in the SDP optimal solution,

and with the help of our imposed spreading metric constraints in this SDP relaxation.

SDP relaxation for similarity-HC

Suppose n datapoints with similarity weights {wij} are given. An alternative view of a hierarchical

clustering of these points is a collection of partitions of the points at di↵erent levels t = n� 1, . . . , 1,

where the partition at level t consists of all the maximal clusters of size at most t. Given this view,

we can rewrite the similarity-HC objective function (HC-OBJ-2) as following.

X

(i,j)2E

wij(n� |Tij |) =
n�1X

t=1

X

(i,j)2E

wij · 1{i and j are not separated at level t’s partitioning}

Now, given the optimal hierarchical clustering, consider a vector assignment where at every level

t = 1, .., n � 1 the same unit vectors are assigned to all the nodes in the same maximal cluster,

while the assigned vectors to di↵erent clusters are chosen to be orthogonal. Let {v(t)

i
} be the set

of assigned vectors. Clearly, the contribution of an edge wij at level t can be alternatively written

as wij(v
(t)

i
· v(t)

j
). This observation suggests a relaxation through semidefinite programming/vector

programming.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 53

Proposition 4.2.4 The following SDP is a relaxation for the similarity-HC problem (6.4).

maximize
n�1X

t=1

X

(i,j)2E

wij(1� x(t)

ij
)

subject to x(t)

ij
=

1

2
kv(t)

i
� v(t)

j
k
2

2
, 8(i, j) 2 E, t 2 [1 : n� 1]

X

j2V :j 6=i

x(t)

ij
� n� t, 8i 2 V, t 2 [1 : n� 1] (spreading constraints)

x(t+1)

ij
 x(t)

ij
, x(1)

ij
= 1 8(i, j) 2 E, t 2 [1 : n� 1] (monotonicity constraints)

v(t)

i
2 Rn, kv(t)

i
k
2

2
= 1, 8i 2 V, t 2 [1 : n� 1]

(HC-SDP)

In an integral HC decomposition, each node in a maximal cluster of size at most t has been

separated from at least n � t vertices at level t (i.e. all of the nodes outside of this cluster). We

therefore add the constraints
P

j
x(t)

ij
� n� t, termed as the spreading constraints. Intuitively, they

force the SDP to choose vectors that are somewhat separated, thus preventing it from cheating by

assigning identical vectors. Finally, monotonocity constraints ensure monotonicty of the separation

from top to bottom.

Combining SDP rounding and random to beat average-linkage

Suppose OPT-SDP and OPT denote the optimum solution of the SDP relaxation (HC-SDP) and the

optimum integral solution of the similarity-HC objective (HC-OBJ-2) respectively. Our goal is to

beat the 1

3
approximation ratio attained by Average-Linkage . We will consider two simple

algorithms for the HC problem. The first algorithm, “random always”, cuts each cluster recursively

and uniformly at random until it reaches to singletons. The second algorithm, “SDP first, random

next”, uses the semidefinite program HC-SDP and hyperplane rounding for determining the first

cut, and then it picks a random cut for each of the later clusters until it reaches to singletons.

As it is also known ([78]), recursively performing random cuts will yield an HC solution with

expected value exactly equal to 1

3
(n � 2)W, where W ,P

(i,j)2E
wij . An initial idea is that when

there is a gap between OPT and the quantity (n � 2)W, i.e. when OPT < (1 � ✏1)(n � 2)W for

some small constant ✏1 > 0, then “random always” already attains an approximation guarantee of
1

3(1�✏1)
> 1

3
. The name of the game is then to come up with a good approximation algorithm in the

case where OPT is actually pretty large, close to (n� 2)W. Interestingly, a suitable initial cut can be

found by exploiting the SDP relaxation in this case, which can be then used to guide the “random

always” algorithm.

Theorem 4.2.5 The best of the “ SDP first, random next” (Algorithm 5) and “ random always”

(Algorithm 4) is a randomized ↵-approximation algorithm for maximizing the similarity-HC objective

for hierarchical clustering, where ↵ = 0.336379 > 1

3
.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 54

Algorithm 4 Random Always

1: input: G = (V, E).
2: if |V | = 1 then
3: Return the singleton vertex as the only cluster.
4: else
5: Randomly partition the set of vertices into S and S̄.
6: Recursively run “random always” on GS and GS̄ to get clusters CS and CS̄ .
7: Return the clusters S,S̄, CS and CS̄ .
8: end if

Algorithm 5 SDP First, Random Next

1: input: G = (V, E) and (similarity) weights {wij}(i,j)2E .
2: Solve the SDP relaxation HC-SDP to get an optimum assignment {xt

ij
}(i,j)2E, t=1,...,n�1.

3: Let x⇤

ij
= x(bn/2c�1)

ij
and v⇤

i
= v(bn/2c�1)

i
be the optimal solution restricted to level t = bn/2c�1.

4: Draw v0 uniformly at random from unit sphere, and let S = {i 2 V : v⇤

i
· v0 � 0}.

5: Partition the vertices into S and S̄ = V \ S.
6: Run “random always” (Algorithm 4) on S and S̄ to get clusters CS and CS̄ .
7: Return the clusters S,S̄, CS and CS̄ .

Analysis (Proof of Theorem 4.2.5)

We start by decomposing the similarity-HC objective as a summation over contributions of di↵erent

triplets of vertices i, j and k, where (i, j) 2 E and k 6= i, j. Accordingly, HC-OBJ-2 can be rewritten

as:

X

(i,j)2E

wij (n� |Tij |) =
X

(i,j)2E

wij |non-leaves(Tij)| =
X

(i,j)2E

X

k 6=i,j

wij1{k is not a leaf of Tij}

(4.16)

The vertex k does not belong to the leaves of Tij if and only if at some point during the execution of

the algorithm, k gets separated from i and j, while i and j still remain in the same cluster. Suppose

T (1) and T (2) denote the HC tree returned by Algorithm 4 and Algorithm 5. Moreover, let the

random variables Zi,j,k and Yi,j,k denote the contributions of the edge (i, j) and vertex k 6= i, j to

the objective value of Algorithm 4 and Algorithm 5 respectively, i.e.,

Zi,j,k , wij1{k is a non-leaf of T (1)

ij
} and Yi,j,k , wij1{k is a non-leaf of T (2)

ij
}

Moreover, let Yi,j =
P

k 6=i,j
Yi,j,k and Zi,j =

P
k 6=i,j

Zi,j,k. Let OPT be the optimal value of the HC

objective. Fix ✏1 > 0 and consider two cases.

Remark 7 Already, from the formulation of the Moseley-Wang objective, as triplets we see that the

old biology problem of rooted triplets consistency is a generalization of Moseley-Wang optimization.

This actually gives a PTAS for dense instances of HC [41].

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 55

Case 1: OPT < (1�✏1)(n�2)
P

(i,j)2E
wij . By a simple argument, we claim that E [Zi,j,k] = 1

3
wij .

Given this claim, the expected objective value of Algorithm 4 is at least n�2

3

P
(i,j)2E

wij . Moreover,

OPT  (n � 2)
P

(i,j)2E
wij , and hence Algorithm 4 obtains 1

3(1�✏1)
fraction of OPT in this case. To

see why the claim holds, think of each random cut as flipping an independent unbiased coin for

each vertex, and then placing the vertex on either sides of the cut based on the outcome of its

coin. Now, look at the sequence of the coin flips of i, j and k during the execution of Algorithm 4.

We want to find the probability of the event that for the first time the three sequences are not

matched, but i’s sequence and j’s sequence are still matched. Fixing i’s sequence, the probability

that all three are always matched is
P

1

i=1
(1/4)i = 1/3. Due to the symmetry, the rest of the

probability will be divided equally between our target event and the event that for the first time

these three sequences are not matched, but still i’s sequence and k’s sequence are matched. So,

k is not a leaf of T (1)

ij
= 1/3, which proves the claim.

Case 2: OPT � (n � 2)(1 � ✏1)
P

(i,j)2E
wij . In this case, we want to find a lower bound on the

objective value of Algorithm 5. To this end, we show how to bound E [Yi,j] from below for a large

enough fraction of edge weights. Consider the following events:

Ei,j , {i and j remain together after the first cut},

Ei,j,k , {i, j and k remain together after the first cut},

Ei,j|k , {i, j remain together and k gets separated after the first cut}

We can rewrite E [Yi,j,k] as follows.

E [Yi,j,k] = E [Yi,j1{Ei,j}] = E [Yi,j,k1{Ei,j,k}] + E
⇥
Yi,j,k1{Ei,j|k}

⇤

= E [Yi,j,k|Ei,j,k] Ei,j,k + E
⇥
Yi,j,k|Ei,j|k

⇤
Ei,j|k

Now, note that E
⇥
Yi,j,k|Ei,j|k

⇤
= wij , as k has been separated from i and j after the first cut.

Moreover, k is a non-leaf of T (2)

ij
|Ei,j,k = 1/3, as Algorithm 5 performs random cuts after the first

cut and the previous argument for analyzing Zi,j,k will be applied. So, E [Yi,j,k|Ei,j,k] = wij/3.

Therefore, we have:

E [Yi,j,k] =
wij

3
Ei,j,k + wijEi,j|k =

wij

3

�
Ei,j,k + Ei,j|k + 2Ei,j|k

�
=

wij

3

�
Ei,j + 2Ei,j|k

�
,

and hence we have:

E [Yi,j] =
X

k 6=i,j

E [Yi,j,k] =
wij

3

0

@(n� 2)Ei,j + 2
X

k 6=i,j

Ei,j|k

1

A (4.17)

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 56

Fix ✏2 > 0. Consider all edges for which x⇤

ij
= x(bn/2c�1)

ij
 ✏2 (denoted by H ✓ E). For each

(i, j) 2 H, by applying the basics of hyperplane rounding, e.g. in [55], we have:

Ei,j = (v⇤

i
· v0)(v

⇤

j
· v0) � 0 = 1� ✓ij/⇡,

where ✓ij is defined to be the angle between the vectors v⇤

i
and v⇤

j
, i.e. ✓i,j = cos�1(v⇤

i
· v⇤

j
) =

cos�1(1� x⇤

ij
). Now, it is clear that ✓ij  ✓̄ for edges in H, where 1� cos(✓̄) = ✏2. Therefore,

Ei,j � 1� ✓̄/⇡, 8(i, j) 2 H (4.18)

To bound
P

k 6=i,j
Ei,j|k for every edge (i, j) 2 H, we first find an explicit closed-form for each

probability term. Interestingly, despite the complicated nature of this calculation, our method is

simple and is not relaying on any three-dimensional geometry. Hence, it might be of independent

interest.

Remark 8 To calculate an explicit closed-form for the probability of the event Ei,j|k, three involved

correlated random variables v⇤

i
·v0, v⇤

j
·v0 and v⇤

k
·v0 need to be considered. In the direct approach,

e.g. à la [55], we need to look at the unit projections of these three vectors and v0 onto the span of

v⇤

i
, v⇤

j
, and v⇤

k
(hence a three-dimensional representation for each). Suppose ṽ0 be the projection

of v0 onto the mentioned three-dimensional space. As the entries of v0 are jointly Gaussian, ṽ0

is indeed a uniformly random point from the three-dimensional sphere. Now, finding the probability

of the event that i and j are on one side and k is on the other side of the hyperplane with normal

vector ṽ0 involves a complicated calculation in this three dimensional geometry.

Lemma 4.2.5 For every triplet of vertices i,j and k, Ei,j|k = ✓ik+✓jk�✓ij

2⇡

Proof. We start by the following key observation, which relates the quantities Ei,j|k, Ei,k|j and Ek,j|i

to the original separation probabilities of a hyperplane rounding scheme:

1. Ei,k|j + Ej,k|i = 1� Ei,j = ✓ij

⇡

2. Ei,j|k + Ei,k|j = 1� Ej,k = ✓jk

⇡

3. Ej,k|i + Ei,j|k = 1� Ei,k = ✓ik

⇡

Solving the above 3 ⇥ 3 system, we can obtain the desired closed-form expressions for Ei,j|k, Ei,k|j

and Ek,j|i in terms of the angles between the vectors:

Ei,j|k = ✓ik+✓jk�✓ij

2⇡
, Ei,k|j = ✓ij+✓jk�✓ik

2⇡
, Ek,j|i = ✓ik+✓ij�✓jk

2⇡

This concludes the proof.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 57

In the next step of the analysis, we find a worst-case lower-bound for
P

k 6=i,j
Ei,j|k through a

factor revealing program. More accurately, we set up a minimization problem where the objective

function is equal to
P

k 6=i,j
Ei,j|k. For the constraints, note that due to the spreading constraints of

the similarity-HC SDP relaxation (HC-SDP) for vertices i and j, we have

X

k 6=i

x⇤

ik
� n� bn/2c+ 1 ,

X

k 6=j

x⇤

jk
� n� bn/2c+ 1

and therefore
P

k 6=i
cos(✓ik)  n/2 � 1 and

P
k 6=j

cos(✓jk)  n/2 � 1. Now, by applying Theo-

rem 4.2.5, we can lower bound
P

k 6=i,j
Ei,j|k by the optimal solution of the following optimization

problem:

minimize
1

2⇡

X

k 6=i,j

�
✓ik + ✓jk � ✓̄

�

subject to
X

k 6=i

cos(✓ik)  n/2� 1,

X

k 6=j

cos(✓jk)  n/2� 1,

0  ✓ik 
⇡

2
, 0  ✓jk 

⇡

2
8k

(Plower-bound)

Note that we restrict our attention to 0  ✓ik, ✓jk  ⇡/2, simply because in HC-SDP we force

x(t)

ij
 1, and hence v⇤

i
· v⇤

j
� 0 for all i, j 2 V . We now have this lemma, whose proof is deferred to

Appendix A.4.

Lemma 4.2.6 The optimal solution of the factor revealing program Plower-bound is lower-bounded

by

(n� 2)
⇣

1

4
�

✓̄

2⇡

⌘

By combining eq. (4.17) and eq. (4.18) with Theorem 4.2.6, we have:

E [OBJALG2] �
X

(i,j)2H

E [Yi,j] � (n� 2)

0

@
X

(i,j)2H

wij

1

A
✓

1

3
·

✓
1�

✓̄

⇡

◆
+

2

3
·

✓
1

4
�

✓̄

2⇡

◆◆

� (n� 2)

0

@
X

(i,j)2H

wij

1

A
✓

1

2
�

2✓̄

3⇡

◆
(4.19)

We finally bound the total weight of edges in H. Note that for an edge (i, j) /2 H, x⇤

ij
= x(bn/2c�1)

ij
>

✏2. Therefore, due to the monotonicity constraint in HC-SDP, x(t)

ij
> ✏2, 81  t  bn/2c � 1. Now

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 58

we have:

OPT-SDP =
n�1X

t=1

X

(i,j)2E

wij(1� x(t)

ij
)  (n� 2)

X

(i,j)2E

wij �

bn/2c�1X

t=1

X

(i,j)2E

wijx
(t)

ij

 (n� 2)
X

(i,j)2E

wij �
✏2(n� 2)

2
·

X

(i,j)2E\H

wij

On the other hand, based on the assumption of Case 2, we know

OPT-SDP � OPT � (n� 2)(1� ✏1)
X

(i,j)2E

wij (4.20)

By rearranging the terms we have
P

(i,j)2H
wij � (1 � 2✏1

✏2
)
P

(i,j)2E
wij . Now, combined with

Equation (4.19), we can show Algorithm 5 obtains (1� 2✏1
✏2

)(1
2
�

2 cos
�1

(1�✏2)

3⇡
) fraction of OPT.

By balancing out the two cases, finding the optimal ✏1 as a function of ✏2, and finally by setting

✏2 ⇡ 0.139 we get the desired approximation factor of ⇡ 0.336379. For more details, refer to

Appendix A.4.

4.2.4 Beating Average Linkage via MaxCut for Dissimilarity HC

In this section we focus on the dissimilarity-HC objective (HC-OBJ-3). As demonstrated in Sec-

tion 4.2.2, Average-Linkage fails to obtain better than 2

3
fraction of the optimum in the worst-

case. Similarly, “random always” fails to beat this approximation ratio, simply because its objective

value on any instance is exactly equal to 2

3
nW, while in a bipartite graph the optimum dissimilarity-

HC objective is equal to nW. Therefore, one natural question to ask is if there exists a polynomial

time algorithm that can beat the 2

3
approximation factor. We answer this question in the a�rmative

by providing a simple algorithm.

The “Peel-o↵ First, Max-cut Next” Algorithm

By looking at the structure of the dissimilarity-HC objective function in eq. (HC-OBJ-3), it is clear

that the top-level cuts of the tree, i.e. those corresponding to clusters of larger sizes, have considerable

contributions to the objective function. For example, consider a simple algorithm that starts with

a random cut and then forms the rest of the tree arbitrarily. This algorithm can still obtain an

objective value of 1

2
nW. Inspired by this observation, a tempting idea to beat the approximation

factor of 2

3
is to start with an approximation algorithm for the max-cut, e.g. [55], and then construct

the rest of the hierarchical tree (probably by random cutting or by continuing with the same max-cut

algorithm).

However, this naive approach fails because of the following instance. Suppose we have a graph

with an embedded clique of size ✏n (for an arbitrarily small ✏ > 0) and the rest of the weights are

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 59

zero. The optimum dissimilarity-HC solution clearly peels o↵ vertices of the clique one by one, and

obtains an objective value of at least n(1� ✏)W. However, the “recursive max-cut” or the “max-cut

first, random next” both cut the clique into two (almost) symmetric halves at each iteration, and

obtain an objective value of at most

objective-value 

✓
n

W

2
+ ✏n

W

4

◆
+

✓
n

W

8
+ ✏n

W

16

◆
+

✓
n

W

32
+ ✏n

W

64

◆
+ . . . 

2 + ✏

3
nW

The above example suggests a natural modification to our idea, i.e. to first peel o↵ high weighted

degree vertices, and then use a max-cut algorithm. Intuitively, if in such a pre-processed instance

the optimum objective value of the dissimilarity-HC is close to nW, then there should exist a

considerably large cut. This large cut can be detected by an approximate max-cut algorithm, and

will provide a large enough objective value for the dissimilarity-HC if used as a top-level cut in the

final hierarchical clustering tree. If there is a constant gap between the optimum and nW, one can

run “random always” and already get an approximation factor strictly better than 2

3
. Formally, we

propose “peel-o↵ first, max-cut next” (Algorithm 6) and show how the better of this algorithm and

the “random always” (Algorithm 4) beats the 2

3
-approximation factor by a small constant.

Algorithm 6 Peel-o↵ First, Max-cut Next

1: input: G = (V, E), (dissimilarity) weights {wij}(i,j)2E , and parameter � > 0.
2: Initialize hierarchical clustering tree T ;.
3: Set the peeling-o↵ threshold to be ⌧ = 2W

n
· �.

4: Ṽ V and Ẽ E.
5: while 9 a vertex v 2 Ṽ such that

X

u2V :(v,u)2E

wvu > ⌧ do

6: Update the HC binary tree T by adding the cut ({v}, Ṽ \ {v}) to the tree.
7: Ṽ Ṽ \ {v} and Ẽ Ẽ \ {e 2 E : e incident to v}.
8: end while
9: Run [55] for max-cut on G̃ = (Ṽ , Ẽ). {! max-cutting phase.}

10: Let the resulting cut be (S, Ṽ \ S), and update the HC tree T by adding this cut to the tree.
11: Run “random always” (Algorithm 4) on S and Ṽ \ S. Add the resulting binary trees to T .
12: Return the tree T .

Theorem 4.2.6 There exists a choice of � > 0 so that the best of “peel-o↵ first, max-cut next” with

parameter � (Algorithm 6) and “ random always” (Algorithm 4) is an ↵-approximation algorithm

for maximizing the dissimilarity-HC objective, where ↵ = 0.667078 > 2

3
.

Analysis (Proof of Theorem 4.2.6)

Fix a parameter ✏. Let OPT be the optimal objective value of the dissimilarity-HC. Similar to the

proof of Theorem 4.2.5, consider two cases:

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 60

Case 1: OPT < (1 � ✏)nW. A simple argument (refer to the proof of Theorem 4.2.5) shows that

the expected objective value of Algorithm 4 is exactly equal to 2

3
nW in this case, and therefore it

obtains 2

3(1�✏)
fraction of OPT (for an exposition of this proof, we refer the reader to 35)

Case 2: OPT � (1 � ✏)nW. In this case, let the optimum (binary) HC tree be T ⇤. Fix another

parameter � < 1

2
. The collection of all maximal clusters of size at most n(1� �) forms a partition of

the vertices. Here is a recursive way of looking at this partition: Imagine we start from the root of

T ⇤. Each time the optimum tree performs a binary cut, we consider the two produced clusters (see

Figure 4.6). If any of these clusters has size at most n(1� �), then it is a maximal cluster of size at

most n(1 � �) and, by definition, it will be added to the partition. As � < 1

2
, either both of these

clusters must be of size at most n(1� �), or exactly one of them is smaller than n(1� �) while the

other is strictly larger than n(1 � �). If the latter is true, we recursively follow the tree along the

bigger cluster, i.e. we make the bigger cluster the new root and we iterate. Otherwise, if the former

is true, we stop following the tree as we would have already produced two smaller than n(1 � �)

pieces. We denote the produced sequence of clusters by (L1, R1), . . . , (Lk, Rk), where (Li, Ri) are

the two clusters produced by T ⇤ at the ith split. Without loss of generality we set:

|Li| � n(1� �) > |Ri|, i = 1, . . . , k � 1 and max (|Lk|, |Rk|) < n(1� �)

Based on the above construction, the resulting partition consists of the sets R1, R2, . . . , Rk and

Lk. Note that |Lk| + |Rk| = |Lk�1| � n(1 � �), and therefore the rest of the graph contains

|V \ (Lk [Rk)| = n� |Lk�1|  �n vertices.

Figure 4.6: The layered structure of the optimum tree T ⇤ in Case 2.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 61

OPT value of HC for the optimum solution T ⇤

OPTred contribution of edges with at least one red endpoint in optimum
OPTblue contribution of blue edges in optimum

OPTblue-chain contribution of blue edges (u, ·), u 2 V \ (Lk [Rk) in optimum
OPTblue-cut contribution of blue edges (u, v), u, v 2 Lk [Rk in optimum
ALGpeel objective value gained by our algorithm during peeling-o↵ phase 1
ALGcut objective value gained by our algorithm during max-cutting phase 2

MaxCutblue max-cut value only among blue vertices available to our algorithm in phase 2

Table 4.1: A guide through the di↵erent variable names used in the proof.

Before delving into the proof details for Theorem 4.2.6, we first provide an overview of the proof

highlighting the main ideas.

Proof Sketch: Our algorithm runs in two phases, namely the peeling-o↵ phase and the max-

cutting phase and a list of the symbols involved in the proof is provided in Table 4.1.

Step 1: Even though our algorithm removes vertices one by one during the peeling-o↵ phase

while the optimum tree T ⇤ removes chunks of nodes (i.e. the Ri’s), we will be flexible to ignore

their contributions to OPT by only losing a small factor in the approximation, because these pieces

are small.

Step 2: We want to devise a charging scheme between OPT and ALG. To achieve this, we further

divide ALG = ALGpeel +ALGcut (these are the contributions to the HC objective during the peeling-o↵

and max-cutting phase respectively) and OPT = OPTred +OPTblue. Suppose we mark the vertices that

the algorithm peels o↵ during the first phase as “red” and the rest of the vertices are marked as

“blue”.

Step 3: To take care of OPTred (this is the total contribution of edges with at least one red

endpoint in the objective value of T ⇤), we only use ALGpeel. Note that there can’t be many high

weighted degree vertices, so every vertex removed by ALGpeel had a significant multiplier in the HC

objective. Since, OPTred could only have a multiplier of n we get that ALGpeel � (1 � 2W

n⌧
)OPTred

(see Theorem 4.2.7). From this point on, we can completely ignore red vertices in the analysis.

Step 4: The remaining edges have blue both of their end-points (referred to as blue edges from

now on). Let OPTblue be the total contribution of blue edges in the optimum T ⇤. Dealing with OPTblue

requires more work. We need to further break OPTblue into: OPTblue = OPTblue-chain + OPTblue-cut (the

total contribution of all blue edges with at least one end-point in V \ (Lk [Rk) and the total

contribution of all blue edges with both end-points in Lk [Rk respectively). Note that OPTblue-chain

is negligible because it refers to low weighted degree vertices in small pieces, so OPTblue-chain is a

small fraction of nW (and hence of OPT which is close to nW). See Theorem 4.2.8.

Step 5: Finally, we will use ALGcut to take care of the OPTblue-cut entirely. Actually, ALGcut will

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 62

take care not only for the OPTblue-cut (for now ignore some contribution from w(Lk), w(Rk) because

it is really small), but also at least half of the OPTblue-chain. See Theorem 4.2.10.

The above steps lead us to Theorem 4.2.13 which finishes the proof of Theorem 4.2.6.

Lemma 4.2.7 Let ` denote the number of vertices peeled o↵ during the first phase. Then `  2W

⌧

and also ALGpeel � (1� 2W

n⌧
)OPTred.

Proof. Every vertex that is peeled o↵ during the first phase has weighted degree at least ⌧ . Observe

that ` cannot be larger than 2W

⌧
, simply because the total sum of the weighted degrees is at most

2W . Moreover, every peeled-o↵ vertex u (these are exactly the red vertices) belongs to a cluster of

size at least (n � `) � (n � 2W

⌧
), hence u’s contribution to ALGpeel is at least (n � 2W

⌧
)
P

v2V
wuv.

Note that by the definition of OPTred we have:

OPTred  n ·

X

u is red

X

v2V

wuv

Summing up the contributions of red vertices to ALGpeel:

ALGpeel � (n� 2W

⌧
)
X

u is red

X

v2V

wuv � (1� 2W

n⌧
)OPTred

This concludes the second part of the claim.

We just obtained an upper bound for OPTred in terms of our algorithm’s ALGpeel so we can ignore

from now on the red vertices and turn our attention to OPTblue = OPTblue-chain + OPTblue-cut. The

first step is to upper bound OPTblue-chain:

Lemma 4.2.8 OPTblue-chain  �⌧n2


2��

1�✏
OPT.

Proof. As noted previously, |V \ (Lk [Rk)|  �n, hence there are not that many vertices in

|V \ (Lk [Rk)|. Since any edge that contributes to OPTblue-chain, must have, by definition, at least

one endpoint in |V \ (Lk [Rk)|, there are at most �n such edges and because they are blue, again

by definition, their weighted degree is smaller than ⌧ . Noting that the maximum cluster size is at

most n, we conclude that OPTblue-chain  (�n) · ⌧ · n = �⌧n2 and substituting ⌧ in terms of �, we get

the lemma.

Let w(Lk, Rk) be the the total weight of blue edges crossing the cut (Lk, Rk) and let w(Rk) and

w(Lk) be the total weight of the edges with both end-points in Rk and Lk respectively. An obvious

upper bound that can be derived for OPTblue-cut (recall that this refers only to blue edges), by focusing

on the graph induced by the blue vertices in Lk, Rk, is OPTblue-cut  n(w(Lk, Rk)+w(Lk)+w(Rk)).

After the max-cutting phase is over, we have no further control over the contribution of edges

with both end-points in Lk or both end-points in Rk, so we should better have an upper bound for

their total weights. Informally, since OPT is large (Case 2) and both Lk, Rk have small size, it can’t

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 63

be the case that significant portion of the weight lies inside Lk, Rk, as otherwise OPT would have to

be small (the formal proof is deferred to the Appendix A.5).

Claim 4.2.9 nw(Lk) + nw(Rk) 
✏

�
nW 

✏

(1�✏)�
OPT.

The next lemma starts by a lower bound for the MaxCutblue value, which is the value of the

maximum cut in the graph induced only from the blue vertices available to our algorithm during

its max-cutting phase, i.e. after we have removed the red vertices. Our algorithm will of course get

only a ⇢GW-approximation (⇢GW ⇡ 0.878) to MaxCutblue, since it uses Goemans-Williamson for

max-cut.

Lemma 4.2.10 ALGcut � ⇢GW

�
1� 2W

n⌧

� ⇣
OPTblue-cut �

✏

(1�✏)�
OPT + OPTblue-chain

2

⌘

Proof. As mentioned, we know that nw(Lk, Rk) � OPTblue-cut � nw(Lk)� nw(Rk) � OPTblue-cut �
✏

(1�✏)�
OPT. During the max-cutting phase, the vertices available to our algorithm are all the blue

vertices. These can be divided into two categories relative to the OPT solution. The first category

are blue vertices u 2 Lk [Rk. The second category are blue vertices v 2 V \ (Lk [Rk). Imagine the

following cut (C, C̄) with weight w(C, C̄): focus only on the vertices u of the first category and split

them into two pieces optimally to obtain the maximum cut. Now randomly assign the vertices v of

the second category to the two pieces. This cut (C, C̄) would obtain, by definition, an HC objective

value of:

n · w(C, C̄) � n · w(Lk, Rk) +
OPTblue-chain

2
� OPTblue-cut �

✏

(1�✏)�
OPT +

OPTblue-chain
2

Since MaxCutblue is the optimal cut, it can only be better than w(C, C̄) and hence:

n · MaxCutblue � OPTblue-cut �
✏

(1�✏)�
OPT +

OPTblue-chain
2

We know from Theorem 4.2.7, that at the beginning of the max-cutting phase, our algorithm has

removed at most 2W

⌧
vertices and hence, the cluster size at the point where our algorithm uses the

Goemans-Williamson algorithm is at least (n � 2W

⌧
). The lemma follows since we can only get a

⇢GW approximation to MaxCutblue.

Finally, we are able to combine all the above together into the final comparison between our algo-

rithm’s objective value ALG and the optimum OPT:

Lemma 4.2.11 Let ⌧ = � 2W

n
, � =

p
✏

p
�
. By optimizing for the parameters �, ✏, we get an ↵-

approximation to the dissimilarity-HC objective, where ↵ = 0.667078 > 2

3
.

Proof. The proof involves optimizing for the parameters ✏, �, � and balancing out the two factors

obtained from Case 1 and Case 2. The final equation is:

⇢GW

⇣
1� 1

�

⌘⇣
1� ✏/�

1�✏
�

��

1�✏

⌘
= 2

3(1�✏)

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 64

We defer the details of this proof to the Appendix A.5. This finishes the proof of Theorem 4.2.6.

4.2.5 An improved 0.42-approximation for Moseley-Wang

Here we present polynomial-time 0.4246-approximation algorithms that use Max-Uncut Bisec-

tion as a subroutine for the maximization dual of Dasgupta’s objective. The previous section

presented a 0.336-approximation showing that one can beat the performance of Average-Linkage

(also of a random tree) which achieves 1/3.

Max-Uncut Bisection: This is the complement problem to Min-Cut Bisection (which is

perhaps more standard in the literature), and the goal here is to split the vertices of a weighted graph

into two sets (S, S̄), such that the weight of uncut edges
P

ij2E
wij �

P
i2S,j2S̄

wij is maximized. It

is known that one can achieve at least .8776 of the optimum value in polynomial time [10, 99].

Algorithm 7 HC via Max-Uncut Bisection

1: input: Similarity matrix w 2 Rn⇥n

�0
.

2: Partition the underlying graph on n vertices with edges weighted by w into two parts S and
S̄ using Max-Uncut Bisection as a black box. This creates the top split in the hierarchical
clustering tree.

3: Run Average-Linkage on S and on S̄ to get trees TS and TS̄ .
4: Construct the resulting HC tree by first splitting into (S, S̄), then building trees TS and TS̄ on

the respective sets.

Our main result is:

Theorem 4.2.7 Given an instance of hierarchical clustering, our Algorithm 7 outputs a tree achiev-

ing 4⇢

3(2⇢+1)
�o(1) � .4246 (for ⇢ = 0.8776) of the optimum according to the Moseley-Wang objective,

if a ⇢-approximation for the Max-Uncut Bisection problem is used as a black-box.

Remark: The current best approximation factor achievable for Max-Uncut Bisection in poly-

nomial time is ⇢ = 0.8776. This makes our analysis almost tight, since one can’t get better than

.444 even by using an exact Max-Uncut Bisection algorithm (with ⇢ = 1).

Remark: While writing this thesis, a follow-up work by Alon et al. [5] showed that the same

algorithm we presented here actually attains a 2

3
⇢ = 0.585 approximation to the Moseley-Wang

objective.

High-level Overview of Proof

Before delving into the technical details of the main proof, we present our high-level strategy through

a series of 4 main steps:

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 65

Step 1: Consider a binary2 tree T
⇤ corresponding to the optimal solution for the hierarchical

clustering problem and let OPT = F
+(T ⇤) be the value of the objective function for this tree. Note

that there exists a subtree cT ⇤ in this tree which contains more than n/2 leaves while its two children

contain at most n/2 leaves each (see Figure 4.7). Given this decomposition of the optimum tree into

three size restricted sets A, B, C, we provide an upper bound for OPT as a function of the weight

inside and across these sets (see Proposition 4.2.8). We then need to do a case analysis based on

whether the weight across or inside these sets is larger.

Step 2: In the former case, things are easy as one can show that OPT is small and that even the

contribution from the Average-Linkage part of our algorithm alone yields a 4

9
-approximation.

This is carried out in Proposition 4.2.10 based on the Fact 4.2.9.

Step 3: In the latter case, we show that there exists a split of the graph into two exactly equal

pieces, so that the weight of the uncut edges is relatively large. This is crucial in the analysis as having

a good solution to the Max-Uncut Bisection directly translates into a high value returned by the

⇢-approximate black box algorithm (see Lemma 4.2.12, Proposition 4.2.11 and Proposition 4.2.12).

Step 4: Finally, from the previous step we know that the returned value of the black box is large,

hence taking into account the form of the HC objective, we can derive a lower bound for the value

our Algorithm 7. The proof of the main theorem is then completed by Proposition 4.2.13 and

Lemma 4.2.13.

Proof of Theorem 4.2.7

For ease of presentation, we assume n is even, to avoid the floor/ceiling notation and we omit the

o(1) terms.

Proposition 4.2.8 Let A be the set of leaves in the left subtree of cT ⇤, let B the set of leaves in the

right subtree of cT ⇤ and C = V \ (A [B) be the set of leaves outside of cT ⇤. Then3:

OPT  (w(A) + w(B) + w(C)) · (n� 2)+

+ (w(A, B) + w(B, C) + w(A, C)) · |C|

Proof. For an edge (i, j) whose endpoints lie in the same cluster (i.e., A, B or C), its contribution

to the objective is at most wij(n� 2), using the trivial upper bound of (n� 2). Consider any pair of

leaves (i, j) 2 A⇥B in T
⇤. The least common ancestor for this pair is the root of cT ⇤ and hence the

contribution of this pair to the objective is equal to wij(n� |cT ⇤|) = wij |C|. Similarly, for any pair

of leaves (i, j) 2 A ⇥ C (or in B ⇥ C), their least common ancestor is a predecessor of the root of

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 66

Figure 4.7: Splitting T
⇤ to size restricted sets A, B, C.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 67

cT ⇤ and hence the contribution of this pair to the objective is at most wij(n� |cT ⇤|) = wij |C|. The

desired bound now follows by summing up all the contributions of all distinct pairs of leaves.

From now on, let ↵ := w(A) + w(B) + w(C) and let � := w(A, B) + w(B, C) + w(A, C) denote

the total weights of similarities inside the three sets and crossing a pair of these sets respectively.

Note the total weight of all similarities is W = ↵ + �.

Fact 4.2.9 (Average-Linkage [78]) The Average-Linkage algorithm gives a solution whose

F
+ objective is at least 1

3
W (n� 2) = 1

3
(↵ + �)(n� 2).

Proposition 4.2.10 If ↵  �, our Algorithm 7 outputs a solution of value at least 4/9OPT �

0.44OPT, where OPT denotes the HC value of any optimum solution.

Proof. Recall that by definition of C it holds that |C| < n

2


n

2
� 1  n�2

2
. Hence by

Proposition 4.2.8 we have OPT  ↵(n � 2) + |C| · �  ↵(n � 2) + n�2

2
�. On the other hand,

by Fact 4.2.9, Average-Linkage outputs a solution whose expected value is 1

3
(↵+�)(n�2). We have

1

3
(↵ + �)(n � 2) � 4

9
(↵(n � 2) + n�2

2
�) = 1

9
(� � ↵) � 0. Hence, the Average-Linkage part of the

algorithm alone gives a 4

9
-approximation in this case.

Lemma 4.2.12 Suppose ↵ � �. Then, there exists a balanced cut (L, R) of the nodes in G, such that

the weight of the uncut edges is at least ↵� (↵��)�max(c), where c = |C|/n and �max(c) = c(1�2c)

(1�3c2)
.

Proof. For the partition (A, B, C) we will refer to edges whose both endpoints are inside one of the

three sets as red edges (i.e., (i, j) 2 (A⇥A)[(B ⇥B)[(C ⇥C)). We refer to the edges whose two

endpoints are contained in two di↵erent sets as blue edges (i.e., (i, j) 2 (A⇥B)[(A⇥C)[(B⇥C)).

Our goal here is to give a randomized partitioning scheme that produces the bisection (L, R) with

high value of uncut weight lying inside L, R.

For simplicity, recall that n is even. The case of odd n is handled similarly. Denote a = |A|/n

and b = |B|/n. Let ea = 1/2� a, eb = 1/2� b, and ec = 1/2� c. Note that ea, eb are non-negative, and

ec is strictly positive due to the size restrictions. Define:

qA =
2ebec

(eb + ec)2
, qB =

2eaec
(ea + ec)2 , qC =

2eaeb
(ea +eb)2

,

and

pA =
qBqC

qAqB + qBqC + qAqC
,

pB =
qAqC

qAqB + qBqC + qAqC
,

pC =
qAqB

qAqB + qBqC + qAqC
.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 68

We also denote the following expression by �:

� =
qA qB qC

qAqB + qBqC + qAqC
.

Consider the following partitioning procedure:

• Pick one of the sets A, B, or C with probability pA, pB , and pC , respectively (note that

pA + pB + pC = 1).

• If the chosen set is A, partition it into two random sets SB and SC of size eb|A|/(eb + ec) and

ec|A|/(eb + ec) and output the cut L = B [SB , R = C [SC .

• Similarly, if the chosen set is B, we partition it into two random sets SA and SC of size

ea|B|/(ea + ec) and ec|B|/(ea + ec) and output the cut L = C [SC , R = A [SA.

• If the chosen set is C, we partition it into two random sets SA and SB of size ea|C|/(ea+eb) and
eb|C|/(ea +eb) and output the cut L = A [SA, R = B [SB .

We first observe that each of the output sets L and R has n/2 vertices, i.e., (L, R) is a bisection

of the graph. If for instance, the algorithm picks set A at the first step, then the set L contains

|B| +eb|A|/(eb + ec) vertices. We have

|L| = |B| +
eb

eb + ec
|A| = bn +

1/2� b

1� b� c
· an =

= bn +
1/2� b

a
· an =

n

2
.

The set R is the complement to L, thus, it also contains n/2 vertices. The cases when the algorithm

picks the set B or C are identical.

We now compute the expected weight of red edges in the bisection (L, R).

Proposition 4.2.11 The expected weight of uncut red edges is (1� �)↵.

Proof. Again, assume that the algorithm picks the set A at the first step. Then, the sets B and

C are contained in the sets L and R, respectively. Consequently, no edges in B and C are in the

cut between L and R. Every edge in A is cut with probability 2ebec/(eb + ec)2. Thus, the weight of

red edges in the cut between L and R (denoted as Ered(L, R)) given that the algorithm picks set A

equals

E|Ered(L, R)| algorithm picks A at first step =

=
2ebec

(eb + ec)2
w(A) = qAw(A).

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 69

Similarly, if the algorithm picks the set B or C, the expected sizes of the cuts equal qBw(B) and

qCw(C), respectively. Hence, the expected weight of the red edges between L and R (when we do

not condition on the first step of the algorithm) equals

E|Ered(L, R)| = pAqAw(A) + pBqBw(B) + pC qCw(C)

Observe that

pAqA = pBqB = pCqC =
qA qB qC

qAqB + qBqC + qAqC
= �.

Then, the expected weight of red edges between L and R equals:

E|Ered(L, R)| = �(w(A) + w(B) + w(C)) = �↵.

Here, we used that w(A) + w(B) + w(C) = ↵. The expected weight of uncut red edges equals

(1� �)↵.

We now lower bound the weight of uncut blue edges.

Proposition 4.2.12 The expected weight of uncut blue edges is at least ��.

Proof. We separately consider edges between sets A and B, B and C, A and C. Consider an edge

(u, v) 2 A ⇥ B. This edge is not in the cut (L, R) if both endpoints u and v belong to L or both

endpoints belong to R. The former event – {u, v 2 L} – occurs if the set B is chosen in the first

step of the algorithm and the set SA contains vertex v; the latter event – {u, v 2 R} – occurs if A

is chosen in the first step of the algorithm and the set SB contains vertex u. The probability of the

union of these events is4

[(u, v) /2 (L, R)] = pB ·
ea

ea + ec + pA ·

eb
eb + ec

=

= pBqB ·
(ea + ec)

2ec + pAqA ·
(eb + ec)

2ec .

Since pAqA = pBqB = �, we have

[(u, v) /2 (L, R)] = � ·
ea +eb + 2ec

2ec = � ·
1/2 + ec

2ec � �.

The last inequality holds because (1/2 + ec)/ec � 2 for all ec 2 (0, 1/2]. The same bound holds for

edges between sets B and C and sets A and C. Therefore, the expected weight of uncut blue edges

is at least ��.

By the above two propositions (Proposition 4.2.11 and Proposition 4.2.12) the expected total

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 70

weight of uncut edges is at least:

Ew(L) + w(R) � (1� �)↵ + �� = ↵� (↵� �)�.

Note that we are in the case with ↵ � � � 0. Thus to establish a lower bound on the expectation,

we need to show an upper bound on �. Write

� =
qA qB qC

qAqB + qBqC + qAqC
=

1
1

qA
+ 1

qB
+ 1

qC

.

After plugging in the values of qA, qB , and qC , we obtain the following expression for �.

� =
1

(eb+ec)2
2ebec

+ (ea+ec)2
2eaec + (ea+eb)2

2eaeb

=

=
1

3 + 1

2

�eb+ec
ea + ea+ec

eb
+ ea+eb

ec
�

Observe that a + b + c = 1 and ea + eb + ec = 1/2. Thus, eb + ec = 1/2 � ea, ea + ec = 1/2 � eb, and

ea +eb = 1/2� ec. Hence,

� =
1

3 + 1

2

�
1/2�ea

ea + 1/2�eb
eb

+ 1/2�ec
ec
� =

=
1

3

2
+ 1

4

�
1

ea + 1

eb
+ 1

ec
� .

Note that since the function t 7! 1/t is convex for t > 0, we have

1

2

⇣ 1

ea +
1
eb

⌘
�

2

ea +eb
=

2

1/2� ec =
2

c

Therefore,

� 
1

3

2
+ 1

c
+ 1

4ec
=

c(1� 2c)

1� 3c2
.

We conclude that the expected weight of uncut edges is at least ↵�(↵��)�max(c), where �max(c) =

c(1� 2c)/(1� 3c2).

Proposition 4.2.13 Let ⇢ = 0.8776 be the approximation factor of the Max-Uncut Bisection

algorithm [10, 99]. Then if �  ↵, our Algorithm 7 outputs a solution of value at least 2⇢

3
(n�1)((1�

�max(c))↵ + �max(c)�).

Proof. Let (L, R) be the bisection produced by the ⇢-approximate Max-Uncut Bisection

algorithm. This partition satisfies:

w(L) + w(R) � ⇢OPTMax-Uncut Bisection

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 71

Our Algorithm 7 produces a tree where at the top level the left subtree is L, the right subtree is R

and both of these subtrees are then generated by Average-Linkage. Hence each edge (i, j) 2 L⇥L

(and similarly for edges in R⇥R) contributes:

wij

�
n

2
+ 1

3
(n
2
� 2)

�
= 2

3
wij(n� 1)

to the objective. Thus the overall value of our solution is at least:

2

3
(n� 1)(w(L) + w(R)) �

�
2⇢

3
(n� 1) · OPTMax-Uncut Bisection

If �  ↵ then by Lemma 4.2.12 we have that OPTMax-Uncut Bisection � ↵ � (↵ � �)�max(c) and

the proof follows by rearranging the terms.

Lemma 4.2.13 The approximation factor ⇠ of our Algorithm 7 is at least 4⇢

3(2⇢+1)
� 0.42469.

Proof. First, note that if � � ↵ then by Proposition 4.2.10 the approximation is at least 0.44.

Hence it su�ces to only consider the case when �  ↵. Recall that by Fact 4.2.9, Average-Linkage

outputs a solution of value 1

3
(↵+�)(n�2) and by Proposition 4.2.8, we have OPT  ↵(n�2)+ |C|�.

Hence if 1

3
(↵ + �)(n� 2) � ⇠ (↵(n� 2) + |C|�) then the desired approximation holds.

Thus we only need to consider the case when 1

3
(↵+�)(n�2)  ⇠ (↵(n� 2) + |C|�) or equivalently:

1

3
(↵ + �)  ⇠

⇣
↵ + |C|

n�2
�
⌘
()

() � 
3⇠ � 1

1� 3 |C|

n�2
⇠
↵.

Let c1 = 2⇢

3
(1 � �max(c)) and c2 = 2⇢

3
�max(c). In this case by Proposition 4.2.13, our Algorithm 7

gives value at least c1(n� 1)↵+ c2(n� 1)�. Hence it su�ces to show that c1(n� 2)↵+ c2(n� 2)� �

⇠(↵(n� 2) + |C|�). Or equivalently that:

�(|C|

n�2
⇠ � c2)  ↵(c1 � ⇠)

Using the bound on � above it su�ces to show that:

3⇠ � 1

1� 3 |C|

n�2
⇠
(|C|

n�2
⇠ � c2)  c1 � ⇠.

After simplifying this expression the above bound holds for:

⇠ 
c1 � c2

1 + 3 cn

n�2
c1 �

cn

n�2
� 3c2

.

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 72

Hence it su�ces to find the minimum of the RHS over c 2 [0, 1

2
�

1

n
]. Plugging in the expressions

for c1 and c2 after simplification the RHS is equal to:

2

3

⇢(1� c)

2c2⇢ + (1� 3c2)

Di↵erentiating over c one can show that the minimum of this expression is attained for c = 1

2
�

1

n
.

Indeed, the numerator of the derivative is quadratic function with negative leading coe�cient whose

roots are 1 ±

p
t(t+1)

t
for t = 2⇢� 3. The left root is approximately 0.545 and hence the derivative

is negative on [0, 1

2
�

1

n
]. The value at the minimum c = 1

2
�

1

n
is thus equal5 to (⇢ = 0.8776):

4⇢

3(2⇢ + 1)
� 0.42469

4.2.6 Hardness for Moseley-Wang via Small Set Expansion

We complement our positive results in the previous section by providing APX-hardness for the

Moseley-Wang objective (even for 0-1 similarities), under the Small Set Expansion hypothesis.

Theorem 4.2.14 Under the Small Set Expansion (SSE) hypothesis, there exists ✏ > 0, such

that it is NP-hard to approximate the Moseley-Wang HC objective function within a factor (1� ✏).

Initially introduced by Raghavendra and Steurer [82], SSE has been used to prove improved hard-

ness results for optimization problems including Balanced Separator and Minimum Linear

Arrangement [83].

Given a d-regular, unweighted graph G = (V, E) and S ✓ V , let µ(S) := |S|/|V | and �(S) :=

|E(S, V \ S)|/d|S|. Raghavendra et al.[83] prove the following strong hardness result. (While it is

not explicitly stated that the result holds for regular graphs, it can be checked that their reduction

produces a regular graph [93].)

Theorem 4.2.15 (Theorem 3.6 of [83]) Assuming the SSE, for any q 2 N and ✏, � > 0, given

a regular graph G = (V, E), it is NP-hard to distinguish the following two cases.

• YES: There exist q disjoint sets S1, . . . , Sq ✓ V such that for all ` 2 [q],

µ(S`) = 1/q and �(S`)  ✏ + o(✏).

• NO: For all sets S ✓ V ,

�(S) � �1�✏/2(µ(S))� �/µ(S)

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 73

where �1�✏/2(µ(S)) is the expansion of the sets of volume µ(S) in the infinite Gaussian graph

with correlation 1� ✏/2.

Proof. [Proof of Theorem 4.2.14] Let us consider the instance of Hierarchical Clustering defined by

the same graph where each pair has weight 1 if there is an edge, and 0 otherwise. Then W = |E| is

the total weight.

• YES: The fraction of edges crossing between di↵erent Si’s is at most ✏ + o(✏), and all edges

inside some Si are multiplied by at least n(1� 1/q) in the objective function. So the objective

function for Hierarchical clustering is at least

(1� ✏� o(✏))W · (1� 1

q
)n � nW (1� 1

q
� ✏� o(✏)).

• NO: Consider an arbitrary binary tree T that maximizes the Moseley-Wang objective function.

For a tree node a 2 T , let Ta be the subtree of T rooted at a, and Va ✓ V be the set of graph

vertices corresponding the leaves of Ta.

Let b 2 T be a highest node such that n/3  |Vb|  2n/3 (such a node always exists in a

binary tree). By Theorem 4.2.15, we have

�(Vb) � �1�✏/2(µ(Vb))� �/µ(Vb) � C
p

✏

for some absolute constant C. Here we use the fact that

�1�✏/2(µ(Vb)) � ⌦(
p

✏) for µ(Vb) 2 [1/3, 2/3]

and take � small enough depending on ✏.

So the total fraction of edges in E(Vb, V \ Vb) is at least

µ(Vb) · �(Vb) �
C
p
✏

3
.

Note that edges in E(Tb, V \Tb) will multiplied by at most n/3 in the objective function. (Let

a be the parent of b. Then |Va| > 2n/3 by the choice of b and for any edge crossing Vb, the

the least common ancestors of the two endpoints will be a or one if its ancestors.) Therefore,

the objective function is at most

nW � C
p
✏

3
W ·

2n

3
= nW (1� 2C

p
✏

9
).

Therefore, the value is at least nW (1� 1/q � ✏� o(✏)) in the YES case and nW (1� (2C
p

✏/9))

in the NO case. By taking ✏ > 0 su�ciently small and q arbitrarily large, there is a constant gap

CHAPTER 4. BLACK-BOX APPROXIMATIONS FOR HIERARCHICAL CLUSTERING 74

between the YES case value and the NO case value.

Chapter 5

Hierarchical Clustering for

Euclidean Data

What’s the most you ever lost on a coin toss?

-No Country for Old Men (2007)

In previous chapters, we were given pairwise similarity information in the input; however, in

practice we may have access to informative features about our data points. For example, a new

YouTube video is uploaded and we try to gather in an automatic way if this video talks about cats

or not, if it is long or short, funny or serious, o↵ensive or not etc. All these are features and the goal

then is to find a good hierarchical clustering based on the features.

Contributions. We will start with the simplest case of 1-dimensional Euclidean data. Even in

this seemingly simple setting, obtaining an e�cient algorithm that produces an exactly optimum

solution seems non-trivial, motivating the study of approximation algorithms. We will prove that

two algorithms – Random Cut (RC) and Average-Linkage (AL) – obtain 1

2
-approximation of

the optimal solution as measured by the Moseley-Wang objective (HC-OBJ-2). Average-Linkage

achieves this deterministically, while RC only in expectation. This beats the best known approx-

imation for the general case, which is 0.336 [35] as we saw in the previous chapter. Here RC is

substantially faster than Average-Linkage with a running time of O(n log n) vs. O(n2 log n).

We next consider the high-dimensional case with the Gaussian Kernel and show that Average-

Linkage cannot beat the factor 1

3
even in poly-logarithmic dimensions. We propose the Projected

Random Cut (PRC) algorithm that gets a constant improvement over 1

3
, irrespective of the

dimension d (the improvement is a function of the ratio of the diameter to �2, and drops as this

ratio gets large). Furthermore, a simple implementation of PRC runs in O(n(d + log n)) time while

Average-Linkage runs in O(dn2 log n) time. Even single-linkage (equivalent to finding a minimum

75

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 76

spanning tree) runs in almost-linear time only for constant d and has exponential dependence on

the dimension (see e.g., [100]) and it is open whether it can be scaled to large d when n is large.

Experiments. Many existing algorithms have time e�ciency shortcomings, and none of them can

be used for really large datasets. On the contrary, our Projected Random Cut (see Section 5.4)

is a fast HC algorithm that scales to the largest ML datasets. The running time scales almost

linearly and the algorithm can be implemented in one pass without needing to store similarities, so

the memory is O(n). We also evaluate its quality on a small dataset (Zoo).

5.1 Setting: Feature Vectors with Gaussian Kernel

The main protagonist here will be the Moseley-Wang objective (HC-OBJ-2), which we will denote as

F
+ in our equations. As we know,Average-Linkage obtains a 1

3
-approximation for maximizing

this objective function, and we showed in the previous chapter, there is an SDP-based algorithm

that achieves a (1
3

+ ✏)-approximation for the problem, for small constant ✏.

One drawback of the prior work on these hierarchical clustering objectives is the fact that they

all consider arbitrary similarity scores (specified as an n⇥ n matrix); however, there is much more

structure to such similarity scores in practice and here we study the commonly encountered case

of Euclidean data, where the similarity score wij is computed by applying a monotone decreasing

function to the Euclidean distance between i and j. Roughly speaking, we show how to exploit this

structure to design improved approximation/faster algorithms for hierarchical clustering, and how

to re-analyze algorithms commonly used in practice.

Arguably the most common distance-based similarity measure used for Euclidean data is the

Gaussian kernel. Here we use the spherical version wij ⇠ exp(�kvi � vjk/2�2). The parameter �2,

referred to as the bandwidth, plays an important role for applications and a large body of literature

exists on selection of this parameter [101].

While it might seem that the case of Euclidean data with the Gaussian kernel is a very restricted

class of inputs to the HC problem, we show that for suitably high dimensions and suitable small

choice of bandwidth �2 it can simulate arbitrary similarity scores (scaled appropriately). Thus

any improvements to approximation guarantees for the Euclidean case (that do not apply to general

similar scores) must necessarily involve assumptions about the dimension of the data (not very high)

or on �2 (not pathologically small). Such assumptions on �2 are consistent with common methods

for computing the bandwidth parameter based on data (e.g., [101]).

Euclidean data. We consider data sets represented as sets of d-dimensional feature vectors. Sup-

pose these vectors are v1, . . . , vn 2 Rd. We focus on similarity measures between pairs of data

points, denoted by [wij]i,j2[n], where the similarities only depend on the underlying vectors, i.e.,

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 77

wij = f(vi, vj) for some function f : Rd
⇥ Rd

! [0, 1] and furthermore are fully determined by

monotone functions of distances between them.

Definition 5.1.1 (Distance-based similarity measure) A similarity measure wij = f(vi, vj) is

“distance-based” if f(vi, vj) = g(kvi � vjk2) for some function g : R ! [0, 1], and is “monotone

distance-based” if furthermore g : R! [0, 1] is a monotone non-increasing function.

As an example of the monotone similarity measure it is natural to consider the Gaussian kernel

similarity, i.e.,

wij = (
p

2⇡�)�ne�
kvi�vjk

2
2

2�2 , (Gaussian Kernel)

where � is a normalization factor determining the bandwidth of the Gaussian kernel [54]. For

simplicity, we ignore the multiplicative factor (
p

2⇡�)�n (unless noted otherwise), as our focus is on

multiplicative approximations and scaling has no e↵ects.

General upper bounds. In order to analyze the linkage-based clustering algorithms and our

proposed algorithms, we propose a natural upper bound on the value of the F
+ objective function.

The idea is to decompose the objective function F
+ into contributions of triple of vertices:

F
+(T) =

X

i<j<k

⇣
wij

⇥
E
k

ij

⇤
+ wjk

⇥
E
i

jk

⇤
+ wik

h
E
j

ik

i⌘

where E
x

yz
denotes the event that x is separated first among the vertices of triple {x, y, z} in tree T .

Note that the final tree scores only one of the similarity weights between the triple {i, j, k}. Given

this observation, we define the following benchmark:

MAX-upper ,
X

i<j<k

max(wij , wjk, wik),

Clearly, for all trees T , F
+(T)  MAX-upper.

One-dimensional benchmarks. Consider the special case of 1D data points (with any monotone

distance-based similarity measure as in Definition 5.1.1), and suppose v1  v2  . . .  vn 2 R. Now,

for any triple i < j < k, as a simple observation we have wik  min(wij , wjk). Hence we can modify

the above benchmark to obtain two refined new benchmarks:

1D-MAX-upper ,
X

i<j<k

max(wij , wjk),

1D-SUM-upper ,
X

i<j<k

(wij + wjk) .

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 78

Again, clearly for all trees T we have:

F
+(T)  1D-MAX-upper  1D-SUM-upper

5.2 Performance of Average Linkage

In this section we look at the extreme case where the feature vectors have d = 1, and we try to analyze

the popular/natural algorithms existing in this domain by evaluating how well they approximate the

objective function F
+. We focus on average-linkage and Random Cut (will be formally defined

later). In particular, Random Cut is a building block of our algorithm for high-dimensional data

given in Section 5.4.

We show that Average-Linkage gives a 1/2-approximation, and can obtain no better than 3/4

fraction of the optimal objective value in the worst-case. We then show that Random Cut also

is a 1/2-approximation (in expectation) and this factor is tight. In Section 5.3, we discuss other

simple algorithms: single-linkage and greedy cutting (will be defined formally later). We start by

the observation that greedy cutting and single-linkage output the same tree (and so are equivalent).

We finish by showing that there is an instance where single-linkage attains only 1

2
of the optimum

objective value. We further show on this instance both average-linkage and random cutting are

almost optimal.

For the rest of this section, suppose we have 1D points x1  . . . , xn 2 R, where wij =

g(kxi � xjk) for some monotone non-increasing function g : R! [0, 1].

Average-linkage. In order to simplify the notation, we define wAB to be
P

i2A,j2B
wij for any

two sets A and B. We first prove a simple structural property of average-linkage in 1D.

Lemma 5.2.1 For d = 1, under any monotone distance-based similarity measure wij = g(kxi�xjk),

average-linkage can always merge neighbouring clusters.

Proof. We do the proof by induction. This property holds at the first step of average-linkage (base

of induction). Now suppose up to a particular step of average-linkage, the algorithm has always

merged neighbours. At this step, we have an ordered collection of super nodes (C1, . . . , Cm), where

for every i < j and for all (x, y) 2 Ci ⇥Cj , x  y. If at this step average-linkage doesn’t merge two

neighbouring super nodes, then there exists i < j < k, where

wCiCj

|Ci||Cj |
<

wCiCk

|Ci||Ck|
)

P
x2Ci

wxCj

|Cj |
<

P
x2Ci

wxCk

|Ck|

But note that because of the monotone non-increasing distance-based similarity weights, for any

triple (x, y, z) 2 Ci ⇥ Cj ⇥ Ck we have wxy � wxz, This is a contradiction to the above inequality,

which finishes the inductive step.

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 79

Theorem 5.2.1 For d = 1, under any monotone distance-based similarity measure wij = g(kxi �

xjk), average-linkage obtains at least 1

2
of the 1D-SUM-upper, and hence is a 1

2
-approximation for

the objective F
+.

Proof. The proof uses a potential function argument. Given a partitioning of points x1  x2 

. . .  xn into sets S1, . . . , Sm, a triple of points i < j < k is called separated if no pair of these three

points belong to the same set. Now, the potential function � gets {S1, . . . , Sm} as input, and maps

it to a summation over all separated triples by {Si}i2[m] as below:

�(S1, . . . , Sm) =
X

i<j<k: (i, j, k) is separated

(wij + wjk)

Note that �({x1}, . . . , {xn}) = 1D-SUM-upper, and �({x1, . . . , xn}) = 0.

We now run average-linkage. Based on the definition of F
+, every time that average-linkage

merges two super nodes A and B it scores wAB · (n� |A|� |B|), and sum over of all these per-step

scores is equal to its final objective value. Let Score-AL denotes the variable that stores of the score

of average-linkage over time. At every step we keep track of (1) the change in the potential function,

denoted by �� and (2) how much progress average-linkage had towards the final objective value,

denoted by �Score-AL. In order to prove 1/2-approximation, it su�ces to show that at every step

of average-linkage we have:

�Score-AL +
1

2
�� � 0. (?)

To see this note that average-linkage starts with all points separated, and ends with one cluster/super

node with all the points. Therefore, by summing eq. (?) over all merging steps of average-linkage

and canceling the terms in the telescopic sum, we have:

(F+(TAL)� 0)+

1

2
(�({x1, . . . , xn})� �({x1}, . . . , {xn})) � 0.

Plugging values of � at the start and the end, we get:

F
+(TAL) �

1

2
(1D-SUM-upper),

which implies the 1/2-approximation factor.

To prove eq. (?), we focus on a single step of average-linkage where by Theorem 5.2.1 some two

neighboring clusters denoted as A and B get merged. Let C denote the nodes on the left of A and

let D denote the nodes on the right of B (Figure 5.1).1 By merging two clusters A, B, the change

in the score of average-linkage is:

�Score-AL = wAB(|C| + |D|)

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 80

Moreover, any separated triple i < j < k such that either i 2 C, j 2 A, k 2 B or i 2 A, j 2 B, k 2 D

will not be separated anymore after this merge. For each such triple, the potential function drops

by wij + wjk. Therefore:

��� = (wAB |C| + wAC |B|) + (wAB |D| + wBD|A|)

To compare the two, we show that wAB(|C| + |D|) � wAC |B| + wBD|A|, and hence:

�Score-AL = wAB(|C| + |D|) � wAC |B| + wBD|A|

= �����Score-AL ,

which implies eq. (?) as desired. To prove the last claim, note that average-linkage picks the pair

(A, B) over both (A, C) and (B, D). Therefore, by definition of average-linkage:

wAB

|A||B|
�

wAC

|A||C|
=) wAB |C| � wAC |B|

wAB

|A||B|
�

wBD

|B||D|
=) wAB |D| � wBD|A|

By summing above inequalities, we get wAB(|C| + |D|) � wAC |B| + wBD|A|, which finishes the

proof.

Figure 5.1: Illustration of the merging process in 1D.

As a final note, in Section 5.5 we discuss hard instances for average-linkage under Gaussian kernels

when d = 1, where we essentially show the result of Theorem 5.2.1 is tight when comparing against

1D-SUM-upper, and there is no hope to get an approximation factor better than 3

4
for average-linkage

in general for d = 1.

Random Cut. The following algorithm (termed as Random Cut) picks a uniformly random

point r in the range [x1, xn] and divides the set of points into left and right using r as the splitter.

The same process is applied recursively until the leaves are reached.

Lemma 5.2.2 For d = 1 under any monotone distance-based similarity measure wij = g(xi, xj)

the algorithm Random Cut obtains at least 1/2 fraction of the 1D-MAX-upper, and hence gives a

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 81

Algorithm 8 Random Cut
Input: Integer n, points x1  · · ·  xn.
Output: Binary tree with leaves (x1, . . . , xn)

if n == 1 then
return New leaf containing x1.

end if
Pick r ⇠ U([x1, xn])
Let m be the largest integer such that xm  r.
Create new internal tree node x.
x.left = Random Cut(m, x1, . . . , xm)
x.right = Random Cut(n�m, xm+1, . . . , xn)
return x

1

2
-approximation for the objective F

+ in expectation.

Proof. For every triple i < j < k conditioned on partitioning the interval [i, k] for the first time the

longer edge amongst (xi, xj) and (xj , xk) gets cut with probability p1 � 1/2 and the shorter with

probability p2  1/2 so that p1 + p2 = 1. W.l.o.g let’s assume that (xi, xj) is the longer edge. Then

the algorithm Random Cut scores wjkp1 + wij(1� p1) in expectation for the (i, j, k) triple. Note

that:

wjkp1 + wij(1� p1) = (wjk � wij)

✓
p1 �

1

2

◆
+

1

2
(wij + wjk) �

1

2
(wij + wjk)

By the linearity of expectation taking the sum over all triples i < j < k Random Cut scores at

least 1/2 of 1D-MAX-upper in expectation and hence gives 1

2
-approximation for the objective F

+.

5.3 Greedy Cutting and Single-linkage.

Consider a simple algorithm, denoted by Greedy Cut, that picks the interval with maximum

length among {[xi, xi + 1]}i=1:n�1 (lets say [xm, xm+1]), and repeats the same operation recursively

on (x1, . . . , xm) and (xm+1, . . . , xn) until the leaves are reached.

Lemma 5.3.1 For d = 1 and under any monotone distance-based similarity measure g Greedy

Cut and single-linkage return the same HC tree. Moreover, the edges picked by Greedy Cut are

exactly the same edges picked by single-linkage, picked in reverse order.

Proof. It is known that single-linkage is essentially the Kruskal algorithm (and hence edges picked

by single-linkage form a Maximum Spanning Tree (MST)). Clearly, for any monotone distance-based

measure the line connecting x1 to xn is the unique MST (as any tree can be shortcut-ed with this

line), and hence single-linkage picks intervals {[xi, xi+1]}i=1:n�1 in increasing order of their lengths.

At the same time, Greedy Cut picks also the same intervals, but in decreasing order of their

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 82

length. Moreover, because single-linkage merges the edges picked by Greedy Cut in the reverse

ordering (and it creates the HC tree from bottom to top), it returns the same HC tree as Greedy

Cut.

Remark 9 As a simple observation, Greedy Cut is equivalent to reverse-Kruskal in 1D; It starts

from all edges, goes over them in increasing order of weights (here, in decreasing order of lengths),

and only keeps an edge when its removal makes the graph disconnected. We claim the first edge picked

by reverse-kurskal corresponds to the interval [xm, xm+1] with the maximum length, and hence the

equivalence between the two algorithms by induction. To prove the claim, the line between x1 and

xn keeps the graph connected, so the first picked edge corresponds to an interval (xi, xi+1). Also,

it should be the interval [xm, xm+1] with maximum length. Moreover, removing this edge makes the

graph disconnected, because otherwise there is was cross edge between the left-side (x1, ..., xm) and

the right-side (xm+1, . . . , xn). The length of such an edge is more than the length of (xm, xm+1), so

it should have been removed before, a contradiction.

We finish the section by demonstrating the lack of performance of single-linkage (and hence

Greedy Cut) through an example, which justifies using both average-linkage and Random Cut

as smooth versions of single-linkage for 1D data points.

Lemma 5.3.2 For d = 1, single-linkage can obtain at most 1

2
of the optimum objective, and 1

2
of

the objective values of average-linkage and Random Cut, under Gaussian kernels.

Proof. Consider an example with n equally spaced points on a line, where the distance be-

tween any two adjacent node is �. We now slightly move the points so that weight of (xi, xi+1)

is (
p

2⇡�)�n(1 � (i � 1)✏)e��
2
/2�

2

for i = 1 : n � 1. Now, single-linkage peels o↵ points in the

order x1, . . . , xn. Roughly speaking, we let �/�2 to be large enough so we can ignore the similar-

ity weights between any two non-adjacent points. Hence single-linkage gets an objective value of ⇡⇣P
n�1

i=1
(n� i)

⌘
(
p

2⇡�)�ne��
2
/2�

2

, which evaluates to
�
n2/2 + o(n2)

�
(
p

2⇡�)�ne��
2
/2�

2

. Average-

linkage returns the symmetric binary tree (and hence the objective value is

((n� 2)(n� 1)� n log(n)) (
p

2⇡�)�ne��
2
/2�

2

=
�
n2 + o(n2)

�
(
p

2⇡�)�ne��
2
/2�

2

. Random returns a random binary tree, with (roughly speaking) a similar objective value of

�
n2 + o(n2)

�
(
p

2⇡�)�ne��
2
/2�

2

in expectation. The fact that optimum objective value is as large as these two quantities finishes

the proof.

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 83

5.4 A Fast Algorithm based on Random Projections

We now describe an algorithm Projected Random Cut which we use for high-dimensional data.

This algorithm is given as Algorithm 9. It first projects on a random spherical Gaussian vector and

then clusters the resulting projections using Random Cut.

Algorithm 9 Projected Random Cut

Input: Integer n, vectors v1, . . . , vn 2 Rd.
Output: Binary tree with leaves (v1, . . . , vn)

Pick a random Gaussian vector g ⇠ Nd(0, 1)
Compute dot products xi = hvi,gi
xi1 , . . . xin

= Sort(x1, . . . , xn)
return Random Cut(n, xi1 , . . . , xin

)

Theorem 5.4.1 For any input set of vectors v1, . . . , vn 2 Rd the algorithm Projected Random

Cut gives an ↵-approximation (in expectation) for the objective F
+ under the Gaussian kernel

similarity measure wij ⇠ e�kvi�vjk
2
2/2�

2

where ↵ = (1 + �)/3 for � = mini,j exp(�kvi�vjk
2
2

2�2).

Proof. Recall an upper bound on the optimum:

OPT  MAX-upper =
X

i<j<k

max(wij , wik, wjk).

Fix any triple (i, j, k) where i < j < k. Note that the objective value achieved by the algorithm

Projected Random Cut can also be expressed as ALG =
P

i<j<k
ALGi,j,k where ALGi,j,k

is the contribution to the objective from the triple (i, j, k) defined as follows. Consider the tree

constructed by the algorithm. If vk is the first vector in the triple (vi, vj , vk) to be separated from

the other two in the hierarchical partition (starting from the root) then Ai,j,k is defined to be wij

(in the other two cases when i or j are separated first the definition is analogous). Note that

since Projected Random Cut is a randomized algorithm ALGi,j,k is a random variable. By the

linearity of expectation we have E[ALG] =
P

i<j<k
E[ALGi,j,k]. Thus in order to complete the proof

it su�ces to show that for every i < j < k it holds that:

E[ALGi,j,k] � ↵ max(wij , wik, wjk).

Fix any triple (vi, vj , vk) which forms a triangle in Rd. Conditioned on cutting this triangle for

the first time let (pij , pik, pjk) be the vector of probabilities corresponding to the events that the

corresponding edge is not cut. I.e. this is the probability that we score the contribution of this edge

in the objective. Note that pij + pik + pjk = 1.

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 84

v1 v2

v3

✓1

✓2
✓3

(`3)

(`1)

(`2)

x

y

z

✓

gg?

Figure 5.2: Projecting the triangle (v1, v2, v3) on g.

Consider any triangle whose vertices are vi, vj , vk. To simplify presentation we set i = 1, j =

2, k = 3. We can assume that kv2 � v1k � kv2 � v3k � kv1 � v3k. Let ✓1 = \ (v1 � v3, v2 � v3),

✓2 = \ (v2 � v1, v3 � v1) and ✓3 = \ (v1 � v2, v3 � v2) so that ✓1 � ✓2 � ✓3. See Figure 5.2. Note

that the probability that the i-th longest side of the triangle has the longest projection is then ✓i/⇡.

Lemma 5.4.1 If (v1, v3) is the shortest edge in the triangle (v1, v2, v3) then it holds that p13 �
1

3

Proof. Suppose that g forms an angle ⇡/2 � ✓ with (v3 � v1), i.e. the vector g? orthogonal to g

forms angle ✓ with v3 � v1. We define three auxiliary points x, y, z as follows (see also Figure 5.2.).

Let `1 be a line parallel to g? going through v3, let `2 to be a line parallel to g going through v2

and let `3 be the line parallel to `1 going through v1. We then let x be the intersection of `1 and

(v1, v2), y be the intersection of `1 and `2 and z be the intersection of `2 and `3 (see Fig 5.2).

Thus the projections of v3 � v1, v2 � v1 and v2 � v3 on g are y � z, v2 � z and v2 � y. Hence

conditioned on (v1, v2) having the longest projection the probability of scoring the contribution of

(v2, v3) is given as p12
23

(✓) = ky�zk

ky�v2k
since we are applying the Random Cut algorithm after the

projection. Note that by Thales’s theorem we have p12
23

(✓) = ky�zk

ky�v2k
= kx�v1k

kv2�v1k
. Applying the law of

sines to the triangles (v1, v2, v3) and (x, v1, v3) we have:

sin ✓1
kv1 � v2k

=
sin(✓1 + ✓2)

kv1 � v3k
,

sin ✓

kv1 � v3k
=

sin(✓ + ✓2)

kv1 � xk
,

where we used the fact that sin ✓3 = sin(⇡ � ✓1 � ✓2) = sin(✓1 + ✓2). Similarly, we use the fact that

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 85

sin(\ (v3 � x, v1 � x)) = sin(✓ + ✓2). Using the above we can express p12
23

(✓) as:

p12
23

(✓) =
sin ✓

sin(✓ + ✓2)

sin(✓1 + ✓2)

sin ✓1

Thus the overall probability of scoring the contribution of the edge (v1, v3) conditioned on (v1, v2)

having the longest projection which we denote as p12
13

is given as:

p12
23

=
1

✓1

Z
✓1

0

p12
23

d✓

Similarly, consider the probability p12
13

of scoring the contribution of (v1, v3) conditioned on (v1, v2)

having the longest projection. We can express it as:

p12
13

=
1

✓1

Z
✓1

0

p12
13

(✓)d✓,

where

p12
13

(✓) =
sin ✓

sin(✓ + ✓3)

sin(✓1 + ✓3)

sin ✓1
.

Below we will show that p12
13
� p12

23
. In fact, we will show that for any fixed ✓ 2 [0, ✓1] it holds that

p12
13

(✓) � p12
23

(✓). Comparing the expressions for both it su�ces to show that sin(✓1+✓3)

sin(✓+✓3)
�

sin(✓1+✓2)

sin(✓+✓2)

for all ✓ 2 [0, ✓1]. Since ✓1 = ⇡ � ✓2 � ✓3 this is equivalent to:

sin ✓3
sin(✓ + ✓2)


sin ✓2

sin(✓ + ✓3)

It su�ces to show that:

sin ✓3 sin(✓ + ✓3)  sin ✓2 sin(✓ + ✓2)

Using the formula sin ↵ sin � = 1

2
(cos(↵� �)� cos(↵ + �)) it su�ces to show that:

cos(✓ + 2✓3) � cos(✓ + 2✓2).

The above inequality follows for all ✓ 2 [0, ⇡ � ✓2 � ✓3] since ✓3  ✓2 . This shows that p12
13
� p12

23
.

Since the probability that (v1, v2) has the longest projection is ✓1/⇡ we have that the probability

of scoring (v1, v3) and (v1, v2) having the longest projection is at least ✓1
2⇡

. An analogous argument

shows that the probability of scoring (v1, v3) and (v2, v3) having the longest projection is at least
✓2
2⇡

.

Putting things together:

p13 �
1

2

✓1 + ✓2
⇡

=
1

2

⇡ � ✓3
⇡

�
1

3
,

where we used that ✓3  ⇡/3 since ✓3  ✓2  ✓1.

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 86

We are now ready to complete the proof of Theorem 5.4.1. Let � =
2
3 �

(1+�)
and note that � � �/3

since �  1. If p13 � 1/3 + � then the desired guarantee follows immediately. Otherwise, if

p13  1/3 + � then we have:

E[ALG1,2,3]

OPT1,2,3

=
p13w13 + p12w12 + p23w23

w13

�
1

3
+

✓
2

3
� �

◆
w12

w13

�
1

3
+

✓
2

3
� �

◆
�

=
1

3
+

2

3

�

1 + �
�

1 + �

3
,

where we used the fact that

w12

w13

= e
kv1�v3k

2
2�kv1�v2k

2
2

2�2 � e
�kv1�v2k

2
2

2�2 � �.

5.4.1 Gaussian Kernels with small �

Theorem 5.4.1 only provides an improved approximation guarantee for Projected Random Cut

compared to the factor 1/3 (i.e., the tight approximation guarantees of average-linkage in high

dimensions; see Section 5.5) if � is not too small, where � = mini,j exp(�kvi�vjk
2
2

2�2). In particular,

we get constant improvement if � = ⌦(1). Is this a reasonable assumption? Interestingly, we answer

this question in the a�rmative by showing that if we have � = exp(�⌦̃(n)), then the Gaussian

kernel can encode arbitrary similarity weights (up to scaling, which has no e↵ects on multiplicative

approximations). For simplicity, we only prove this result for {✏, 1} weights here, while it can be

generalized to arbitrary weights.

Theorem 5.4.2 Given any undirected graph G = (V, E) on n nodes and ✏ > 0, there exist unit

vectors {kv}v2V in Rd and bandwidth parameter � 2 R+, such that d = O(n2), 1

�2 = ⌦(n log(1/✏)),

and for some ↵ > 0 we have:

8(u, v) 2 E : e�
kku�kvk

2
2

2�2 = ↵,

8(u, v) /2 E : e�
kku�kvk

2
2

2�2 = ↵✏.

Proof. Our proof is constructive. Let d =
�
n

2

�
. Pick orthogonal vectors {xe}e2E in Rd such that

kxek2 = 1

dudv

, where du is the degree of node u in graph G. For each v 2 V , define yv 2 Rd as

follows:

yv ,
X

(u,v)2E

(dudv)xuv.

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 87

Note that kyvk22 =
P

(u,v)2E
d2
u
d2
v

1

d2
u
d2
v

= dv As the next step, pick a set of n orthonormal vectors

{zv} in the null space of {yv}v2V . Finally, for each v 2 V , define the final vector kv 2 Rd as follows:

kv ,
r

1�
dv
n

zv +

r
1

n
yv

First, note that these vectors have unit length:

kkvk
2

2
= 1�

dv
n

+
kyvk22

n
= 1�

dv
n

+
dv
n

= 1

Now, pick any two vertices u and v. If (u, v) /2 E, then:

hku, kvi = h

r
1�

dv
n

zu +

r
1

n
yu,

r
1�

dv
n

zv +

r
1

n
yvi

=
1

n
hyu, yvi = 0 ,

where we used the fact that hzu, zvi = 0 , hzu, yvi = hzv, yui = 0 and the fact that hxe, xe0i = 0 for

every edge e incident to u and every edge e0 incident to v, as e 6= e0 when (u, v) /2 E. Similarly,

when (u, v) 2 E:

hku, kvi =
1

n
hyu, yvi =

1

n
(d2

u
d2
v
kxuvk

2

2
) =

1

n

Now, consider a Gaussian kernel with bandwidth � = (n log(1/✏))�
1
2 and vectors {kv}v2V . Since

kku � kvk22 = 2(1� hku, kvi) from the above calculations of the inner products it follows that:

8(u, v) 2 E : e�
kku�kvk

2
2

2�2 = e
1�1/n

�2 ,

8(u, v) /2 E : e�
kku�kvk

2
2

2�2 = e
1
�2 .

Thus the ratio is e�
1

n�2 = ✏, as desired.

5.5 Hard Instances with Gaussian Kernel

High-dimensional case. We embed the construction of [35] shown in Figure 5.3 into vectors with

similarities given by the Gaussian kernel.

Theorem 5.5.1 There exists a set of vectors v1, . . . , vn 2 Rd for d = poly(log n) for which the

average-linkage clustering algorithm achieves an approximation at most 1

3
+ o(1) for F

+ under the

Gaussian kernel similarity measure.

Proof. [Proof of Theorem 5.5] We start by this theorem:

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 88

K
n
2/3

K
n
2/3

K
n
2/3

K
n
1/3K

n
1/3K

n
1/3 K

n
1/3K

n
1/3K

n
1/3

1� ✏

1

Figure 5.3: Hard instance I from [28]. Vertices in orange blocks form cliques of size n2/3 connected
by edges of similarity 1 � ✏, vertices in blue blocks form cliques of size n1/3 connected by edges of
similarity 1, all other pairs have similarity 0.

Theorem 5.5.2 ([35]) For any constant ✏ 2 (0, 1) the instance I average-linkage clustering achieves

the value of F
+ at most 1

6
n8/3 + O(n7/3) while the optimum is at least 1

2
n8/3

�O(n7/3).

Let �, ⌧ > 0 be real-valued parameters to be chosen later. We use indices i and j to index our

set of vectors. For i 2 {1, 2, . . . , n1/3
}, j 2 {1, 2, . . . , n2/3

} let

vi,j = �(ei + (1 + ⌧)ek+j),

where k = n1/3 and ei is the t-th standard unit vector et = (0 . . . , 1, . . . , 0) with the 1 in the t-th

entry. Then it is easy to see that for any fixed i 2 [n1/3] and j1 6= j2 2 [n2/3] it holds that:

kvi,j1 � vi,j2k
2

2
= 2(1 + ⌧)2�2

Similarly, for any fixed j 2 [n2/3] and i1 6= i2 2 [n1/3] it holds that:

kvi1,j � vi2,jk
2

2
= 2�2.

Otherwise if i1 6= i2 2 [n1/3] and j1 6= j2 2 [n2/3] then:

kvi1,j1 � vi2,j2k
2

2
= 2�2 + 2(1 + ⌧)2�2

� 4�2.

By setting �2 = 2�2c log n for a su�ciently large constant c the contribution of pairs of vectors

with i1 6= i2 and j1 6= j2 can be made negligible. Let 2(1 + ⌧)2�2 = ↵ and 2�2 = �. The rest

of the pairs correspond to an hard instance I for which average-linkage only achieves a 1

3
+ o(1)-

approximation compared to the optimum. By setting ⌧ = 1/poly(log(n)) we have e(�
2
�↵

2
)/2�

2

=

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 89

⌦(1) and hence by Theorem 5.5.2 it follows that average-linkage clustering can’t achieve better than

1/3 + o(1) approximation for this instance.

Finally, note that by applying the Johnson-Lindenstrauss transform we can reduce the dimension

required for the above reduction to d = poly(log n). Indeed, projecting on a random subspace of

dimension O(logn

⇠2
) would preserve `2

2
-distances between all pairs of vectors up to a multiplicative

factor of (1 ± ⇠) setting ⇠ = ⌧

10
= 1/poly(log n) it follows that our hard instance can be embedded

in dimension d = poly(log n).

Low-dimensional case. For d = 1 a hard instance for average-linkage clustering can also be

constructed.

Lemma 5.5.1 For points x1, . . . , xn 2 R average-linkage clustering achieves approximation at most

3/4 for F
+ under the Gaussian kernel similarity measure.

Proof. Consider the instance consisting of four equally spaced points on a line, i.e. 0, �, 2�, 3�.

Then (after shifting the two middle points slightly) the average-linkage clustering algorithm might

first connect the two middle points and then connect the two other points in arbitrary order. We

denote the cost of this solution as AV G. An alternative solution would be to create two groups (0, �)

and (2�, 3�) and then merge them together. We denote the cost of this solution as OPT . By making

� su�ciently large the contribution of pairs at distance more than � from each other can be ignored.

We thus have AV G  (
p

2⇡�)�n(3e��
2
/2�

2

+o(e��
2
/2�

2

)) and OPT � (
p

2⇡�)�n4e��
2
/2�

2

, which

gives the ratio of 3/4 for su�ciently large �.

Corollary 5.5.3 In the four-point instance of the proof of Theorem 5.5.1, the 1D-SUM-upper eval-

uates to

(
p

2⇡�)�n6e��
2
/2�

2

, and hence average-linkage cannot obtain more than 1/2 of 1D-SUM-upper.

In this section we demonstrate the quality of the solution returned by Projected Random Cut

(PRC) on a small dataset, and highlight that running time only scales linearly on a large dataset.

PRC does not compute the similarity weights (i.e., it only takes one pass over the feature vectors with

dimension-free memory requirements) and then sorts the projected points in time O(n log n). Hence,

it is fast even in use-cases with over millions of datapoints (in contrast to average-linkage, spectral

clustering, or even single-linkage which all have superlinear running times in high dimensions).

We run PRC algorithm on two real datasets from the UCI ML repository [71]: (i) the Zoo dataset

[71, 96] (the small dataset) that contains 100 animals given as 16D feature vectors (this dataset

comes from applications in biology), and (ii) the SIFT10M dataset [52] (the large dataset) that

contains around 10M datapoints, where each datapoint is a 128D Scale Invariant Feature Transform

(SIFT) vector (this dataset comes from applications in computer vision). For more details, refer to

subsection 5.5.1.

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 90

� PRC Spectral AL MAX-upper PRC
MAX-upper

1.5 48 61 28 64 0.75
2 64 83 47 87 0.74
2.5 83 100 66 105 0.79
3 100 112 82 117 0.85
3.5 111 121 95 126 0.87
4 117 128 105 132 0.88
4.5 123 133 114 137 0.91
5 129 137 120 140 0.92

Table 5.1: Values of the objective (times 10�3) on the Zoo dataset (averaged over 10 runs).

Small dataset (Zoo). We compare PRC to (i) the recursive spectral clustering using the second

eigenvector of the normalized Laplacian of the weight matrix (Spectral) [35], (ii) average-linkage

(AL), and (iii) MAX-upper, an upper-bound on the objective value of the optimum tree; see Chapter 3.

In contrast to PRC, these three benchmarks need to compute the weights and are slow on large

datasets.

Table 5.1 summarizes the results of this experiment for various choices of the parameter �

(first column). The second, third and fourth columns report the objective values (i.e., F
+) of the

trees returned by PRC, Spectral and AL respectively, and the fifth column gives an empirically

observed approximation guarantee for PRC by comparing it against the upper bound on optimum

MAX-upper. We observe that PRC attains high approximation factors of ⇡ [0.73, . . . , 0.92] compared

to MAX-upper . Moreover, PRC obtains competitive objective values compared to Spectral and

AL, although it runs faster (in almost linear-time).

On the choice of bandwidth parameter �, as a rule of thumb, we find an interval [↵, �] such

that (i) if � > �, a considerable portion of pairs of datapoints with very di↵erent weights under the

cosine similarities [90] have almost equal weights under the Gaussian kernel, and (ii) if � < ↵, a

considerable portion of pairs of datapoints with almost equal weights under the cosine similarities

have very di↵erent weights under the Gaussian kernel. We end up with ↵ = 1.5, � = 5.

Large dataset (SIFT10M) The focus of this experiment is measuring the running time of PRC,

and showing that it only scales linearly with the dataset size. Note that evaluating the performance

of any other algorithm or upper bound (or even one pass over the similarity matrix) would be

prohibitive.

We run PRC on truncated versions of SIFT10M of sizes 10K, 100K, 500K, 1M and 10M. � is

set to 450 2. We emphasize that our PRC algorithm runs extremely fast on a 2014 MacBook3. The

running times are summarized in Table 5.2. Observe that PRC scales almost linearly with the data

and has almost the same running time as just a single pass over the datapoints.

CHAPTER 5. HIERARCHICAL CLUSTERING FOR EUCLIDEAN DATA 91

Size PRC (seconds) 1 Data Pass (seconds)

10K 1.7 1.5
100K 13 9.6
500K 67 46.4
1M 135 99.7
10M 1592 1144

Table 5.2: Running times of PRC and one pass.

5.5.1 Datasets from Section 5.5

We used real data in our experiments. To be able to measure the performance of produced Hierar-

chical Clusterings, we need to compute MAX-upper, and hence we use a small dataset. To be able to

show linear scaling of running time even for tens of millions of datapoints, we will use large datasets

of sizes 10K to 10M.

The small dataset: The Zoo dataset contains 100 animals given as 16-dimensional vectors, form-

ing 7 di↵erent classes (e.g., mammals, amphibians, etc.). The features contain information about

the animal’s characteristics (e.g., if it has tail, hair, fins, etc.). Here, we want to showcase the quality

of the solution produced by PRC; in the case of the small dataset, we can a↵ord keeping track of

two benchmarks: the performance of the widely-used Spectral algorithm and the MAX-upper4.

The large dataset: In the SIFT10M dataset, each data point is a SIFT feature, extracted from

Caltech-256 [56] by the open source VLFeat library [95]. Caltech-256 is used as a computer vision

benchmark image data set, that features a total of 256 di↵erent classes with high intra-class variations

for each category. Each datapoint is a 128-dimensional vector and similar to the Zoo dataset, we

use this information as features to perform fast Hierarchical Clustering. Here, we want to test the

scalability of our algorithm so we use successively larger datasets from the SIFT10M dataset of 10K,

100K, 500K, 1M and finally 10M datapoints by truncating the data file as necessary.

Chapter 6

Hierarchical Clustering with

Structural Constraints

By ‘life’ we mean a thing that can nourish

itself and grow and decay.

-Aristotle

This chapter is devoted to the case where both quantitative and qualitative information is avail-

able to our algorithms. The former takes the form of similarity weights as we previously had, whereas

the latter come as structural constraints to be followed by the output hierarchy. For many real-world

applications, we would like to exploit prior information about the data that imposes constraints on

the clustering hierarchy, and is not captured by the set of features available to the algorithm.

A simple example of such constraints is a triplet constraint (or “must-link-before”) constraints

ab|c: these are the analogue of “must-link/cannot-link” from standard clustering. Notice that hier-

archies on data imply that all datapoints are linked at the highest level and all are separated at the

lowest level, hence “cannot-link” and “must-link” constraints are not directly meaningful. A triplet

ab|c requires that valid solutions contain a sub-cluster with a, b together and c previously separated

from them. For a concrete example from taxonomy of species, a triplet constraint may look like

(Tuna,Salmon|Lion).

Structural constraints pose major challenges for bottom-up approaches like average/single linkage

and even though they can be naturally incorporated into top-down divisive algorithms, no formal

guarantees exist on the quality of their output as measured by Dasgupta’s cost and its variants. In

this chapter, we provide provable approximation guarantees for two simple top-down algorithms. We

show how to find good solutions even in the presence of conflicting prior information, by formulating

a constraint-based regularization of the objective. Finally, we demonstrate our approach on a real

dataset for the taxonomy application.

92

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 93

6.1 Motivation and Chapter Overview

Hierarchical clustering was originally motivated by gene expression data analysis [46] and appli-

cations in bioinformatics [45]. In such applications, the user (i.e., biologist) often has background

knowledge about the data that may not be captured by the input to the clustering algorithm which

is just automatically generated pairwise similarities. This background knowledge comes in the form

of constraints on the hierarchy to be found. There is a rich body of work on constrained flat clus-

tering formulations that take into account such user input in the form of “cannot link” and “must

link” constraints [97, 98, 20]. Very recently, “semi-supervised” versions of HC that incorporate ad-

ditional constraints have been studied [96], where the natural form of such constraints is triplet (or

“must link before”) constraints ab|c. Such triplet constraints, as we formally show later, can encode

more general structural constraints in the form of rooted subtrees. Surprisingly, such simple triplet

constraints already pose significant challenges for bottom-up linkage methods. (Figure 6.1).

Figure 6.1: (Left) Example of a triplet constraint uv|w and more general rooted tree constraints
on 4 points u, v, w, z. (Right) Example with only two constraints ab|c, a0b0|c0 demonstrating that
popular distance-based linkage algorithms may fail to produce valid HC. Here they get stuck after
3 merging steps (green edges).

Our work in this chapter is motivated by applying the optimization lens to study the interaction

of hierarchical clustering algorithms with structural constraints. Constraints can be fairly naturally

incorporated into top-down (i.e. divisive) algorithms for hierarchical clustering; but can we estab-

lish guarantees on the quality of the solution they produce? Another issue is that incorporating

constraints from multiple experts may lead to a conflicting set of constraints; can the optimization

viewpoint of hierarchical clustering still help us obtain good solutions even in the presence of infea-

sible constraints? Finally, di↵erent objective functions for HC have been studied in the literature;

do algorithms designed for these objectives behave similarly in the presence of constraints? To the

best of our knowledge, the work presented in this chapter is the first to propose a unified approach

for constrained HC through the lens of optimization and to give provable approximation guarantees

for a collection of fast and simple top-down algorithms that have been used for unconstrained HC

in practice (e.g. community detection in social networks [75]).

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 94

Two HC Objectives. Recall Dasgupta’s objective from previous chapters, whose goal is to find

a tree T ⇤ such that:

T ⇤ = arg min
all trees T

X

(i,j)2E

wij · |Tij | (6.1)

We denote (6.1) as similarity-HC. For applications where the geometry of the data is given by

dissimilarities, again denoted by {wij}(i,j)2E , recall Cohen-Addad et al. objective [39]:

T ⇤ = arg max
all trees T

X

(i,j)2E

wij · |Tij | (6.2)

We denote (6.2) as dissimilarity-HC. A comprehensive list of desirable properties of the aforemen-

tioned objectives can be found in previous chapters.

Our Results. i) We design algorithms that take into account both the geometry of the data, in

the form of similarities, and the structural constraints imposed by the users. Our algorithms emerge

as the natural extensions of Dasgupta’s original recursive sparsest cut algorithm and the recursive

balanced cut suggested in [27]. We generalize previous analyses to handle constraints and we prove

an O(k↵n)-approximation guarantee, thus surprisingly matching the best approximation guarantee

of the unconstrained HC problem for constantly many constraints.

ii) In the case of infeasible constraints, we extend the similarity-HC optimization framework,

and we measure the quality of a possible tree T by a constraint-based regularized objective. The

regularization naturally favors solutions with as few constraint violations as possible and as far down

the tree as possible (similar to the motivation behind the similarity-HC objective). For this problem,

we provide a top-down O(k↵n)-approximation algorithm by drawing an interesting connection to an

instance of the hypergraph sparsest cut problem.

iii) We then change gears and study the dissimilarity-HC objective. Surprisingly, we show that

known top-down techniques do not cope well with constraints, drawing a contrast with the situation

for similarity-HC. Specifically, the (locally) densest cut heuristic suggested in [39] performs poorly

even if there is only one triplet constraint, blowing up its approximation factor to O(n). Moreover,

we improve upon the state-of-the-art in [39], by showing a simple randomized partitioning is a 2

3
-

approximation algorithm. We also give a deterministic local-search algorithm with the same worst-

case guarantee. Furthermore, we show that our randomized algorithm is robust under constraints,

mainly because of its “exploration” behavior. In fact, besides the number of constraints, we propose

an inherent notion of dependency measure among constraints to capture this behavior quantitatively.

This helps us not only to explain why “non-exploring” algorithms may perform poorly, but also gives

tight guarantees for our randomized algorithm.

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 95

Experimental Results. We run simple experiments on the Zoo dataset [71] to demonstrate

our approach and the performance of our algorithms for a taxonomy application. We consider

a setup where there is a ground-truth tree and extra information regarding this tree is provided

for the algorithm in the form of triplet constraints. The upshot is that specific variations of our

algorithms can exploit this information. In this practical application, our algorithms have around

%9 improvements in the objective compared to the naive recursive sparsest cut that does not use

this information. See Appendix A.2 for more details on the setup and precise conclusions of our

experiments.

Constrained HC work-flow in Practice. Throughout the chapter, we develop di↵erent tools

to handle user-defined structural constraints for hierarchical clustering. Here we describe a recipe

on how to use our framework in practice.

(1) Preprocessing constraints to form triplets. User-defined structural constraints as rooted bi-

nary subtrees are convenient for the user and hence for the usability of our algorithm. The following

proposition (whose proof is in the Appendix 6.2.1) allows us to focus on studying HC with just

triplet constraints.

Proposition 6.1.1 Given constraints as a rooted binary subtree T on k data points (k � 3), there

is linear time algorithm that returns an equivalent set of at most k triplet constraints.

(2) Detecting feasibility. The next step is to see if the set of triplet constraints is consistent,

i.e., whether there exists a HC satisfying all the constraints. For this, we use a simple linear time

algorithm known as BUILD [3].

(3) Hard constraints vs. regularization. BUILD can create a hierarchical decomposition that

satisfies triplet constraints, but ignores the geometry of the data, whereas our goal here is to consider

both simultaneously. Moreover, in the case that the constraints are infeasible, we aim to output a

clustering that minimizes the cost of violating constraints combined with the cost of the clustering

itself.

• Feasible instance: To output a feasible HC, we propose using Constrained Recursive Sparsest

Cut (CRSC) or Constrained Recursive Balanced Cut (CRBC): two simple top-down algorithms which

are natural adaptations of recursive sparsest cut [75, 43] or recursive balanced cut [27] to respect

constraints (Section 6.2.1).

• Infeasible instance: In this case, we turn our attention to a regularized version of HC, where

the cost of violating constraints is added to the tree cost. We then propose an adaptation of CRSC,

namely Hypergraph Recursive Sparsest Cut (HRSC) for the regularized problem (Section 6.2.2).

Real-world application example. In phylogenetics, which is the study of the evolutionary his-

tory and relationships among species, an end-user usually has access to whole genomes data of a

group of organisms. There are established methods in phylogeny to infer similarity scores between

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 96

pairs of datapoints, which give the user the similarity weights wij . Often the user also has access to

rare structural footprints of a common ancestry tree (e.g. through gene rearrangement data, gene

inversions/transpositions etc.). These rare, yet informative, footprints play the role of the structural

constraints. The user can follow our pre-processing step to get triplet constraints from the given

rare footprints, and then use Aho’s BUILD algorithm to choose between regularized or hard version

of the HC problem. The above illustrates how to use our workflow and why using our algorithms

facilitates HC when expert domain knowledge is available.

Further related work. Similar to [96], constraints in the form of triplet queries have been used

in an (adaptive) active learning framework by [92, 47], showing that approximately O(n log n) triplet

queries are enough to learn an underlying HC. Other forms of user interaction in order to improve the

quality of the produced clusterings have been used in [13] where they prove that interactive feedback

in the form of cluster split/merge requests can lead to significant improvements. Robust algorithms

for HC in the presence of noise were studied in [16, 12] and a variety of su�cient conditions on the

similarity function that would allow linkage-style methods to produce good clusters was explored

in [14]. On a di↵erent setting, the notion of triplets has been used as a measure of distance between

hierarchical decomposition trees on the same data points [22]. More technically distant analogs of

how to use relations among triplets points have recently been proposed in [66] for defining kernel

functions corresponding to high-dimensional embeddings.

6.2 Minimizing Dasgupta’s Objective with Triplets

6.2.1 Modified Sparsest or Balanced Cut Analysis

Given an instance of the constrained hierarchical clustering, our proposed CRSC algorithm uses a

blackbox ↵n-approximation algorithm for the sparsest cut problem (the best-known approximation

factor for this problem is O(
p

log n) due to [8]). Moreover, it also maintains the feasibility of

the solution in a top-down approach by recursive partitioning of what we call the supergraph G0.

Informally speaking, the supergraph is a simple data structure to track the progress of the algorithm

and the resolved constraints.

More formally, for every constraint ab|c we merge the nodes a and b into a supernode {a, b} while

maintaining the edges in G (now connecting to their corresponding supernodes). Note that G0 may

have parallel edges, but this can easily be handled by grouping edges together and replacing them

with the sum of their weights. We repeatedly continue this merging procedure until there are no

more constraints. Observe that any feasible solution needs to start splitting the original graph G by

using a cut that is also present in G0. When cutting the graph G0 = (G1, G2), if a constraint ab|c

is resolved,1 then we can safely unpack the supernode {a, b} into two nodes again (unless there is

another constraint ab|c0 in which case we should keep the supernode). By continuing and recursively

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 97

finding approximate sparsest cuts on the supergraph G1 and G2, we can find a feasible hierarchical

decomposition of G respecting all triplet constraints. Next, we show the approximation guarantees

for our algorithm.

Algorithm 10 CRSC

1: Given G and the triplet constraints ab|c, run BUILD to create the supergraph G0.
2: Use a blackbox access to an ↵n-approximation oracle for the sparsest cut problem, i.e.

arg min
S✓V

w
G0 (S,S̄)

|S|·|S̄|
.

3: Given the output cut (S, S̄), separate the graph G0 into two pieces G1(S, E1) and G2(V \S, E2).

4: Recursively compute a HC T1 for G1 using only G1’s active constraints. Similarly compute T2

for G2.
5: Output T = (T1, T2).

Analysis of CRSC Algorithm. The main result of this section is the following theorem:

Theorem 6.2.1 Given a weighted graph G(V, E, w) with k triplet constraints ab|c for a, b, c 2 V , the

CRSC algorithm outputs a HC respecting all triplet constraints and achieves an O(k↵n)-approximation

for the HC-similarity objective as in (6.1).

Notations and Definitions. We slightly abuse notation by having OPT denote the optimum

hierarchical decomposition or its optimum value as measured by (6.1). Similarly for CRSC. For

t 2 [n], OPT(t) denotes the maximal clusters in OPT of size at most t. Note that OPT(t) induces a

partitioning of V . We use OPT(t) to denote edges cut by OPT(t) (i.e. edges with endpoints in di↵erent

clusters in OPT(t)) or their total weight; the meaning will be clear from context. For convenience,

we define OPT(0) =
P

(i,j)2E
wij . For a cluster A created by CRSC, a constraint ab|c is active if

a, b, c 2 A, otherwise ab|c is resolved and can be discarded.

Overview of the Analysis. There are three main ingredients: The first is to view a HC of n

datapoints as a collection of partitions, one for each level t = n � 1, . . . , 1, as in [27]. For a level t,

the partition consists of maximal clusters of size at most t. The total cost incurred by OPT is then a

combination of costs incurred at each level of this partition. This is useful for comparing our CRSC

cost with OPT. The second idea is in handling constraints and it is the main obstacle where previous

analyses [27, 39] break down: constraints inevitably limit the possible cuts that are feasible at any

level, and since the set of active constraints2 di↵er for CRSC and OPT, a direct comparison between

them is impossible. If we have no constraints, we can charge the cost of partitioning a cluster A

to lower levels of the OPT decomposition. However, when we have triplet constraints, the partition

induced by the lower levels of OPT in a cluster A will not be feasible in general (Figure 6.2). The

natural way to overcome this obstacle is merging pieces of this partition so as to respect constraints

and using higher levels of OPT, but it still may be impossible to compare CRSC with OPT if all pieces

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 98

are merged. We overcome this di�culty by an indirect comparison between the CRSC cost and lower

levels r

6kA

of OPT, where kA is the number of active constraints in A. Finally, after a cluster-by-

cluster analysis bounding the CRSC cost for each cluster, we exploit disjointness of clusters of the

same level in the CRSC partition allowing us to combine their costs. Proof. [Proof of Theorem 6.2.1]

We start by borrowing the following facts from [28], modified slightly for the purpose of our analysis

(proofs are provided in the supplementary materials).

Fact 6.2.2 (Decomposition of OPT) The total cost paid by OPT can be decomposed into costs of

the di↵erent levels in the OPT partition, i.e. OPT =
P

n

t=0
w(OPT(t)).

Fact 6.2.3 (OPT at scaled levels) Let k  n

6
be the number of constraints. Then, OPT � 1

6k
·

P
n

t=0
w(OPT(b t

6k
c)).

Figure 6.2: The main obstacle in the constrained HC problem is that our algorithm has di↵erent
active constraints compared to OPT. Both ab|c, de|f constraints are resolved by the cut OPT(t).

Given the above facts, we look at any cluster A of size r produced by the algorithm. Here is the

main technical lemma that allows us to bound the cost of CRSC for partitioning A.

Lemma 6.2.1 Suppose CRSC partitions a cluster A (|A| = r) in two clusters (B1, B2) (w.l.o.g.

|B1| = s, |B2| = r � s, s  b r
2
c  r � s). Let the size r � 6k and let l = 6kA, where kA denotes the

number of active constraints for A. Then: r · w(B1, B2)  4↵n · s · w(OPT(b r
l
c) \A).

Proof. The cost incurred by CRSC for partitioning A is r · w(B1, B2). Now consider OPT(b r
l
c). This

induces a partitioning of A into pieces {Ai}i2[m], where by design |Ai| = �i|A|, �i 
1

l
, 8i 2 [m].

Now, consider the cuts {(Ai, A \Ai)}. Even though all m cuts are allowed for OPT, for CRSC some of

them are forbidden: for example, in Figure 6.2, the constraints ab|c, de|f render 4 out of the 6 cuts

infeasible. But how many of them can become infeasible with kA active constraints? Since every

constraint is involved in at most 2 cuts, we may have at most 2kA infeasible cuts. Let F ✓ [m]

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 99

denote the index set of feasible cuts, i.e. if i 2 F , the cut (Ai, A \ Ai) is feasible for CRSC. To cut A,

we use an ↵n-approximation of sparsest cut, whose sparsity is upper bounded by any feasible cut:

w(B1, B2)

s(r � s)
 ↵n · SP.CUT(A)  ↵n min

i2F

w(Ai, A \ Ai)

|Ai||A \ Ai|
 ↵n

P
i2F

w(Ai, A \ Ai)P
i2F

|Ai||A \ Ai|

where for the last inequality we used the standard fact that mini
µi

⌫i



P
i
µiP

i
⌫i

for µi � 0 and ⌫i > 0.

We also have the following series of inequalities:

↵n

P
i2F

w(Ai, A \ Ai)P
i2F

|Ai||A \ Ai|
 ↵n

2w(OPT(b r
l
c) \A)

r2
P

i2F
�i(1� �i)

 4↵n

w(OPT(b r
l
c) \A)

r2

where the first inequality holds because we double count some (potentially all) edges of OPT(b r
l
c)\A

(these are the edges cut by OPT(b r
l
c) that are also present in cluster A, i.e. they have both endpoints

in A) and the second inequality holds because �i 
1

6k
=) 1� �i �

6k�1

6k
and

X

i2F

�i(1� �i) �
mX

i=1

�i(1� �i)� 2
X

i2[m]\F

1

6k
�

6k � 1

6k

mX

i=1

�i �
2k

6k
=

4k � 1

6k
� 1/2

Finally, we are ready to prove the lemma by combining the above inequalities (r�s

r
 1):

r · w(B1, B2) = r · s(r � s) ·
w(B1, B2)

s(r � s)

 r · s(r � s) · 4↵n

w(OPT(b r
l
c) \A)

r2
 4↵n · s · w(OPT(b r

l
c) \A).

This finishes the lemma.

It is clear that we exploited the charging to lower levels of OPT, since otherwise if all pieces in A

were merged, the denominator with the |Ai|’s would become 0. The next lemma lets us combine the

costs incurred by CRSC for di↵erent clusters A (proof is in the supplementary materials)

Lemma 6.2.2 (Combining the costs of clusters in CRSC) The total CRSC cost for partitioning

all clusters A into (B1, B2) (with |A| = rA, |B1| = sA) is bounded by:

(1)
X

A:|A|�6k

rA · w(B1, B2)  O(↵n) ·

nX

t=0

w(OPT(b t

6k
c))

(2)
X

A:|A|<6k

rAw(B1, B2)  6k · OPT

Combining Fact 6.2.3 and Lemma 6.2.2 finishes the proof.

Remark 10 In the supplementary material, we prove how one can use balanced cut, i.e. finding a

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 100

cut S such that

arg min
S✓V :|S|�n/3,|S̄|�n/3

wG0(S, S̄) (6.3)

instead of sparsest cut, and using approximation algorithms for this problem achieves the same

approximation factor as in Theorem 6.2.1, but with better running time.

Remark 11 Optimality of the CRSC algorithm: Note that complexity theoretic lower-bounds for

the unconstrained version of HC from [27] also apply to our setting; more specifically, they show that

no constant factor approximation exists for HC assuming the Small-Set Expansion Hypothesis.

Theorem 6.2.4 (The divisive algorithm using balanced cut) Given a weighted graph G(V, E, w)

with k triplet constraints ab|c for a, b, c 2 V , the constrained recursive balanced cut algorithm CRBC (same

as CRSC, but using balanced cut instead of sparsest cut) outputs a HC respecting all triplet constraints

and achieves an O(k↵n)-approximation for Dasgupta’s HC objective. Moreover, the running time is

almost linear time.

6.2.2 Soft Triplets and Regularization

Previously, we assumed that constraints were feasible. However, in many practical applications,

users/experts may disagree, hence our algorithm may receive conflicting constraints as input. Here

we want to explore how to still output a satisfying HC that is a good in terms of objective (6.1)

(similarity-HC) and also respects the constraints as much as possible. To this end, we propose a

regularized version of Dasgupta’s objective, where the regularizer measures quantitatively the degree

by which constraints get violated.

Informally, the idea is to penalize a constraint more if it is violated at top levels of the decom-

position compared to lower levels. We also allow having di↵erent violation weights for di↵erent

constraints (potentially depending on the expertise of the users providing the constraints). More

concretely, inspired by the Dasgupta’s original objective function, we consider the following opti-

mization problem:

min
T2T

✓ X

(i,j)2E

wij |Tij | + � ·

X

ab|c2K

cab|c|Tab| · 1{ab|c is violated}

◆
, (6.4)

where T is the set of all possible binary HC trees for the given data points, K is the set of the k

triplet constraints, Tab is the size of the subtree rooted at the least common ancestor of a, b, and cab|c

is defined as the base cost of violating triplet constraint ab|c. Note that the regularization parameter

� � 0 allows us to interpolate between satisfying the constraints or respecting the geometry of the

data.

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 101

Hypergraph Recursive Sparsest Cut In order to design approximation algorithms for the

regularized objective, we draw an interesting connection to a di↵erent problem, which we call 3-

Hypergraph Hierarchical Clustering (3HHC). An instance of this problem consists of a hypergraph

GH = (V, E, EH) with edges E, and hyperedges of size 3, EH, together with similarity weights for

edges, {wij}(i,j)2E , and similarity weights for 3-hyperedges,3 {wij|k}(i,j,k)2EH . We now think of HC

on the hypergraph GH, where for every binary tree T we define the cost to be the natural extension

of Dasgupta’s objective:

X

(i,j)2E

wij |Tij | +
X

(i,j,k)2EH

wT

ijk
|Tijk| (6.5)

where wT

ijk
is either equal to wij|k, wjk|i or wki|j , and Tijk is either the subtree rooted at LCA(i, j),4

LCA(i, k) or LCA(k, j), all depending on how T cuts the 3-hyperedge {i, j, k}. The goal is to find

a hierarchical clustering of this hypergraph, so as to minimize the cost (6.5) of the tree.

Reduction from Regularization to 3HHC. Given an instance of HC with constraints (with

their costs of violations) and a parameter �, we create a hypergraph GH so that the total cost of

any binary clustering tree in the 3HHC problem (6.5) corresponds to the regularized objective of the

same tree as in (6.4). GH has exactly the same set of vertices, (normal) edges and (normal) edge

weights as in the original instance of the HC problem. Moreover, for every constraint ab|c (with cost

cab|c) it has a hyperedge {a, b, c}, to which we assign three weights wab|c = 0, wac|b = wbc|a = � ·cab|c.

Therefore, we ensure that any divisive algorithm for the 3HHC problem avoids the cost |Tabc| ·� ·cab|c

only if it chops {a, b, c} into {a, b} and {c} at some level, which matches the regularized objective.

Reduction from 3HHC to Hypergraph Sparsest Cut. A natural generalization of the spars-

est cut problem for our hypergraphs, which we call Hyper Sparsest Cut (HSC), is the following

problem:

arg min
S✓V

w(S, S̄) +

P
(i,j,k)2EH wS

ijk

|S||S̄|

!
,

where w(S, S̄) is the weight of the cut (S, S̄) and wS

ijk
is either equal to wij|k, wjk|i or wki|j , depending

on how (S, S̄) chops the hyperedge {i, j, k}. Now, similar to [27, 43], we can recursively run a

blackbox approximation algorithm for HSC to solve 3HHC. The main result of this section is the

following technical proposition, whose proof is analogous to that of Theorem 6.2.1 (provided in the

supplementary materials).

Proposition 6.2.5 Given the hypergraph GH with k hyperedges, and given access to an algorithm

which is ↵n-approximation for HSC, the Recursive Hypergraph Sparsest Cut (R-HSC) algorithm

achieves an O(k↵n)-approximation.

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 102

Reduction from HSC back to Sparsest Cut. We now show how to get an ↵n-approximation

oracle for our instance of the HSC problem by a general reduction to sparsest cut. Our reduction

is simple: given a hypergraph GH and all the weights, create an instance of sparsest cut with the

same vertices, (normal) edges and (normal) edge weights. Moreover, for every 3-hyperedge {a, b, c}

consider adding a triangle to the graph, i.e. three weighted edges connecting {a, b, c}, where:

w0

ab
=

wbc|a + wac|b � wab|c

2
= � · cab|c,

w0

ac
=

wbc|a + wab|c � wac|b

2
= 0,

w0

bc
=

wac|b + wab|c � wbc|a

2
= 0.

This construction can be seen in Figure 6.3. The important observation is that w0

ab
+ w0

ac
=

wbc|a, w0

ab
+ w0

bc
= wac|b and w0

bc
+ w0

ac
= wab|c, which are exactly the weights associated with

the corresponding splits of the 3-hyperedge {a, b, c}. So, correctness of the reduction5 follows as the

weight of each cut is preserved between the hypergraph and the graph after adding the triangles.

For a discussion on extending this gadget more generally, see the supplement.

Remark 12 Reduction to hypergraphs: we would like to emphasize the necessity of the hypergraph

version in order for the reduction to work. One might think that just adding extra heavy edges would

be su�cient, but there is a technical di�culty with this approach. Consider a triplet constraint ab|c;

once c is separated from a and b at some level, there is no extra tendency anymore to keep a and b

together (i.e. only the similarity weight should play role after this point). This behavior cannot be

captured by only adding heavy-weight edges. Instead, one needs to add a heavy edge between a and b

that disappears once c is separated, and this is exactly why we need the hyperedge gadget. One can

replace the reduction for a one-shot proof, but we believe it will be less modular and less transparent.

Figure 6.3: Transforming a 3-hyperedge to a triangle.

6.2.3 Dissimilarity HC and Constraint Dependencies

In this section we study dissimilarity-HC, and we look into the problem of designing approximation

algorithms for both unconstrained and constrained hierarchical clustering. In [38], they show that

average linkage is a 1

2
-approximation for this problem and they propose a top-down approach based

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 103

on locally densest cut achieving a (2
3
� ✏)-approximation in time Õ

⇣
n
2
(n+m)

✏

⌘
. Notably, when ✏ gets

small the running time blows up.

Here, we prove that the most natural randomized algorithm for this problem, i.e. recursive ran-

dom cutting, is a 2

3
-approximation with expected running time O(n log n). We further derandomize

this algorithm to get a simple deterministic local-search style 2

3
-approximation algorithm.

If we also have structural constraints for the dissimilarity-HC, we show that the existing ap-

proaches fail. In fact we show that they lead to an ⌦(n)-approximation factor due to the lack of

“exploration” (e.g. recursive densest cut). We then show that recursive random cutting is robust

to adding user constraints, and indeed it preserves a constant approximation factor when there are,

roughly speaking, constantly many user constraints.

Randomized 2
3 -approximation. Consider the most natural randomized algorithm for hierarchi-

cal clustering, i.e. recursively partition each cluster into two, where each point in the current cluster

independently flips an unbiased coin and based on the outcome, it is put in one of the two parts.

Theorem 6.2.6 Recursive-Random-Cutting is a 2

3
-approximation for maximizing dissimilarity-

HC objective.

Proof. [Proof sketch.] An alternative view of Dasgupta’s objective is to divide the reward of the

clustering tree between all possible triples {i, j, k}, where (i, j) 2 E and k is another point (possibly

equal to i or j). Now, in any hierarchical clustering tree, if at the moment right before i and j become

separated the vertex k has still been in the same cluster as {i, j}, then this triple contributes wij

to the objective function. We claim this event happens with probability exactly 2

3
. To see this,

consider an infinite independent sequence of coin flips for i, j, and k. Without loss of generality,

condition on i’s sequence to be all heads. The aforementioned event happens only if j’s first tales

in its sequence happens no later than k’s first tales in its sequence. This happens with probability
P

i�1

1

2
(1
4
)i�1 = 2

3
. Therefore, the algorithm gets the total reward 2n

3

P
(i,j)2E

wij in expectation.

Moreover, the total reward of any hierarchical clustering is upper-bounded by n
P

(i,j)2E
wij , which

completes the proof of the 2

3
-approximation.

Remark 13 This algorithm runs in time O(n log n) in expectation, due to the fact that the binary

clustering tree has expected depth O(log n) (see for example [40]) and at each level we only perform

n operations.

We now derandomize the recursive random cutting algorithm using the method of conditional ex-

pectations. At every recursion, we go over the points in the current cluster one by one, and decide

whether to put them in the “left” partition or “right” partition for the next recursion. Once we

make a decision for a point, we fix that point and go to the next one. Roughly speaking, these

local improvements can be done in polynomial time, which will result in a simple local-search style

deterministic algorithm.

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 104

Theorem 6.2.7 There is a deterministic local-search style 2

3
-approximation algorithm for maximiz-

ing dissimilarity-HC objective that runs in time O(n2(n + m)).

Maximizing the Objective with User Constraints From a practical point of view, one can

think of many settings in which the output of the hierarchical clustering algorithm should satisfy user-

defined hard constraints. Now, combining the new perspective of maximizing Dasgupta’s objective

with this practical consideration raises a natural question: which algorithms are robust to adding

user constraints, in the sense that a simple variation of these algorithms still achieve a decent

approximation factor?

• Failure of “Non-exploring” Approaches. Surprisingly enough, there are convincing rea-

sons that adapting existing algorithms for maximizing Dasgupta’s objective (e.g. those proposed in

[39]) to handle user constraints is either challenging or hopeless. First, bottom-up algorithms, e.g.

average-linkage, fail to output a feasible outcome if they only consider each constraint separately and

not all the constraints jointly (as we saw in Figure 6.1). Second, maybe more surprisingly, the natural

extension of (locally) Recursive-Densest-Cut6 algorithm proposed in [39] to handle user constraints

performs poorly in the worst-case, even when we have only one constraint. Recursive-Densest-Cut

proceeds by repeatedly picking the cut that has maximum density, i.e. arg max
S✓V

w(S,S̄)

|S|·|S̄|
and mak-

ing two clusters. To handle the user constraints, we run it recursively on the supergraph generated

by the constraints, similar to the approach in Section 6.2.1. Note that once the algorithm resolves

a triplet constraint, it also breaks its corresponding supernode.

Now consider the following example in Figure 6.2.3, in which there is just one triplet constraint

ab|c. The weight W should be thought of as large and ✏ as small. By choosing appropriate weights

on the edges of the clique Kn, we can fool the algorithm into cutting the dense parts in the clique,

without ever resolving the ab|c constraint until it is too late. The algorithm gets a gain of O(n3+W)

whereas OPT gets ⌦(nW) by starting with the removal of the edge (b, c) and then removing (a, b),

thus enjoying a gain of ⇡ nW .

• Constrained Recursive Random Cutting. The example in Figure 6.2.3, although a bit

pathological, suggests that a meaningful algorithm for this problem should explore cutting low-

weight edges that might lead to resolving constraints, maybe randomly, with the hope of unlocking

rewarding edges that were hidden before this exploration.

Formally, our approach is showing that the natural extension of recursive random cutting for

the constrained problem, i.e. by running it on the supergraph generated by constraints and un-

packing supernodes as we resolve the constraints (in a similar fashion to CSC), achieves a constant

factor approximation when the constraints have bounded dependency. In the remaining of this sec-

tion, we define an appropriate notion of dependency between the constraints, under the name of

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 105

Figure 6.4: ⌦(n)-approximation lower bound instance for the constrained Recursive-Densest-Cut
algorithm.

Figure 6.5: Description of a class C with base {x, y}.

dependency measure and analyze the approximation factor of constrained recursive random cutting

(Constrained-RRC) based on this notion.

Suppose we are given an instance of hierarchical clustering with triplet constraints {c1, . . . , ck},

where ci = xi
|yizi, 8i 2 [k]. For any triplet constraint ci, lets call the pair {yi, zi} the base, and

zi the key of the constraint. We first partition our constraints into equivalence classes C1, . . . , CN ,

where Ci ✓ {c1, . . . , ck}. For every i, j, the constraints ci and cj belong to the same class C if they

share the same base (see Figure 6.5).

Definition 6.2.1 (Dependency digraph) The Dependency digraph is a directed graph with vertex

set {C1, . . . , CL}. For every i, j, there is a directed edge Ci ! Cj if 9 c = x|yz, c0 = x0
|y0z0, such that

c 2 Ci, c0 2 Cj, and either {x, z} = {y0, z0} or {x, y} = {y0, z0} (see Figure 6.6).

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 106

Figure 6.6: Classes {Ci, Cj}, and two situations for having Ci ! Cj .

The dependency digraph captures how groups of constraints impact each other. Formally, the

existence of the edge Ci ! Cj implies that all the constraints in Cj should be resolved before one can

separate the two endpoints of the (common) base edge of the constraints in Ci.

Remark 14 If the constraints {c1, . . . , ck} are feasible, i.e. there exists a hierarchical clustering

that can respect all the constraints, the dependency digraph is clearly acyclic.

Definition 6.2.2 (Layered dependency subgraph) Given any class C, the layered dependency

subgraph of C is the induced subgraph in the dependency digraph by all the classes that are reachable

from C. Moreover, the vertex set of this subgraph can be partitioned into layers {I0, I1, . . . , IL},

where L is the maximum length of any directed path leaving C and Il is a subset of classes where the

length of the longest path from C to each of them is exactly equal to l (see Figure 6.7).

We are now ready to define a crisp quantity for every dependency graph. This will later help us

give a more meaningful and refined beyond-worst-case guarantee for the approximation factor of the

Constrained-RRC algorithm.

Definition 6.2.3 (Dependency measure) Given any class C, the dependency measure of C is

defined as

DM(C) ,
LY

l=0

(1 +
X

C02Il

|C
0
|),

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 107

Figure 6.7: Layered dependency subgraph of class C.

where I0, . . . , IL are the layers of the dependency subgraph of C, as in Definition 6.2.2. Moreover,

the dependency measure of a set of constraints DMC({c1, . . . , ck}) is defined as maxC DM(C), where

the maximum is taken over all the classes generated by {c1, . . . , ck}.

Intuitively speaking, the notion of the dependency measure quantitatively expresses how “deeply”

the base of a constraint is protected by the other constraints, i.e. how many constraints need to be

resolved first before the base of a particular constraint is unpacked and the Constrained-RRC algo-

rithm can enjoy its weight. This intuition is formalized through the following theorem, whose proof

is deferred to the supplementary materials.

Theorem 6.2.8 The constrained recursive random cutting (Constrained-RRC) algorithm is an ↵-

approximation algorithm for maximizing dissimilarity-HC objective objective given a set of feasible

constraints {c1, . . . , ck}, where

↵ =
2(1� k/n)

3 · DMC({c1, . . . , ck})


2(1� k/n)

3 · maxC DM(C)

Corollary 6.2.9 Constrained-RRC is an O(1)-approximation for maximizing dissimilarity-HC ob-

jective, given feasible constraints of constant dependency measure.

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 108

6.3 Old Biology Problems: Triplets/Quartets Consistency

Here we base our presentation on our manuscript [34]. We will only give some hardness proofs for

tree ordering CSPs here but if you are interested on how one can get improvements under some

uniform sampling model for sampling constraints, please see the final version of [34].

The high level of our work can be summarized as follows: We consider standard data analysis

tasks, where the goal is to construct a ranking, clustering or phylogenetic tree by aggregating,

perhaps inconsistent, information on overlapping sets of elements. Such information includes relative

ordering constraints for ranking (e.g., pairwise comparisons, “betweenness” etc.), “must-link/cannot-

link” constraints for clustering, whereas for hierarchical clustering, the analogous constraints are

(“desired/forbidden”) triplets or quartets, all specifying ordering relations to be included or avoided

in the final output. In many instances, even checking consistency is intractable, so the goal becomes

to maximize the extent of agreement with the provided information. In this paper, we first address an

open question in computational biology raised in several previous works, by presenting near optimal

hardness of approximation for several ordering problems on trees (triplets/quartets consistency).

One consequence is optimal hardness for the forbidden triplets problem and to the best of our

knowledge this is the first tight hardness of approximation result for a tree ordering problem. Then,

we show how simple algorithms based on variations of Max Cut with negative weights obtain

improved approximations for all considered problems under a query model where noisy constraints

are sampled uniformly at random from a ground-truth solution.

Recall some definitions about betweenness and non-betweenness from subsection 1.4.1.

6.3.1 Hardness for Rooted Triplets Consistency

We prove that under the Unique Games Conjecture, it is hard to approximate the Desired

Triplets Consistency problem better than a factor of 2

3
, even in the unweighted case. Notice that

the current best approximation is 1

3
achieved by a random tree (or a simple greedy algorithm). In

fact our result is slightly stronger: it is hard to distinguish between two instances one of which is

almost perfect (e.g., 99% of constraints are consistent) and the other is far from perfect (e.g., 67%

of constraints are consistent). We base our hardness result on the following theorem by Guruswami

et al. [58, 11] about the Non-Betweeness problem and its 2

3
-inapproximability:

Fact 6.3.1 Let K be the total number of triplets constraints in an instance of non-Betweenness.

For any ✏ > 0, it is NP-hard to distinguish between non-Betweenness instances of the following

two cases:

YES: val(⇡⇤) � (1� ✏)K, i.e. the optimal permutation satisfies almost all constraints.

NO: val(⇡⇤)  (2
3

+ ✏)K, i.e. the optimal permutation does not satisfy more than 2/3 fraction of

the constraints.

Given the above fact, we prove our 2

3
-inapproximability result for Triplets Consistency:

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 109

Theorem 6.3.2 Let K be the total number of the triplet constraints in an instance of Desired

Triplets Consistency. For any � > 0, it is NP-hard to distinguish between instances of the following

two cases:

YES: val(T ⇤) � (1
2
� �)K, i.e. the optimal tree satisfies almost half of all the triplet constraints.

NO: val(T ⇤)  (1
3

+ �)K, i.e. the optimal tree does not satisfy more than 1

3
fraction of the triplet

constraints.

Then, our 2

3
-inapproximability result follows directly from the gap of these instances: 1

3
/ 1

2
= 2

3
.

Proof. Start with a YES instance of the non-Betweenness problem with optimal permutation

⇡⇤ and val(⇡⇤) � (1 � ✏)K. Viewing each non-Betweenness constraint as a desired triplet, we

show how to construct a tree T such that val(T) � (1
2
� �(✏))K. In fact, the construction is

straightforward: simply assign the n labels, either in the order they appear in ⇡⇤ or reversed, as the

leaves of a caterpillar tree (every internal node has at least one child that is a leaf). Observe that

this tree satisfies:

val(T) � (1� ✏)K/2

This is because if a non-Betweenness constraint ab|c was obeyed by ⇡⇤, it will also be obeyed by

one of the two caterpillar trees above: if c appears first in the permutation then the former caterpillar

will obey ab|c as c gets separated first, otherwise if c appears last, then the reversed caterpillar tree

will obey ab|c. Here the 1

2
factor is tight, since for example, the two non-Betweenness constraints

ab|c and bc|a are both satisfied by the ordering abc, but when viewed as desired triplets, they cannot

both be satisfied by a tree.

The NO instance is slightly more challenging. Start with a NO instance of the non-Betweenness

problem with optimal ⇡⇤ of value val(⇡⇤)  (2
3

+ ✏)K. Viewing the non-Betweenness constraints

as desired triplets, we show that the optimum tree T ⇤ cannot achieve better than > (1/3 + 2✏)K,

because this would imply that val(⇡⇤) > (2
3

+ ✏)K, which is a contradiction.

For this, assume that some tree T scored a value val(T) > (1/3 + 2✏)K. We will construct a

permutation ⇡ from the tree T with value val(⇡) > (2/3 + ✏)K. Observe that directly projecting

the leaves of T onto a line (just outputting the n leaves from left to right as they appear in the tree)

would already satisfy > (1/3 + 2✏)K, since every desired triplet ab|c obeyed by the tree, will also be

obeyed (as a non-Betweenness constraint) by ⇡ as c will either be first or last among the three

labels a, b, c.

Moreover, there are potentially desired triplet constraints that are disobeyed by the tree T , yet

obeyed by the permutation. We know that the number of remaining constraints is K�(1/3+2✏)K =

(2/3�2✏)K. By randomly swapping each left and right child in the tree T before we do the projection

to the permutation ⇡, will actually lead to an excess of 1/2 · (2/3 � 2✏)K = (1/3 � ✏)K number

of non-Betweenness constraints. To see this notice that for every triplet that is disobeyed in

the tree, there is a 1

2
probability that it becomes obeyed in the permutation. Summing up, we

get val(⇡) > (1/3 + 2✏)K + (1/3 � ✏)K > (2/3 + ✏)K =) val(⇡⇤) � val(⇡) > (2/3 + ✏)K, a

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 110

contradiction.

6.3.2 Hardness for Forbidden Triplets: Random is Optimal

We prove that under the Unique Games Conjecture, it is hard to approximate the Forbidden

Triplets Consistency problem better than a factor of 2

3
, even in the unweighted case. Notice that the

current best approximation is in fact 2

3
achieved by a random tree (or a simple greedy algorithm),

hence we settle the computational complexity of the problem. Our result is slightly stronger: it is

hard to distinguish between two instances one of which is almost perfect (e.g., 99% of constraints

are consistent) and the other is far from perfect (e.g., 67% of constraints are consistent). We base

our hardness result on the following theorem by Guruswami et al. [58, 11] about the Betweenness

problem and its 1

3
-inapproximability:

Fact 6.3.3 Let K be the total number of triplets constraints in an instance of Betweenness. For

any ✏ > 0, it is UGC-hard to distinguish between Betweenness instances of the following two cases:

YES: val(⇡⇤) � (1� ✏)K, i.e. the optimal permutation satisfies almost all constraints.

NO: val(⇡⇤)  (1
3

+ ✏)K, i.e. the optimal permutation does not satisfy more than 1/3 fraction of

the constraints.

Given the above fact, we prove our 2

3
-inapproximability result for Forbidden Triplets Consistency:

Theorem 6.3.4 Let K be the total number of the triplet constraints in an instance of Forbidden

Triplets Consistency. For any � > 0, it is UGC-hard to distinguish between instances of the following

two cases:

YES: val(T ⇤) � (1� �)K, i.e. the optimal tree satisfies almost half of all the triplet constraints.

NO: val(T ⇤)  (2
3

+ �)K, i.e. the optimal tree does not satisfy more than 2

3
fraction of the triplet

constraints.

Then, our 2

3
-inapproximability result follows directly from the gap of these instances: 2

3
/1 = 2

3
.

Proof. Start with a YES instance of the Betweenness problem with optimal permutation ⇡⇤ and

val(⇡⇤) � (1�✏)K. Viewing each Betweenness constraint a|b|c as a forbidden triplet ac|b, we show

how to construct a tree T such that val(T) � (1

�
�(✏))K. In fact, the construction is straightforward:

simply assign the n labels, in the order they appear in ⇡⇤, as the leaves of a caterpillar tree (every

internal node has its left child being a leaf). Observe that this caterpillar tree satisfies:

val(T) � (1� ✏)K

This is because if a Betweenness constraint a|b|c was obeyed by ⇡⇤, it will also be avoided (viewed

as a forbidden triplet ac|b) by the caterpillar tree above: if a appears first in the permutation then

the caterpillar will avoid ac|b as a gets separated first, otherwise if c appears first, then again the

caterpillar tree will avoid ac|b as c gets separated first.

CHAPTER 6. HIERARCHICAL CLUSTERING WITH STRUCTURAL CONSTRAINTS 111

The NO instance is slightly more challenging. Start with a NO instance of the Betweenness

problem with optimal ⇡⇤ of value val(⇡⇤)  (1
3

+ ✏)K. Viewing the Betweenness constraints as

forbidden triplets, we show that the optimum tree T ⇤ cannot achieve better than > (2/3 + 2✏)K,

because this would imply that val(⇡⇤) > (1
3

+ ✏)K, which is a contradiction.

For this, assume that some tree T scored a value val(T) > (2/3 + 2✏)K. We will construct a

permutation ⇡ from the tree T with value val(⇡) > (1/3 + ✏)K, a contradiction. Notice that there

are forbidden triplets that may be avoided by the tree, yet obeyed by the permutation: for example

for a forbidden triplet t = ac|b, the tree R that first removes a and then splits b, c will successfully

avoid t, however the permutation acb can come from R by projection, however acb do not obey the

Betweenness constraint a|b|c.

Hence directly projecting the leaves of T onto a line may not satisfy > (1/3 + 2✏)K, since every

forbidden triplet ac|b avoided by T , can be ordered by this projected permutation in a way that

would not obey the corresponding Betweenness constraint a|b|c.

However, just by randomly swapping each left and right child for every internal node in the

tree before we do the projection to the permutation, would satisfy 1/2 · (2/3 + 2✏)K = (1/3 + ✏)K

number of constraints. To see this, note that with probability 1

2
a forbidden ac|b avoided by T will

be mapped to the desired abc (and not acb) or cba (and not cab) ordering.

Finally, we get val(⇡) > (1/3 + ✏)K =) val(⇡⇤) � val(⇡) > (1/3 + ✏)K, a contradiction that

we were given a NO instance.

Chapter 7

Conclusion & Open Questions

Prediction is very di�cult,

especially about the future.

-Niels Bohr

In this chapter, we would like to conclude this thesis with a summary of our contributions and

also state some open questions and conjectures regarding Hierarchical Clustering.

7.1 Conclusion

Hierarchical Clustering is a tool used across di↵erent scientific areas. It originated in Biology and

then passed on as a powerful method to more computational tasks ubiquitous in computer science.

However, no objective had been formulated enabling a theoretical understanding behind it. This

thesis builds upon a recent “global” objective function associated with hierarchical clustering that

was proposed by Dasgupta (2016) [43]. We develop theory for it, building on top of standard

approximation algorithms, we unveil some interesting connections with old and new algorithms and

make progress on older phylogenetic questions. Given that progress in standard clustering has been

based on a variety of objectives, starting from the 1950s, that led to a comprehensive theory on

clustering, we hope our work will help develop the much needed analogous theory in hierarachical

clustering.

7.2 List of Open Problems and Conjectures

We separate the questions based on the relevant chapters in this thesis:

112

CHAPTER 7. CONCLUSION & OPEN QUESTIONS 113

From Chapter 4:

(1) Can one obtain an approximation preserving reduction from Sparsest Cut to Dasgupta’s cost?

So far, we have seen the other way, how to use a black-box for Sparsest Cut in order to obtain a

tree.

(2) Can we achieve a better approximation for Cohen-Addad et al. objective?

(3) Can we achieve a better approximation for Moseley-Wang objective? Recent work by Alon et

al. [5], during the writing of this thesis improved our analysis of Max Uncut Bisection to get

a 0.585-approximation. Can we do even better? Can we prove better than APX-hardness that we

provided? [2].

(4) Can we substantially accelerate HC algorithms to run in huge graphs by using random walks

and spectral guarantees, instead of sparsest cut explicitly? This would be really interesting.

(5) Another direction for research is going beyond worst case analysis for this problem. What can

we say about exact recovery on �-stable instances under the Bilu-Linial [21] notion of stability?

Roughly speaking, a stable instance under this notion has the property that the structure of the

optimum solution does not change even if weights in the instance are changed by a factor of �. For

example, in [74] they show that the standard SDP relaxation for Max-Cut is integral if the instance

is su�ciently stable (� � c
p

log n log n for some absolute constant c > 0). Stability for clustering

and other problems has been extensively studied; see [15, 21, 74, 36, 7] and references therein. It

would be interesting to study stable instances for hierarchical clustering, in particular the perfor-

mance of the recursive Sparsest Cut algorithm (or our SDP-HC) on such instances. This would

not only explain the success of certain heuristics for HC based on finding sparsest cuts, but also

justify their use in practice (assuming that stability is a good model for instances in real applications).

From Chapter 5:

(1) Can one get an improvement over 1

3
for the problem of maximizing F

+(T) as a function of d for

small d (with fast algorithms) ?

(2) Can projection on low-dimensional subspaces be used to improve the approximation ratio for

the high-dimensional case even further?

(3) Does Average-Linkage achieve a 3/4-approximation for 1-dimensional data?

CHAPTER 7. CONCLUSION & OPEN QUESTIONS 114

From Chapter 6, we believe the following conjecture is true for tree ordering CSPs similar to the

case for permutations shown in [58]:

Conjecture 1 For any tree ordering CSP, no polynomial time algorithm can achieve a constant

factor approximation better than random.

We proved partially the conjecture for the specific problem of forbidden triplets, as random achieves

a 2

3
-approximation and we showed that one cannot beat random assuming Unique Games Con-

jecture. For maximizing rooted triplets consistency, we were able to show only a 2

3
hardness result,

but we believe the right answer is 1

3
, i.e., the same of the performance of a random tree.

Appendix A

Omitted Proofs, Discussions and

Experiments

The ability to play chess is the sign of a

gentleman. The ability to play chess well is

the sign of a wasted life.

-Paul Morphy

A.1 Omitted Proofs from Chapters.

A.1.1 Missing proofs and discussion in Section 6.2.1

Proof. [Proof of Proposition 6.1.1] For nodes u, v 2 T , let P (u) denote the parent of u in the tree

and LCA(u, v) denote the lowest common ancestor of u, v. For a leaf node li, i 2 [k], we say that

its label is li, whereas for an internal node of T , we say that its label is the label of any of its two

children. As long as there are any two nodes a, b that are siblings (i.e. P (a) ⌘ P (b)), we create

a constraint ab|c where c is the label of the second child of P (P (a)). We delete leaves a, b from

the tree and repeat until there are fewer than 3 leaves left. To see why the above procedure will

only create at most k constraints, notice that every time a new constraint is created, we delete two

nodes of the given tree T . Since T has k leaves and is binary, it can have at most 2k � 1 nodes in

total. It follows that we create at most 2k�1

2
< k triplet constraints. For the equivalence between

the constraints imposed by T and the created triplet constraints, observe that all triplet constraints

we create are explicitly imposed by the given tree (since we only create constraints for two leaves

that are siblings) and that for any three datapoints a, b, c 2 T with LCA(a, c)=LCA(b, c), our set

of triplet constraints will indeed imply ab|c, because LCA(a, b) appears further down the tree than

115

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 116

LCA(a, c) and hence a, b become siblings before a, c or b, c.

Proof. [Proof of Fact 6.2.2 from [27]] We will measure the contribution of an edge e = (u, v) 2 E

to the RHS and to the LHS. Suppose that r denotes the size of the minimal cluster in OPT that

contains both u and v. Then the contribution of the edge e = (u, v) to the LHS is by definition

r · we. On the other hand, (u, v) 2 OPT(t), 8t 2 {0, ..., r � 1}. Hence the contribution to the RHS is

also r · we.

Proof. [Proof of Fact 6.2.3 from [27]] We rewrite OPT using the fact that

w(OPT(t)) � 0

at every level t 2 [n]:

6k · OPT = 6k
nX

t=0

w(OPT(t))

= 6k(w(OPT(0)) + · · · + w(OPT(n)))

� 6k(w(OPT(0)) + · · · + w(OPT(b n

6k
c)))

=
nX

t=0

w(OPT(b t

6k
c))

Proof. [Proof of Lemma 6.2.2] By using the previous lemma we have:

CRSC =
X

A

rAw(B1, B2)  O(↵n)
X

A

sAw(OPT(b rA

6kA

c) \A)

Observe that w(OPT(t)) is a decreasing function of t, since as t decreases, more and more edges are

getting cut. Hence we can write:

X

A

sA · w(OPT(b rA
6k
c) \A) 

X

A

rAX

t=rA�sA+1

w(OPT(b rA

6kA

c) \A)

To conclude with the proof of the first part all that remains to be shown is that:

X

A

rAX

t=rA�sA+1

w(OPT(b t

6kA

c) \A) 
nX

t=0

w(OPT(b t

6k
c))

To see why this is true consider the clusters A with a contribution to the LHS. We have that

rA�sA+1  t  rA, hence |B2| < t meaning that A is a minimal cluster of size |A| � t > |B2| � |B1|,

i.e. if both A’s children are of size less than t, then this cluster A contributes such a term. The

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 117

set of all such A form a disjoint partition of V because of the definition for minimality (in order for

them to overlap in the hierarchical clustering, one of them needs to be ancestor of the other and this

cannot happen because of minimality). Since OPT(b t

6k
c)\A for all such A forms a disjoint partition

of OPT(b t

6k
c), the claim follows by summing up over all t.

Note that so far our analysis handles clusters A with size rA � 6k. However, for clusters with

smaller size rA < 6k we can get away by using a crude bound for bounding the total cost and still

not a↵ecting the approximation guarantee that will be dominated by O(k↵n):

X

|A|<6k

rAw(B1, B2) < 6k ·

X

ij2E

wij = 6k · OPT(1)  6k · OPT

This finishes the proof of the fact.

Theorem A.1.1 (The divisive algorithm using balanced cut) Given a weighted graph G(V, E, w)

with k triplet constraints ab|c for a, b, c 2 V , the constrained recursive balanced cut algorithm (same

as CRSC, but using balanced cut instead of sparsest cut) outputs a HC respecting all triplet constraints

and achieves an O(k↵n)-approximation for the HC objective (6.1).

Proof. It is not hard to show that one can use access to balanced cut rather than sparsest cut and

achieve the same approximation factor by the recursive balanced cut algorithm.

We will follow the same notation as in the sparsest cut analysis and we will use some of the

facts and inequalities we previously proved about OPT(t). Again, for a cluster A of size r, the

important observation is that the partition A1, . . . , Al (at the end, we will again choose l = 6kA)

induced inside the cluster A by OPT(r
l
) can be separated into two groups, let’s say (C1, C2) such that

r/3  |C1|, |C2|  2r/3. In other words we can demonstrate a Balanced Cut with ratio 1

3
: 2

3
for the

cluster A. Since we cut fewer edges when creating C1, C2 compared to the partitioning of OPT(r
l
):

w(C1, C2)  w(OPT(b r
l
c) \A)

By the fact we used an ↵n-approximation to balanced cut we can get the following inequality

(similarly to Lemma 6.2.1):

r · w(C1, C2)  O(↵n) · s · w(OPT(b r
l
c) \A)

Finally, we have to sum up over all the clusters A (now in the summation we should write rA, sA

instead of just r, s, since there is dependence in A) produced by the constrained recursive balanced

cut algorithm for Hierarchical Clustering and we get that we can approximate the HC objective

function up to O(k↵n).

Remark 15 Using balanced-cut can be useful for two reasons. First, the runtime of sparsest and

balanced cut on a graph with n nodes and m edges are Õ(m+n1+✏). When run recursively however as

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 118

in our case, taking recursive sparsest cuts might be worse o↵ by a factor of n (in case of unbalanced

splits at every step) in the worst case. However, recursive balanced cut is still Õ(m+n1+✏). Second,

it is known that an ↵-approximation for the sparsest cut yields an O(↵)-approximation for balanced

cut, but not the other way. This gives more flexibility to the balanced cut algorithm, and there is a

chance it can achieve a better approximation factor (although we don’t study it further in this paper).

A.1.2 Missing proofs in Section 6.2.2

Proof. [Proof sketch of Proposition 6.2.5] Here the main obstacle is similar to the one we handled

when proving Theorem (6.2.1): for a given cluster A created by the R-HSC algorithm, di↵erent

constraints are, in general, active compared to the OPT decomposition for this cluster A. Note of

course, that OPT itself will not respect all constraints, but because we don’t know which constraints

are active for OPT, we still need to use a charging argument to low levels of OPT. Observe that here

we are allowed to cut an edge ab even if we had the ab|c constraint (incurring the corresponding cost

cab|c), however we cannot possibly hope to charge this to the OPT solution, as OPT, for all we know,

may have respected this constraint. In the analysis, we crucially use a merging procedure between

sub-clusters of A having active constraints between them and this allows us to compare the cost of

our R-HSC with the cost of OPT .

Proof. [3-hyperedges to triangles for general weights] Even though the general reduction presented

in Section 6.2.2 (Figure 6.3) to transform a 3-hyperedge to a triangle is valid even for general instances

of HSC with 3-hyperedges and arbitrary weights, the reduced sparsest cut problem may have negative

weights, e.g. when wbc|a + wac|b < wab|c. To the best of our knowledge, sparsest cut with negative

weights has not been studied. Notice however that if the original weights wbc|a, wac|b, wab|c satisfy

the triangle inequality (or as a special case, if two of them are zero which is usually the case when

we have a triplet constraints), then we can actually solve (approximately) the HSC instance, as the

sparsest cut instance will only have non-negative weights.

A.1.3 Missing proofs in Section 6.2.3

Proof. [Proof of Theorem 6.2.6] We start by looking at the objective value of any algorithm as the

summation of contributions of di↵erent triples i, j and k to the objective, where (i, j) 2 E and k is

some other point (possibly equal to i or j).

OBJ =
X

(i,j)2E

wij |Tij | =
X

(i,j)2E,k2V

wij1{k 2 leaves(Tij)} =
X

(i,j)2E

X

k2V

Yi,j,k,

where random variable Yi,j,k denotes the contribution of the edge (i, j) and vertex k to the objective

value. The vertex k is a leaf of Tij if and only if right before the time that i and j gets separated k

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 119

is still in the same cluster as i and j. Therefore,

Yi,j,k = wij1{i separates from k no earlier than j }

We now show that E [Yi,j,k] = 2

3
wij . Given this, the expected objective value of recursive random

cutting algorithm will be at least 2n

3

P
(i,j)2E

wij . Moreover, the objective value of the optimal

hierarchical clustering, i.e. maximizer of the Dasgupta’s objective, is no more than n
P

(i,j)2E
wij ,

and we conclude that recursive random cutting is a 2

3
-approximation. To see why E [Yi,j,k] = 2

3
wij ,

think of randomized cutting as flipping an independent unbiased coin for each vertex, and then

deciding on which side of the cut this vertex belongs to based on the outcome of its coin. Look at

the sequence of the coin flips of i, j and k. Our goal is to find the probability of the event that for

the first time that i and j sequences are not matched, still i’s sequence and k’s sequence are matched

up to this point, or still j’s sequence and k’s sequence are matched up to this. The probability of

each of these events is equal to 1

3
. To see this for the first event, suppose i’s sequence is all heads

(H). We then need the pair of coin flips of (j, k) to be a sequence of (H, H)’s ending with a (T, H),

and this happens with probability
P

i�1
(1
4
)i = 1

3
. The probability of the second event is similarly

calculated. Now, these events are disjoint. Hence, the probability that i is separated from k no

earlier than j is exactly 2

3
, as desired.

Proof. [Proof of Theorem 6.2.7] We derandomize the recursive random cutting algorithm using the

method of conditional expectations. At every recursion, we go over the points in the current cluster

one by one, and decide whether to put them in the “left” partition or “right” partition for the next

recursion. Once we make a decision for a point, we fix that point and go to the next one. Now

suppose for a cluster C we have already fixed points S ✓ C, and now we want to make a decision

for i 2 C \S. The reward of assigning to left(right) partition is now defined as the expected value of

recursive random cutting restricted to C, when the points in S are fixed (i.e. it is already decided

which points in S are going to the left partition and which ones are going to the right partition),

i goes to the left(right) partition and j 2 C \ ({i} [S) are randomly assigned to either the left

or right. Note that these two rewards (or the di↵erence of the two rewards) can be calculated

exactly in polynomial time by considering all triples consisting of an edge and another vertex, and

then calculating the probability that this triple contributes to the objective function (this is similar

to the proof of Theorem 6.2.6, and we omit the details for brevity here). Because we know the

randomized assignment of i gives a 2

3
-approximation (Theorem 6.2.6), we conclude that assigning

to the better of left or right partition for every vertex will remain to be at least a 2

3
-approximation.

For running time, we have at most n clusters to investigate. Moreover, a careful counting argument

shows that the total number of operations required to calculate the di↵erences of the rewards of

assigning to left and right partitions for all vertices is at most n(n + 2m). Hence, the running time

is bounded by O(n2(n + m)).

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 120

Proof. [Proof sketch of Theorem 6.2.8.] Before starting to prove the theorem, we prove the following

simple lemma.

Lemma A.1.1 There is no edge between any two classes in the same layer Il.

Proof. [Proof of Lemma A.1.1] If such an edge exists, then there is a path of length l + 1 from C to

a class in Il, a contradiction.

Now, similar to the proof of Theorem 6.2.6, we consider every triple {x, y, z}, where (x, y) 2 E

and z is another point , but this time we only consider z’s that are not involved in any triplet

constraint (there are at least n� k such points). We claim with probability at least 2

3·DMC({c1,...,ck})

the supernode containing z is still in the same cluster as supernodes containing x and y right before

x and y gets separated. By summing over all such triples, we show that the algorithm gets a gain of

at least 2(n�k)

3·DMC({c1,...,ck})

P
(x,y)2E

wxy, which proves the ↵-approximation as the optimal clustering

has a reward bounded by n
P

(x,y)2E
wxy.

To prove the claim, if (x, y) is not the base of any triplet constraint then a similar argument as in

the proof of Theorem 6.2.6 shows the desired probability is exactly 2

3
(with a slight adaptation, i.e.

by looking at the coin sequences of supernodes containing x and y, which are going to be disjoint

in this case at all iterations, and the coin sequence of z). Now suppose (x, y) is the base of any

constraint c and suppose c belongs to a class C. Consider the layered dependency subgraph of C

as in Definition 6.2.2 and let the layers to be I0, . . . , IL. In order for z to be in the same cluster

as x and y when they get separated, a chain of L + 1 independent events needs to happen. These

events are defined inductively; for the first event, consider the coin sequence of z, coin sequence of

(the supernode containing all the bases of) constraints in [L
l=0

Il and coin sequences of all the keys

of constraints in IL (there are
P

C02IL
|C

0
| of them). Without loss of generality, suppose the coin

sequence of (the supernode containing) [L
l=0

Il is all heads. Now the event happens only if at the

time z flips its first tales all keys of IL have already flipped at least one tales. Conditioned on this

event happening, all the constraints in IL will be resolved and z remains in the same cluster as x and

y. Now, remove IL from the dependency subgraph and repeat the same process to define the events

2, . . . , L in a similar fashion. For the lth event to happen, we need to look at 1+
P

C02IL
|C

0
| number

of i.i.d. symmetric geometric random variable, and calculate the probability that first of them is no

smaller than the rest. This event happens with a probability at least
�
1 +

P
C02IL

|C
0
|
��1

. Moreover

the events are independent, as there is no edge between any two classes in Il for l 2 [L], and di↵erent

classes have di↵erent keys. After these L events, the final event that needs to happen is when all

the constraints are unlocked, and z needs to remain in the same cluster as x and y at the time they

get separated. This event happens with probability 2

3
. Multiplying all of these probabilities due to

independence implies the desired approximation factor.

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 121

A.2 Experiments and Discussion from Chapter 6

The purpose of this section is to present the benefits of incorporating triplet constraints when

performing Hierarchical Clustering. We will focus on real data using the Zoo dataset ([71]) for a

taxonomy application. We demonstrate that using our approach, the performance of simple recursive

spectral clustering algorithms can be improved by approximately 9% as measured by the Dasgupta’s

Hierarchical Clustering cost function (6.1). More specifically:

• The Zoo dataset : It contains 100 animals forming 7 di↵erent categories (e.g. mammals, am-

phibians etc.). The features of each animal are provided by a 16-dimensional vector containing

information such as if the animal has hair or feathers etc.

• Evaluation method : Given the feature vectors, we can create a similarity matrix M(·, ·) indexed

by the labels of the animals. We choose the widely used cosine similarity to create M .

• Algorithms : We use a simple implementation of spectral clustering based on the second eigen-

vector of the normalized Laplacian of M . By applying the spectral clustering algorithm once,

we can create two clusters; by applying it recursively we can create a complete hierarchical

decomposition, which is ultimately the output of the HC algorithm.

• Baseline comparison: Since triplet constraints are especially useful when there is noisy in-

formation (i.e. noisy features), we simulate this situation by hiding some of the features of

our Zoo dataset. Specifically, when we want to find the target HC tree T ⇤, we use the full

16-dimensional feature vectors, but for the comparison between the unconstrained and the

constrained HC algorithms we will use a noisy version of the feature vectors which consists of

only the first 10 coordinates from every vector.

In more detail, the first step in our experiments is to evaluate the cost of the target clustering

T ⇤. For this, we use the full feature vectors and perform repeated spectral clustering to get a

hierarchical decomposition (without incorporating any constraints). We call this cost OPT.

The second step is to perform unconstrained HC but with noisy information, i.e. to run the

spectral clustering algorithm repeatedly on the 10-dimensional feature vectors (again without

taking into account any triplet constraints). This will output a hierarchical tree that has cost

in terms of the Dasgupta’s HC cost Unconstrained Noisy Cost.1

The final step is to choose some structural constraints (that are valid in T ⇤)2 and perform

again HC with noisy information. We again use the 10-dimensional feature vectors but the

spectral clustering algorithm is allowed only cuts that do not violate any of the given structural

constraints. Repeating until we get a decomposition gives us the final output which will have

cost in terms of the Dasgupta’s HC cost Constrained Noisy Cost.

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 122

#animals OPT Unconstrained Noisy Cost Constrained Noisy Cost % Improvement

20 1137 1286 1142 12.63
50 23088 25216 23443 7.68
80 89256 99211 90419 9.85
100 171290 190205 173499 9.75

Table A.1: Results obtained for the Zoo dataset. The improvement corresponds to the lower cost of
the output HC tree after incorporating structural constraints, even in the presence of noisy features.
Observe that in all cases the performance of Constrained Noisy Cost is extremely close to the OPT
cost.

The first main result of our experimental evaluation is that the Constrained Noisy Cost is

surprisingly close to OPT, even though to get the Constrained Noisy Cost the features used were

noisy and the second main result is that incorporating the structural constraints yields ⇡ 9% im-

provement over the noisy unconstrained version of HC with cost Unconstrained Noisy Cost. Now

that we have presented the experimental set-up, we can proceed by describing our results and final

observations in greater depth.

A.2.1 Experimental Results

We ran our experiments for 20, 50, 80 and 100 animals from the Zoo dataset and for the evaluation

of the % improvement in terms of the Dasgupta’s HC cost (6.1), we used the following formula:

Unconstrained Noisy Cost� Constrained Noisy Cost

OPT

The improvements obtained due to the constrained version are presented in Table A.1.

Some observations regarding the structural constraints are the following:

• When we add triplet constraints to the input as advice for the algorithm, it is crucial for the

triplet constraints to actually be useful. “Easy” constraints that are readily implied by the

similarity scores will have no extra use and will not lead to better solutions.

• We also observed that having “nested” constraints can be really useful. Nested constraints

can guide our algorithm to perform good cuts as they refer to a larger portion of the optimum

tree T ⇤ (i.e. contiguous subtrees) rather than just di↵erent unrelated subtrees of it. The

usefulness of the given constraints is correlated with the depth of the nested constraints and

their accordance with the optimum tree T ⇤ based on Dasgupta’s objective.

• Furthermore, since most of the objective cost comes from the large initial clusters, we focused

on the partitions that created large clusters and imposed triplet constraints that ensured good

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 123

cuts in the beginning. Actually in some cases, just the first 3 or 4 cuts are enough to guarantee

that we get ⇡ 12% improvement.

• Finally, we conclude that just the number of the given triplet constraints may not constitute a

good metric for their usefulness. For example, a large number of constraints referring to wildly

di↵erent parts of T ⇤, may end up being much less useful than a smaller number of constraints

guiding towards a good first cut.

A.3 Deferred Proofs of Section 4.2.1

Proof. [Proof of Theorem 4.2.1]

The bottom-up merging strategy that first merges the edges e inside the Kn2/3 cliques attains

HC value close to nW (the rest of the edges don’t matter). Since OPT is only better than this

merging strategy, the claim follows. To see that, note that all such edges e will have a multiplier of

non-leaves � n�n2/3. Since there are 1

2
n2/3

· (n2/3
�1) ·n1/3 such edges, OPT � (n�n2/3) ·

1

2
n2/3

·

(n2/3
� 1) · n1/3

�
1

2
n8/3

�O(n7/3).

Proof. [Proof of Theorem 4.2.2] Because of the 1+✏ weight of the edges going across the Kn2/3 cliques,

Average� Linkage will first start merging the Kn1/3 cliques consisting of one node out of each Kn2/3

clique. There are n2/3 such Kn1/3 cliques so the total objective contribution of the edges involved in

this first phase is insignificant since it is certainly smaller than n ·
1

2
n1/3

· (n1/3
� 1) · n2/3

· (1 + ✏) =

O(n7/3). Observe that after the first phase of Average� Linkage the remaining subclusters to be

merged form a clique on n2/3 supernodes each with size s = n1/3 and weighted edges with uniform

weights n1/3. By Theorem 4.2.1 and taking into account the size of every supernode, we obtain the

final value for Average� Linkage = 1

3
n2/3

·
�
n
2/3

2

�
· w · s = 1

3
n2/3

·
1

2
n2/3

· (n2/3
� 1) · n1/3

· n1/3


1

6
n8/3 + O(n7/3).

Proof. [Proof of Theorem 4.2.3] The OPT solution can get all the weight by performing the cut (L, R)

and then proceed arbitrarily. The HC value is then OPT = nW = 1

4
n3
�O(n2).

Proof. [Proof of Theorem 4.2.4] Since there are a lot of 0 weight edges in the graph, Average� Linkage

first tries to merge endpoints of such edges. Note that Average� Linkage is underspecified since

there are ties here, but these ties are not a↵ecting the overall outcome as we can break ties arbitrarily

by using small edge weights ✏ > 0. Hence, we can assume that Average� Linkage first merged the

two endpoints of edges in the perfect matching M . After this first step, the remaining subclusters

to be merged form a clique on n

2
supernodes each with size s = 2 and weighted edges with uniform

weights w = 2. By using the Theorem 4.2.1 and taking into account the size of every supernode, we

obtain the final value for Average� Linkage = 2

3

n

2
·
�
n/2

2

�
· w · s = 2

3

n

2
·
1

2
·
n

2
· (n

2
� 1) · 2 · 2  1

6
n3.

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 124

A.4 Deferred Proofs of Section 4.2.3

Proof. [Proof of Theorem 4.2.6] First of all, the optimization Plower-bound decomposes over variables

{✓ik}k 6=i and variables {✓jk}j 6=k. Due to symmetry, we only lower-bound the optimal objective value

of the following minimization program,:

minimize
X

k 6=i,j

✓ik

subject to
X

k 6=i

cos(✓ik)  n/2� 1,

0  ✓ik 
⇡

2
, 8k,

(P-1)

and then use OBJ(Plower-bound)=
1

2⇡

�
2 OBJ(P-1)�(n� 2)✓̄

�
. Suppose {✓⇤

ik
}k 6=i is the optimal solution

of the above program (P-1). We first claim that in any optimal solution the first constraint is

tight, i.e.
P

k 6=i
cos(✓⇤

ik
) = n/2 � 1. This simply holds because otherwise one can slightly decrease

one of the non-zero ✓⇤
ik

and strictly decrease the objective, a contradiction. Next, we claim that

✓⇤
ik
2 {0, ⇡

2
} for all k 6= i, except for at most one k = k0. To prove by contradiction, suppose it is

not true. Therefore, there exist k1, k2 6= i such that 0 < ✓⇤
ik1
 ✓⇤

ik2
< ⇡/2. If we decrease ✓⇤

ik1
by

infinitesimal d✓ and increase ✓⇤
ik2

by the same d✓, then the objective value does not change. However,

because of the concavity of the cosine function over the interval [0, ⇡/2], there will be an additional

slack in the first constraint of P-1, a contradiction to the first claim that in any optimal solution

this constraint is tight.

Because ✓⇤
ik
2 {0, ⇡/2} for k 6= i, k0, we have:

#{k 6= i, k0 : ✓⇤
ik

= 0} =
X

k 6=i,k0

cos(✓⇤
i,k

) 
X

k 6=i

cos(✓⇤
i,k

)  n/2� 1

We then conclude that for at least n�2� (n/2�1) = n�2

2
values of k 6= i, k0 we have ✓⇤

ik
= ⇡/2, and

hence the optimal objective value of P-1 is lower-bounded by n�2

2
· ⇡/2 = (n�2)⇡

4
. This lower-bound

immediately implies that the optimal objective value of Plower-bound is also lower-bounded by

2 ·
(n�2)⇡

4
� (n� 2)✓̄

2⇡
= (n� 2)

✓
1

4
�

✓̄

2⇡

◆
,

which completes the proof of the lemma.

Proof. [Details of final calculations in the proof of Theorem 4.2.5] To get the final approximation

factor, we balanced out the two cases:

✓
1�

2✏1
✏2

◆✓
1

2
�

2 cos�1(1� ✏2)

3⇡

◆
=

1

3(1� ✏1)
(A.1)

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 125

By solving for ✏1, the optimal value of ✏1 as a function of ✏2 is calculated to be the following function:

✏⇤
1
(✏2) =

1

4
·

0

@✏2 + 2)�

vuut(✏2 + 2)2 � 8✏2

1�

1

3 · (1
2
�

2 arccos 1�✏2
3⇡

)

!1

A

we then draw ↵(✏2) = 1

3(1�✏
⇤

1(✏2))
for ✏2 2 [0, 1] by the aid of a computer software (WolframAlpha).

This function peaks at around ✏2 ⇡ 0.139. By plugging this number into ↵(✏2), we get the final

factor.

A.5 Deferred Proofs of Section 4.2.4

Proof. [Proof of Theorem 4.2.9] Recall that in the partition of T ⇤, we have max (|Lk|, |Rk|) < n(1��).

Since both pieces Lk, Rk have sizes at most (1� �)n, edges cut within the subtrees rooted at Lk and

at Rk can only have contribution to OPT at most n(1� �)w(Lk) + n(1� �)w(Rk). Hence:

OPT  n(1� �)w(Lk) + n(1� �)w(Rk) + n(W � w(Lk)� w(Rk))

Combining with our assumption OPT � (1� ✏)nW, we get:

(1� ✏)nW  n(1� �)w(Lk) + n(1� �)w(Rk) + n(W � w(Lk)� w(Rk))

and the claim follows by rearranging the terms after the cancelations.

Proof. [Proof of Theorem 4.2.13] We start by ALG = ALGpeel + ALGcut. From Theorem 4.2.7 and

Lemma 4.2.10 we have:

ALGpeel � (1� 2W

n⌧
)OPTred

ALGcut � ⇢GW

�
n� 2W

⌧

�
MaxCutblue � ⇢GW

�
1� 2W

n⌧

� �
OPTblue-cut � nw(Lk)� nw(Rk) + OPTblue-chain

2

�

Hence,

ALG � ⇢GW

�
1� 2W

n⌧

� �
OPTred + OPTblue-cut + OPTblue-chain � nw(Lk)� nw(Rk)�

OPTblue-chain
2

�

Because OPT � (1 � ✏)nW =) nW 
OPT

1�✏
, by Claim 4.2.9 and Theorem 4.2.8 we get (�⌧n2 =

2��nW):

ALG � ⇢GW

⇣
1� 1

�

⌘⇣
1� ✏

�(1�✏)
�

��

1�✏

⌘
OPT

We have to balance out the two factors obtained from Case 1 and Case 2, so we get the final

equation:

⇢GW

⇣
1� 1

�

⌘⇣
1� ✏/�

1�✏
�

��

1�✏

⌘
= 2

3(1�✏)

APPENDIX A. OMITTED PROOFS, DISCUSSIONS AND EXPERIMENTS 126

In terms of the parameter �, it’s easy to see that the choice of � =
q

✏

�
is optimal, so substituting:

⇢GW

⇣
1� 1

�

⌘⇣
1�

2
p
✏�

1�✏

⌘
= 2

3(1�✏)

Rearranging the terms we get:

⇢GW

⇣
1� 1

�

⌘
✏ + 2⇢GW

⇣
1� 1

�

⌘
p

� ·
p

✏ + 2

3
� ⇢GW

⇣
1� 1

�

⌘
= 0

Maximizing over � for
p

✏ � 0 (dropping the negative solution):

p
✏ =
�2
p

� +

r
4� � 4

⇣
2

3

1

⇢GW

�

��1
� 1
⌘

2

we get the final optimal answer for � ⇡ 11.1 and ✏ ⇡ 0.000612.

Bibliography

[1] Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrougé. Subquadratic high-

dimensional hierarchical clustering. In Advances in Neural Information Processing Systems,

pages 11576–11586, 2019.

[2] Sara Ahmadian, Vaggos Chatziafratis, Alessandro Epasto, Euiwoong Lee, Mohammad Mah-

dian, Konstantin Makarychev, and Grigory Yaroslavtsev. Bisect and conquer: Hierarchical

clustering via max-uncut bisection. The 23rd International Conference on Artificial Intelli-

gence and Statistics, 2020.

[3] Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and Je↵rey D. Ullman. Inferring

a tree from lowest common ancestors with an application to the optimization of relational

expressions. SIAM Journal on Computing, 10(3):405–421, 1981.

[4] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:

ranking and clustering. Journal of the ACM (JACM), 55(5):1–27, 2008.

[5] Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: a 0.585 revenue approx-

imation. 2020.

[6] Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results for

maximum edge biclique, minimum linear arrangement, and sparsest cut. SIAM Journal on

Computing, 40(2):567–596, 2011.

[7] Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, and Chen Dan.

Bilu-linial stability, certified algorithms and the independent set problem. arXiv preprint

arXiv:1810.08414, 2018.

[8] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and

graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

[9] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Geometry, flows, and graph-partitioning

algorithms. Commun. ACM, 51(10):96–105, 2008.

127

BIBLIOGRAPHY 128

[10] Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by being biased: A

0.8776-approximation for max bisection. ACM Transactions on Algorithms (TALG), 13(1):2,

2016.

[11] Per Austrin, Rajsekar Manokaran, and Cenny Wenner. On the NP-hardness of approximating

ordering constraint satisfaction problems. In Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques, pages 26–41. Springer, 2013.

[12] Pranjal Awasthi, Maria Florina Balcan, and Konstantin Voevodski. Local algorithms for

interactive clustering. The Journal of Machine Learning Research, 18(1):75–109, 2017.

[13] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In International

Conference on Algorithmic Learning Theory, pages 316–328. Springer, 2008.

[14] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for

clustering via similarity functions. In Proceedings of the fortieth annual ACM symposium on

Theory of computing, pages 671–680, 2008.

[15] Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. In In-

ternational Colloquium on Automata, Languages, and Programming, pages 63–74. Springer,

2012.

[16] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clustering.

Journal of Machine Learning Research, 15:3831, 2014.

[17] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,

56(1-3):89–113, 2004.

[18] Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In

European Symposium on Algorithms, pages 89–97. Springer, 2004.

[19] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping multidimensional

data, pages 25–71. Springer, 2006.

[20] Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. Integrating constraints and metric

learning in semi-supervised clustering. In Proceedings of the twenty-first international confer-

ence on Machine learning, page 11. ACM, 2004.

[21] Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics, Probability and

Computing, 21(05):643–660, 2012.

[22] Gerth Stølting Brodal, Rolf Fagerberg, Thomas Mailund, Christian NS Pedersen, and Andreas

Sand. E�cient algorithms for computing the triplet and quartet distance between trees of ar-

bitrary degree. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete

algorithms, pages 1814–1832. Society for Industrial and Applied Mathematics, 2013.

BIBLIOGRAPHY 129

[23] Jaroslaw Byrka, Sylvain Guillemot, and Jesper Jansson. New results on optimizing rooted

triplets consistency. Discrete Applied Mathematics, 158(11):1136–1147, 2010.

[24] Luigi L Cavalli-Sforza and Anthony WF Edwards. Phylogenetic analysis: models and estima-

tion procedures. Evolution, 21(3):550–570, 1967.

[25] Arthur Cayley. Xxviii. on the theory of the analytical forms called trees. The London, Edin-

burgh, and Dublin Philosophical Magazine and Journal of Science, 13(85):172–176, 1857.

[26] Arthur Cayley. A theorem on trees. Quarterly J. Math, 23:376–378, 1889.

[27] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut

and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 841–854. SIAM, 2017.

[28] Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than

average-linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 2291–2304. SIAM, 2019.

[29] Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical

clustering for euclidean data. In The 22nd International Conference on Artificial Intelligence

and Statistics, pages 2721–2730, 2019.

[30] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering

and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417–1440, 2004.

[31] Moses Charikar, Mohammad Taghi Hajiaghayi, Howard Karlo↵, and Satish Rao. l2
2

spreading

metrics for vertex ordering problems. In Proceedings of the seventeenth annual ACM-SIAM

symposium on Discrete algorithm, pages 1018–1027. Society for Industrial and Applied Math-

ematics, 2006.

[32] Evangelos Chatziafratis, Yingrui Zhang, and Osman Yağan. On the robustness of power

systems: optimal load-capacity distributions and hardness of attacking. In 2016 Information

Theory and Applications Workshop (ITA), pages 1–10. IEEE.

[33] Vaggos Chatziafratis, Neha Gupta, and Euiwoong Lee. Hardness for dissimilarity hierarchical

clustering and fair correlation clustering. work in progress, 2020.

[34] Vaggos Chatziafratis, Mohammad Mahdian, and Sara Ahmadian. Aggregating inconsistent

information in ranking, clustering and phylogenetic trees. In manuscript under submission,

2020.

[35] Vaggos Chatziafratis, Rad Niazadeh, and Moses Charikar. Hierarchical clustering with struc-

tural constraints. In International Conference on Machine Learning, pages 774–783, 2018.

BIBLIOGRAPHY 130

[36] Vaggos Chatziafratis, Tim Roughgarden, and Jan Vondrák. Stability and recovery for inde-

pendence systems. European Symposium on Algorithms (ESA), 2017.

[37] Andrew Chester, Riccardo Dondi, and Anthony Wirth. Resolving rooted triplet inconsistency

by dissolving multigraphs. In International Conference on Theory and Applications of Models

of Computation, pages 260–271. Springer, 2013.

[38] Vincent Cohen-Addad, Varun Kanade, and Frederik Mallmann-Trenn. Hierarchical clustering

beyond the worst-case. In Advances in Neural Information Processing Systems, pages 6202–

6210, 2017.

[39] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hi-

erarchical clustering: Objective functions and algorithms. Journal of the ACM (JACM),

66(4):1–42, 2019.

[40] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ord Stein. Introduction

to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[41] Katharina Dannenberg, Jesper Jansson, Andrzej Lingas, and Eva-Marta Lundell. The ap-

proximability of maximum rooted triplets consistency with fan triplets and forbidden triplets.

Discrete Applied Mathematics, 257:101–114, 2019.

[42] Sanjoy Dasgupta. Performance guarantees for hierarchical clustering. In International Con-

ference on Computational Learning Theory, pages 351–363. Springer, 2002.

[43] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages

118–127, New York, NY, USA, 2016. ACM.

[44] Nikhil R Devanur, Subhash A Khot, Rishi Saket, and Nisheeth K Vishnoi. Integrality gaps for

sparsest cut and minimum linear arrangement problems. In Proceedings of the thirty-eighth

annual ACM symposium on Theory of computing, pages 537–546. ACM, 2006.

[45] Ibai Diez, Paolo Bonifazi, Iñaki Escudero, Beatriz Mateos, Miguel A Muñoz, Sebastiano Stra-

maglia, and Jesus M Cortes. A novel brain partition highlights the modular skeleton shared

by structure and function. Scientific reports, 5:10532, 2015.

[46] Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National Academy of Sciences,

95(25):14863–14868, 1998.

[47] Ehsan Emamjomeh-Zadeh and David Kempe. Adaptive hierarchical clustering using ordinal

queries. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 415–429. SIAM, 2018.

BIBLIOGRAPHY 131

[48] Guy Even, Joseph Se� Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approxi-

mation algorithms via spreading metrics. Journal of the ACM (JACM), 47(4):585–616, 2000.

[49] Uriel Feige and James R Lee. An improved approximation ratio for the minimum linear

arrangement problem. Information Processing Letters, 101(1):26–29, 2007.

[50] Joseph Felsenstein. Inferring phylogenies, volume 2. Sinauer associates Sunderland, MA, 2004.

[51] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,

volume 1. Springer series in statistics New York, 2001.

[52] Xiping Fu, Brendan McCane, Steven Mills, and Michael Albert. Nokmeans: Non-orthogonal

k-means hashing. In Asian Conference on Computer Vision, pages 162–177. Springer, 2014.

[53] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi)

cut theorems and their applications. In Proceedings of the twenty-fifth annual ACM symposium

on Theory of computing, pages 698–707. ACM, 1993.

[54] Thomas Gärtner. A survey of kernels for structured data. ACM SIGKDD Explorations

Newsletter, 5(1):49–58, 2003.

[55] Michel X Goemans and David P Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of the ACM

(JACM), 42(6):1115–1145, 1995.

[56] Gregory Gri�n, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

[57] Talha Cihad Gulcu, Vaggos Chatziafratis, Yingrui Zhang, and Osman Yağan. Attack vulner-

ability of power systems under an equal load redistribution model. IEEE/ACM Transactions

on Networking, 26(3):1306–1319, 2018.

[58] Venkatesan Guruswami, Johan H̊astad, Rajsekar Manokaran, Prasad Raghavendra, and Moses

Charikar. Beating the random ordering is hard: Every ordering csp is approximation resistant.

SIAM Journal on Computing, 40(3):878–914, 2011.

[59] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random

ordering is hard: Inapproximability of maximum acyclic subgraph. In 2008 49th Annual IEEE

Symposium on Foundations of Computer Science, pages 573–582. IEEE, 2008.

[60] Jesper Jansson. Consensus algorithms for trees and strings. 2003.

[61] N Jardine and R Sibson. A model for taxonomy. Mathematical Biosciences, 2(3-4):465–482,

1968.

[62] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

BIBLIOGRAPHY 132

[63] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,

and Angela Y Wu. An e�cient k-means clustering algorithm: Analysis and implementation.

IEEE transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

[64] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time

algorithm for approximate max flow in undirected graphs, and its multicommodity general-

izations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 217–226. Society for Industrial and Applied Mathematics, 2014.

[65] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-

fourth annual ACM symposium on Theory of computing, pages 767–775. ACM, 2002.

[66] Matthäus Kleindessner and Ulrike von Luxburg. Kernel functions based on triplet comparisons.

In Advances in Neural Information Processing Systems, pages 6810–6820, 2017.

[67] Robert Krauthgamer, Joseph Se� Naor, and Roy Schwartz. Partitioning graphs into balanced

components. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 942–949. Society for Industrial and Applied Mathematics, 2009.

[68] Tom Leighton and Satish Rao. An approximate max-flow min-cut theorem for uniform mul-

ticommodity flow problems with applications to approximation algorithms. In Foundations of

Computer Science, 1988., 29th Annual Symposium on, pages 422–431. IEEE, 1988.

[69] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in

designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.

[70] Jure Leskovec, Anand Rajaraman, and Je↵rey David Ullman. Mining of massive datasets.

Cambridge university press, 2014.

[71] Moshe Lichman. UCI machine learning repository, zoo dataset, 2013.

[72] Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P Williamson.

A general approach for incremental approximation and hierarchical clustering. SIAM Journal

on Computing, 39(8):3633–3669, 2010.

[73] Michael Luby and Charles Racko↵. How to construct pseudorandom permutations from pseu-

dorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[74] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-linial stable

instances of max cut and minimum multiway cut. In Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 890–906, Philadelphia, PA,

USA, 2014. Society for Industrial and Applied Mathematics.

BIBLIOGRAPHY 133

[75] Charles F Mann, David W Matula, and Eli V Olinick. The use of sparsest cuts to reveal the

hierarchical community structure of social networks. Social Networks, 30(3):223–234, 2008.

[76] Frank McSherry. Spectral partitioning of random graphs. In focs, page 529. IEEE, 2001.

[77] Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, and Amr Ahmed. Gradient-

based hierarchical clustering using continuous representations of trees in hyperbolic space. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 714–722, 2019.

[78] Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering: Aver-

age linkage, bisecting k-means, and local search. In Advances in Neural Information Processing

Systems, pages 3097–3106, 2017.

[79] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-

tations. In Advances in Neural Information Processing Systems, pages 6338–6347, 2017.

[80] Richard Peng. Approximate undirected maximum flows in o (m polylog (n)) time. In Pro-

ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1862–1867. SIAM, 2016.

[81] C Greg Plaxton. Approximation algorithms for hierarchical location problems. In Proceedings

of the thirty-fifth annual ACM symposium on Theory of computing, pages 40–49. ACM, 2003.

[82] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.

In Proceedings of the forty-second ACM symposium on Theory of computing, pages 755–764.

ACM, 2010.

[83] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion

problems. In 2012 IEEE 27th Conference on Computational Complexity, pages 64–73. IEEE,

2012.

[84] F James Rohlf. Adaptive hierarchical clustering schemes. Systematic Biology, 19(1):58–82,

1970.

[85] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. In Neural

Information Processing Systems (NIPS), pages 2316–2324, 2016.

[86] Jonah Sherman. Breaking the multicommodity flow barrier for o (vlog n)-approximations

to sparsest cut. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE

Symposium on, pages 363–372. IEEE, 2009.

[87] Jonah Sherman. Nearly maximum flows in nearly linear time. In Foundations of Computer

Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 263–269. IEEE, 2013.

http://papers.nips.cc/paper/6325-hierarchical-clustering-via-spreading-metrics.pdf

BIBLIOGRAPHY 134

[88] Peter HA Sneath and Robert R Sokal. Numerical taxonomy. Nature, 193(4818):855–860, 1962.

[89] Sagi Snir and Satish Rao. Using max cut to enhance rooted trees consistency. IEEE/ACM

transactions on computational biology and bioinformatics, 3(4):323–333, 2006.

[90] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clustering

techniques. In TextMining Workshop at KDD2000 (May 2000), 2000.

[91] Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite program-

ming. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 526–527. Society for Industrial and Applied Mathematics, 2004.

[92] Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Tauman Kalai. Adaptively

learning the crowd kernel. In Proceedings of the 28th International Conference on International

Conference on Machine Learning, pages 673–680. Omnipress, 2011.

[93] Madhur Tulsiani, 2019. Personal Communication.

[94] Michele Tumminello, Fabrizio Lillo, and Rosario N Mantegna. Correlation, hierarchies, and

networks in financial markets. Journal of economic behavior & organization, 75(1):40–58, 2010.

[95] Andrea Vedaldi and Brian Fulkerson. Vlfeat: An open and portable library of computer vision

algorithms. In Proceedings of the 18th ACM international conference on Multimedia, pages

1469–1472. ACM, 2010.

[96] Sharad Vikram and Sanjoy Dasgupta. Interactive Bayesian hierarchical clustering. In Inter-

national Conference on Machine Learning, pages 2081–2090, 2016.

[97] Kiri Wagsta↵ and Claire Cardie. Clustering with instance-level constraints. AAAI/IAAI,

1097:577–584, 2000.

[98] Kiri Wagsta↵, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clustering

with background knowledge. In ICML, volume 1, pages 577–584, 2001.

[99] Chenchen Wu, Donglei Du, and Dachuan Xu. An improved semidefinite programming hierar-

chies rounding approximation algorithm for maximum graph bisection problems. Journal of

Combinatorial Optimization, 29(1):53–66, 2015.

[100] Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness for

single-linkage clustering under ` p-distances. arXiv preprint arXiv:1710.01431, 2017.

[101] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In Advances in neural

information processing systems, pages 1601–1608, 2005.

	Abstract
	Acknowledgments
	Introduction
	Basic Concepts in Hierarchical Clustering (HC)
	Trees, Subtrees and Ancestors
	– How many trees are there? – Simply, too many!

	Global Objectives for Hierarchical Clustering
	Heuristics for Hierarchical Clustering
	Constrained Hierarchical Clustering
	Connections to Consistency in Phylogenetics
	Connections to Correlation Clustering and Rankings

	Further Related Work
	Structure of this PhD Thesis

	Gentle Overview of Main Results
	Black-box Approximations for Hierarchical Clustering
	Minimizing Dasgupta’s cost via Graph Cuts and Spreading Metrics
	Maximization HC: Variations on a Theme
	Two Hardness Results from Small-Set Expansion

	Hierarchical Clustering for Euclidean Data
	Hierarchical Clustering with Structural Constraints
	Connections to Rankings, Correlation Clustering and Phylogeny Reconstruction

	Preliminaries
	Background in Algorithms and Hardness
	Global Objectives for Hierarchical Clustering

	Black-box Approximations for Hierarchical Clustering
	Minimizing HC cost: Graph Cuts and Spreading Metrics
	Recursive Sparsest Cut
	Using Balanced Cut instead of Sparsest Cut
	Generalized HC Cost Function Approximation
	Convex Relaxations for HC
	O(logn) approximation for Hierarchical Clustering
	An LP-based O(logn) approximation via spreading metrics
	Hardness via Min Linear Arrangement and Small Set Expansion

	Maximization HC: Variations on a Theme
	Average-Linkage for similarity-HC is a tight TEXT
	Average-Linkage for dissimilarity-HC is a tight TEXT
	Beating Average Linkage via SDP for the Moseley-Wang HC Objective
	Beating Average Linkage via MaxCut for Dissimilarity HC
	An improved 0.42-approximation for Moseley-Wang
	Hardness for Moseley-Wang via Small Set Expansion

	Hierarchical Clustering for Euclidean Data
	Setting: Feature Vectors with Gaussian Kernel
	Performance of Average Linkage
	Greedy Cutting and Single-linkage.
	A Fast Algorithm based on Random Projections
	Gaussian Kernels with small

	Hard Instances with Gaussian Kernel
	Datasets from

	Hierarchical Clustering with Structural Constraints
	Motivation and Chapter Overview
	Minimizing Dasgupta's Objective with Triplets
	Modified Sparsest or Balanced Cut Analysis
	Soft Triplets and Regularization
	Dissimilarity HC and Constraint Dependencies

	Old Biology Problems: Triplets/Quartets Consistency
	Hardness for Rooted Triplets Consistency
	Hardness for Forbidden Triplets: Random is Optimal

	Conclusion & Open Questions
	Conclusion
	List of Open Problems and Conjectures

	Omitted Proofs, Discussions and Experiments
	Omitted Proofs from Chapters.
	Missing proofs and discussion in Section 6.2.1
	Missing proofs in Section 6.2.2
	Missing proofs in Section 6.2.3

	Experiments and Discussion from Chapter 6
	Experimental Results

	Deferred Proofs of TEXT
	Deferred Proofs of TEXT
	Deferred Proofs of TEXT

