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Abstract—We present the PROTEAN Spectre defense—the first
to be altogether comprehensive, covering all side-channels and
speculation; programmer-transparent, requiring no source modi-
fications; and programmable, tailoring its hardware protections to
software’s security needs. Several Spectre defenses offer the first
two features, but protect a hardware-defined subset of architec-
tural state from transiently leaking. Meanwhile, many Spectre-
vulnerable programs process secrets in ways that such rigid
protections cannot both performantly and fully secure. PROTEAN
overcomes this limitation through: (1) ProtISA, an ISA extension
that allows software to tell hardware which architectural registers
and memory bytes require protection from transiently leaking at
each program point; (2) ProtCC, a compiler that automatically
infers and programs ProtISA protections for vulnerable code
with minimal user input; and (3) ProtDelay and ProtTrack,
two alternative hardware mechanisms that performantly enforce
software-defined ProtISA protections. By flexibly tailoring a
hardware Spectre defense to a program’s data protection needs,
PROTEAN significantly reduces the overhead of fully securing
vulnerable programs. With ProtDelay/ProtTrack, it averages
0.27x/0.18x and 0.42x/0.34x of the runtime overhead of the best
secure baseline for programs with and without mixed security
needs, respectively, at lower/comparable hardware complexity.

Index Terms—Hardware security, hardware side-channel at-
tacks, Spectre defenses, hardware-software codesign

I. INTRODUCTION

Spectre attacks exploit hardware mispredictions to coerce
victim programs into transiently transmitting (leaking) their
secret data via microarchitectural side channels, threatening
the security of all programs that hold secrets in architec-
tural state. Common Spectre-vulnerable (hereafter, just vul-
nerable) applications include widely-deployed cryptographic
libraries [27]], [34], [[105]], web browsers [64], [68]], [88], [L11],
and operating system (OS) kernels [[65]], [67], [68], [139].

To address this threat, dozens of Spectre defenses have
been proposed. They vary in the types of side channels and
speculation they address, the source code modifications they
require, and the classes of vulnerable programs they target
(i.e., are tailored to protect, §III-B). Many Spectre defenses
are noncomprehensive (§X-1). These address only specific
side channels (e.g., data caches) or speculation primitives
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(e.g., conditional branch prediction), leaving programs vul-
nerable to transient leaks involving others. Some defenses
are comprehensive but non-programmer-transparent (§X-2)).
These require source code modifications, which limit their
applicability and ease of adoption. Comprehensive, program-
mer-transparent defenses can fully secure vulnerable programs
with minimal manual effort [13]], [32]], [138]], [[148]]. Yet today,
all such Spectre defenses target a single class of vulnerable
programs (Tab. [I), leading to performance or security limita-
tions for other classes, which we address in this paper.

These limitations manifest for many production programs
that do not fit squarely in any one of the four common classes
of vulnerable code (§IIT-A] Fig. [2). An example is the nginx
HTTPS web server (Fig. left), which features code from
all four classes. Because nginx contains unrestricted code,
which transmits (leaks) secrets architecturally, the only prior
defense capable of fully securing it is SPT’s secure baseline
(SPT-SB) [32], which blocks the transient transmission of
all architectural state. However, SPT-SB overprotects nginx’s
non-secret-accessing, static constant-time, and constant-time
components, incurring a huge and unnecessary performance
hit (Tab.[[). Other defenses, like STT [[148]] and SPT [32], that
would fully secure much of nginx’s code more performantly
are inadequate to fully secure the application as a whole.

A. This Paper

We present the PROTEAN Spectre defense (Fig. [I] right),
which is comprehensive, programmer-transparent, and—to ad-
dress the limitations above—programmable. PROTEAN (1)
makes its protections programmable via the ProtISA ISA
extension (§[-AT); (2) retains programmer-transparency by au-
tomating their specification with the ProrCC compiler (§[-A2);
and enforces them comprehensively in hardware with one of
two mechanisms, ProtDelay or ProtTrack (§-A3).

1) Programmable ProtSets with ProtISA: We observe that
all Spectre defenses implicitly define, at each program point,
a set of architectural state elements whose contents they
promise to prevent from transiently leaking. We call this a
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TABLE I: PROTEAN targets ( all vulnerable code classes (:
non-secret-accessing (ARCH) C static constant-time (CTS) C constant-
time (CT) C unrestricted (UNR). It secures them more performantly than
class-specific defenses [13]], [32], [138]], [[148] that target (v'/x%), secure
but do not target (v//x%), or do not secure (X) them. Percentages (from
Tab. [V) are runtime overheads for securing vulnerable programs with the

most performant available defense. "Extends AccessTrack (§VI-B2).

protection set (ProtSet). How a defense defines its ProtSet
per program point dictates which vulnerable code classes it
targets (i.e., is tailored to protect). Existing comprehensive,
programmer-transparent Spectre defenses define their ProtSets
via hardware-fixed rules, restricting them to target a single
class (Tab. [[). This limitation can be overcome by making
ProtSets software-programmable, such that software—from
any class or multiple classes—can specialize a defense’s
protections to target its specific data protection needs.

To this end, PROTEAN introduces ProtISA, which exposes a
software-programmable, hardware-tracked ProtSet via a single
instruction prefix, PROT. The presence of a PROT prefix for an
instruction specifies that its output register and input memory
operands contain data that must be protected from transiently
leaking. The absence of PROT indicates conversely that pro-
tection is not needed for either. For example, a prefixed PROT
mov rax, rdx protects output register rax; an unprefixed
mov rcx, [rsp] unprotects rcx and the eight bytes of
memory pointed to by rsp. Microarchitectural support for
ProtISA adds protection tag bits to a few structures in an out-
of-order processor, plus modest logic that uses these bits to
track a program’s software-defined architectural ProtSet as it
is dynamically updated by instructions’ PROT prefixes.

2) Automated ProtSet Programming with ProtCC: Prior
attempts to make hardware-tracked ProtSets programmable
have produced non-programmer-transparent defenses, which
require manual source modifications (. In contrast, we
observe that automated compiler analyses can conservatively
(for security) yet sufficiently precisely (for performance) pro-
gram a ProtSet for code with knowledge of only its class.

Thus, PROTEAN provides the ProtCC compiler, which
extends LLVM [74] to support automatically programming
ProtISA with a suitable ProtSet for code that belongs to or
combines any of the four jointly exhaustive vulnerable code
classes in Fig.|2| ProtCC inserts no PROT prefixes for non-sec-
ret-accessing code, as all instruction operands are guaranteed
to be public; such code runs unmodified on PROTEAN hard-
ware. For constant-time, static constant-time, and unrestricted
code, ProtCC runs register-only data-flow analyses to infer
a conservative ProtSet at each program point and then inserts

Fig. 1: PROTEAN can performantly and fully secure programs
containing components from different vulnerable code classes
(§I-A), e.g., the nginx HTTPS web server [100], which con-
tains unrestricted, constant-time, static constant-time, and non-
secret-accessing code. Prior defenses either do not secure this
program (e.g., STT [[148]], SPT [32]) or nonperformantly secure
it as if all components are unrestricted (SPT-SB [32])).

PROT prefixes accordingly. ProtCC flexibly targets multi-class
programs by allowing the user to specify code classes at a
component (e.g., library) and/or function granularity; we do
this for nginx (Fig. [T} in Also, while not our focus,
ProtCC’s inferred ProtSets can be refined though source-level
secrecy annotations or user-defined analyses (§V-C).

3) Enforcing Programmed ProtSets in Hardware with Prot-
Delay/ProtTrack: A Spectre defense enforces its ProtSet (i.e.,
prevents the transient transmission of its contents) via a
protection mechanism. All comprehensive Spectre defenses
feature hardware protection mechanisms [13]], [32]], [35],
[118], [138], [146], [148], as does PROTEAN. In particu-
lar, PROTEAN features two alternative hardware protection
mechanisms, ProtDelay and ProtTrack, which extend state-
of-the-art mechanisms AccessDelay (from NDA [138]) and
AccessTrack (from STT [148]]), respectively. Not having been
designed with programmable ProtSets in mind, AccessDelay
and AccessTrack provide only partial security and incur high
performance overheads when applied to ProtISA programs di-
rectly. ProtDelay and ProtTrack address both issues; ProtTrack
outperforms ProtDelay with higher hardware complexity.

4) Contributions: Our main contributions are as follows:
o ProtISA: A novel ISA extension that exposes a software-

programmable, hardware-tracked ProtSet.

o ProtCC: LLVM compiler passes that automatically program
ProtISA to target programs that belong to one or more of the
four important code classes covering all vulnerable code.

o ProtDelay/ProtTrack: Performant hardware protection
mechanisms for comprehensively enforcing ProtISA Prot-
Sets with different performance-complexity tradeoffs.

e PROTEAN (ProtISA+ProtCC+ProtDelay/ProtTrack): A
comprehensive, programmer-transparent, and programmable
Spectre defense that can target any vulnerable program.

o Security Evaluation: We sketch a proof that PROTEAN
fully secures all vulnerable programs, given an accurate
classification of their components/functions. We then use an
enhanced version of the AMuLeT fuzzer [41] to validate the
security of PROTEAN and the three state-of-the-art Spectre
defenses—STT, SPT, and SPT-SB—that serve as secure
baselines in our performance evaluation, with their hardware



support all implemented in gem5. We find new gem5 side
channels that leak the operands of division micro-ops and a
corner-case bug in all defenses inherited from STT’s gem5
implementation [40]], which we fix.

o Performance Evaluation: We compare the performance of
PROTEAN to the above secure baselines, atop a novel gem5
hybrid-core configuration resembling an Intel Alder Lake
processor, when securing various single-class programs
and multi-class nginx (Fig. [I). Averaged across single-
class programs, PROTEAN (ProtDelay/ProtTrack) exhibits
0.42x/0.34x the runtime overhead of the best secure base-
line. For nginx, it achieves 0.27x/0.18x the runtime overhead
of the only applicable secure baseline, SPT-SB. Meanwhile,
it exhibits less/comparable hardware complexity.

II. BACKGROUND

This section first provides background on hardware side-
channel attacks, including Spectre attacks (§II-A). Then, we
state our threat model assumptions (§II-B). Lastly, we review
formal hardware-software security contracts (§[I-C)), which we
use to validate our PROTEAN prototypes (§VII-B).

A. Hardware Side-Channel Attacks

In a hardware side-channel attack, a transmitter (unsafe
instruction in the victim program) modulates a channel (hard-
ware resource) in an operand-dependent manner, and a re-
ceiver (attacker) observes the channel modulation to infer the
operand value [66]. Many hardware resources have been impli-
cated as channels, e.g., caches [106], [144], [[145]], branch pre-
dictors [1], [38]], functional units [[10]], [47], memory ports [,
and others [45], [90], [[109], [[132]], [133]], [135]], [[140], [[143]].
An attacker observes channel modulations via their effects
on nondeterministic aspects of program execution [53], e.g.,
execution time [16]], [49], [[106], resource contention [1]], [&]],
[1O], [90Q], [[109], and more [11]], [[54], [69]l, 871, [115]], [130].

Transient execution attacks [25] are hardware side-channel
attacks that exploit hardware faults or mispredictions to steer
program secrets toward the sensitive (leaky) operands of
transient transmitters. A transient instruction is bound to
squash [25]]; a sequential instruction is bound to commit. Spec-
ulative instructions eventually become transient or sequential.

Prior work [25] classifies transient execution attacks as
Meltdown [79] or Spectre [68] if they exploit faults or
mispredictions, respectively. We focus only on Spectre, since
Meltdown has efficient hardware or microcode mitigations
on recent processors [58]], including the Intel Alder Lake
processor we model in

B. Threat Model

We assume a powerful attacker that observes a function of
the data passed to transmitters’ sensitive operands (§[I-BT)) and
can induce arbitrary speculation in the victim (§II-B2).

1) Transmitter Assumptions: Like the prior works that pro-
duced the secure baselines we evaluate (§VIII), we assume that
load [32], [[148] and store [32] micro-ops fully transmit their
address operands when they execute, and conditional/indirect

branch micro-ops [32f], [[148] fully transmit their condition/
target operand when they resolve. Unlike these works, we also
assume that division micro-ops partially transmit both of their
input operands when they execute (see for details).

We assume these transmitters because they collectively
modulate all known channels in the base gem5 O3 CPU
model [21]], upon which we implement PROTEAN. Our empir-
ical security evaluation (§VII-B) flags division micro-ops as
transmitters on the gem5 O3 CPU for the first time; prior work
identified the others [41]], [86]], [148]]. Nevertheless, PROTEAN
is fully parametric in the set of transmitters it considers; it
can be easily extended to handle new ones present on other
or future CPUs to ensure a comprehensive defense.

2) Speculation Assumptions: Like prior work [13], [46],
we consider an instruction to be speculative (i.e., possibly
architectural or transient) until it reaches the head of the
reorder buffer (ROB) in an out-of-order processor. We refer
to this definition as the ATCOMMIT speculation model[l| We
assume ATCOMMIT because it is the strongest speculation
model studied in prior work and captures all types of spec-
ulation, known [2], [3], [25], [62], [63], [111] or unknown.
The weakest speculation model studied in prior work is
CONTROL [142]. It defines an instruction to be speculative
until all prior branches have resolved, modeling control-flow
speculation only. In §VIIIl we evaluate all defenses for all
benchmarks under comprehensive ATCOMMIT and perform
one case study under noncomprehensive CONTROL (§[X-A6).

C. Hardware-Software Security Contracts

Recent work proposes formal hardware-software security
contracts, comprising an observer mode and an execution
mode, to describe which victim executions an attacker is
permitted to distinguish via hardware side-channels [48]]. An
observer mode defines what architectural state is exposed at
each victim execution step. Two observer modes, ARCH and
CT, capture standard software threat model assumptions [28]],
[48]. ARCH exposes all accessed data and thus models the
assumption of non-secret-accessing code (§III-A)). CT exposes
all unsafe transmitter operands and thus models the assumption
of constant-time code. An execution mode defines the control-
flow and data-flow paths along which a victim program
exposes observations. The SEQ execution mode encodes se-
quential paths, the standard programmer assumption [48§]].

An adversary model defines how an attacker may observe
channel modulations to distinguish victim program executions
on a microarchitecture [48[]. We adopt a powerful timing-based
adversary model in which surfaces all transmitters
assumed by our threat model (§II-BT) on the gem5 O3 CPU.

A microarchitecture upholds (resp. violates) a security con-
tract if for all (resp. some) programs whose contract execu-
tions are indistinguishable, their microarchitectural executions

IThe term speculation model denotes an attack model from prior work [32],
[142], [148]]. ATCOMMIT is equivalent to the formal definition of the FUTUR-
ISTIC speculation model [[142], but not its prior implementations [31], [40],
[141]], which classify an instruction as speculative until all prior instructions
executed without faulting or mispredicting. Such implementations would miss
memory order speculation [111]], for example.



IARCH: non-secret-accessing (unaccessed mem) I

CTS: static constant-time (secret-typed regs/mem)
CT: constant-time (untransmitted regs/mem)
UNR:  unrestricted (all regs/mem)

Fig. 2: Four jointly exhaustive classes of vulnerable code we consider
and what architectural state may hold secrets (in parentheses).

are indistinguishable (resp. distinguishable) per the adversary
model. Existing comprehensive, programmer-transparent de-
fenses uphold the ARCH-SEQ (NDA [138]], SpecShield [13],
STT [148]]) or CT-SEQ (SPT [32]) security contracts. A
defense that upholds ARCH-SEQ (resp. CT-SEQ) leaks no
data beyond that which is accessed (transmitted) sequentially.

III. MOTIVATING PROGRAMMABLE SPECTRE DEFENSES

This section motivates the need for a programmable Spectre
defense like PROTEAN. First, we partition vulnerable programs
into four classes (§III-A). Then, we survey comprehensive,
programmer-transparent Spectre defenses from the perspective
of our novel notion of a ProtSet (§II-B). These defenses
define their ProtSets via hardware-fixed rules, restricting them
to target a single program class.

A. Spectre-Vulnerable Program Classes

Spectre attacks threaten the confidentiality of all programs
that hold secret data in architectural registers (hereafter, re-
ferred to as registers) or memory. We call such programs
Spectre-vulnerable, or simply vulnerable, and divide them into
four increasingly broad classes (Fig. 2)—non-secret-accessing,
static constant-time, constant-time, and unrestricted—forming
a hierarchy, where each class is a subset of the next.

Non-secret-accessing (ARCH) code does not access secrets
architecturally, i.e., it never holds secrets in registers architec-
turally. Spectre attacks can cause ARCH code to transiently
load secrets into registers and transmit them. ARCH code
includes untrusted JavaScript [44] and WebAssembly [50]]
running in a browser and eBPF bytecode [117] running in
an OS kernel. ARCH code does not leak secrets on hardware
that upholds the ARCH-SEQ security contract (§I-C).

Constant-time (CT) code may access but does not transmit
secrets architecturally, i.e., it may hold secrets in registers
that are not passed to transmitters’ sensitive operands archi-
tecturally. Thus, all sensitive operands of architectural trans-
mitters exclusively hold public data. Spectre attacks can steer
architecturally or transiently accessed secrets toward transient
transmitters in CT code, which includes many modern cryp-
tographic services [4f], [14]], [17]-[19], [22], [27], [33], [37],
(391, 1891, [92]], [L10], [114], [120], [127]], [151]]. CT code does
not leak secrets on hardware that upholds CT-SEQ (§II-C).

Static constant-time (CTS) code is constant-time code that
only places secrets in registers that can be statically typed
secret per standard secrecy typing rules [29], [97], [137].
These rules mandate that all sensitive transmitter operands are
publicly-typed and all instructions with secretly-typed inputs

have secretly-typed outputs. So, cryptographic declassification
of secrets [[122] and patterns like “if (secret_key ==
0) regenerate_key ()” are forbidden. CTS code in-
cludes explicitly-typed cryptographic code, such as code writ-
ten in FaCT [29] or CT-Wasm [[137]] (without declassify
operations), and untyped cryptographic code for which a valid
typing is not provided but is known to exist [97]], such as many
primitives in OpenSSL [104] and libsodium [36].

Unrestricted (UNR) code refers to code that may architec-
turally access and transmit secrets, i.e., it can place secrets
in any data register, including ones that are architecturally
transmitted. Spectre attacks can coerce a non-constant-time
program into transiently transmitting its secrets far more
readily than the program does architecturally. Non-constant-
time code includes cryptographic routines that are not written
to be constant-time, including the OpenSSL [104] primitives
evaluated in our UNR-Crypto suite (§VIII-B2). Also, much of
the Linux kernel is non-constant-time, including page dedupli-
cation (e.g., Kernel Same-Page Merging [76]) or compression
(e.g., Linux zswap [78]] and zram [77]) modules.

Many important vulnerable applications span multiple
classes—i.e., they are multi-class programs—because differ-
ent components (e.g., libraries) and/or functions within the
application process secret data in different ways. For example,
the core logic for web servers like nginx [[100] is non-secret-
accessing [[118], but it invokes static constant-time, constant-
time, and unrestricted cryptographic primitives in OpenSSL
to encrypt and decrypt network traffic (Fig. [T). As another
example, the Linux kernel contains a mixture of non-sec-
ret-accessing (e.g., the ELF loader), constant-time (e.g., its
cryptographic services), and unrestricted code. Spectre attacks
can hijack any component of any class to transiently transmit
secret data. Today’s comprehensive, programmer-transparent
Spectre defenses are not designed with these kind of multi-
class programs in mind and thus exhibit performance or
security limitations when defending them (Tab. [I).

B. Protection Sets and Protection Mechanisms

We observe that all Spectre defenses implicitly define a pro-
tection set (ProtSet) and a protection mechanism. A defense’s
ProtSet may evolve as a program executes and contains,
at each architectural execution step, the set of architectural
state elements that the defense promises to prevent from
transiently leaking. We say that a defense profects data in
its ProtSet and unprotects data outside of it. A defense’s
protection mechanism is responsible for enforcing its ProtSet,
i.e., ensuring that no data in the set transiently leaks.

A Spectre defense secures a particular program class
(§IIT-A] Fig. ) if for each architectural execution step of each
program in the class, the defense’s ProtSet always contains
all architectural state elements that may hold secret data (in
parentheses in Fig. [2). Because the four vulnerable program
classes we identify form a hierarchy with respect to which
subsets of architectural state may hold secrets, if a defense
secures a broader program class (e.g., CT code), it also secures
all narrower classes (e.g., CTS and ARCH code).



We say a defense targets a program class if it secures that
class but not the next broader class in the hierarchy. This
notion approximates how precisely a defense’s ProtSet aligns
with a program’s protection needs. We find that defenses that
target a class outperform those that merely secure it (Tab. [I).

C. Hardware-Defined ProtSets (Prior Work)

Existing comprehensive, programmer-transparent Spectre
defenses (Tab. |I)) define their ProtSets via hardware-fixed rules,
so each exclusively targets one program class. STT [148]],
NDA [138]], and SpecShield’s [[13]] ProtSets always include all
memory but no registers, so they target ARCH programs and
secure no others (Fig. ). SPT’s ProtSet always includes all
registers and memory bytes that have not been architecturally
transmitted in the past by being passed to the sensitive operand
of a transmitter, directly or indirectly via invertible arithmetic
dependencies [32f]. Thus, it targets CT programs and secures,
but does not target, CTS and ARCH programs. SPT-SB’s
ProtSet always includes all registers and memory bytes [32].
Hence, it secures all four classes, but targets only UNR.

There is no comprehensive, programmer-transparent Spectre
defense that targets multi-class programs (§III-A). Such a
defense must be able to independently target each of these pro-
grams’ constituent single-class components/functions, which is
not possible with hardware-defined ProtSets.

D. Software-Programmable ProtSets (This Paper)

Rather than defining its ProtSet in hardware, our proposed
PROTEAN Spectre defense makes its ProtSet software-pro-
grammable. Doing so enables it to target vulnerable programs
of all classes, including those that are multi-class. In partic-
ular, PROTEAN consists of: ProtISA, an ISA extension that
exposes a software-programmable, hardware-tracked ProtSet
(§IV); ProtCC, a compiler that automatically, programmer-
transparently programs it (§V)); and ProtDelay and ProtTrack,
two alternative hardware protection mechanisms that perfor-
mantly, comprehensively enforce it (§VI).

IV. PROTISA

This section presents ProtISA, a novel ISA extension that
exposes a programmable ProtSet (§IV-A) to software with a
single new instruction prefix, PROT (§IV-B), and tracks this
ProtSet in hardware with modest microarchitectural support
(§IV=C). We introduce ProtISA for x86, as it is the only
major ISA with instruction prefixes. However, ProtISA can
be extended to work with any major ISA by storing PROT
prefixes separately in an instruction metadata table [|65]]. Note
that ProtISA simply enables software to define an architec-
tural ProtSet for hardware to track. This is distinct from the
AccessTrack/ProtTrack taint tracking protection mechanisms
in §VI| which use ProtISA to identify access instructions.

A. Requirements for Programmable ProtSets

Our goal for ProtISA is to expose a ProtSet to software that
compiler analyses can program automatically. Such compiler
analyses (e.g., in and prior work [30], [07])) infer at each

program point which accessed registers and memory bytes

hold potentially secret or definitely public data. So, to program

a ProtSet, these analyses need the ability to dynamically:

1) add/remove individual secret/public (a) registers and (b)
memory bytes to/from the ProtSet when they are written
to, i.e., protect/unprotect secret/public data when it is
produced; and

2) remove individual public (a) registers and (b) memory
bytes from the ProtSet when they are read from, i.e.,
unprotect (declassify) data that is newly inferred to be
public some time after it has been produced.

Note that marking individual registers and memory bytes as

protected when they are read from (i.e., classifying data some

time after it has been produced) is futile and thus not a require-
ment. If data was previously protected, this does nothing. If
previously unprotected, it may have already transiently leaked.

B. Programming a ProtSet with PROT

To satisfy the requirements above, ProtISA introduces a sin-
gle new instruction prefix, PROT. PROT-prefixed instructions
dynamically add their output registers to ProtISA’s ProtSet,
i.e., label them protected. Unprefixed instructions remove their
output registers and any read memory bytes from the ProtSet,
i.e., label them unprotected. Stores label written memory
bytes protected/unprotected according to the protection of
their data operand. ProtISA tracks protections at full register
granularity; subregisters (e.g., al) inherit the protection of
their corresponding full register (e.g., rax). For instructions
that decode into multiple micro-ops, each micro-op inherits
any PROT prefix on the instruction, and ProtISA’s semantics
are applied to each micro-op individually.

These simple and straightforward semantics offer surprising
flexibility for software programming of a ProtSet. Below,
we demonstrate how judicious use of PROT (or its absence)
can achieve all required capabilities in We color-code

/unprotected output registers and unprotected input
memory in following examples and figures (Figs. [3] and [).

1) Protect/unprotect register writes (req. 1a): To protect or
unprotect the explicit (e.g., rax) and implicit (e.g., rflags)
output registers of an instruction, PROT-prefix the instruction
(left below) or do not (right).

PROT add , rdx |
// rax,rflags |

add rax, rdx

// rax,rflags unprot
We conservatively handle subregister updates for unprefixed
(resp. PROT-prefixed) instructions like (PROT) mov al,bl
by not modifying the protection of (resp. protecting) the full
output register, in this case rax.

2) Protect/unprotect memory writes (1b): The memory
bytes written to by a store are protected or unprotected if its
data operand is protected (left below) or unprotected (right).
// rax | // rax unprot

PROT add [rsp!, rax | mov [rspl, rax
// rax, [rsp],rflags | // rax, [rsp] unprot

A PROT prefix has no effect on a store unless it contains an

internal load or arithmetic micro-op, which inherits the PROT
prefix (left above).



3) Unprotect register reads (2a): To unprotect an instruc-

tion’s input register (e.g., the data operand of the store mov
rspl, rax above), prepend an unprefixed identity register

move (e.g., mov rax,rax). Register moves are cheap on
modern hardware due to move elimination [60]].

4) Unprotect memory reads (2b): To unprotect the memory
read by a load, leave the load unprefixed (left below). However,
PROT-prefixing a load does not protect the memory it reads
(right), as doing so would be futile (§IV-A).

mov rax, [rsp] | prot mov ’
// rax, [rsp] unprotected | // rax

[rsp]

C. Microarchitectural Support for ProtISA

ProtISA tracks its software-programmed, architectural Prot-
Set in a speculative, out-of-order microarchitecture by dynam-
ically tagging three types of state with protection bits: rename
map entries, load-store queue (LSQ) entries, and L1 data cache
(L1D) lines. A set/reset protection bit indicates the tagged state
is architecturally protected/unprotected.

1) Tracking Register Protection: ProtISA tracks its register
ProtSet by extending each rename map entry with a protection
bit. When an instruction is renamed, ProtISA updates the
rename map entry of each output register with its allocated
physical register identifier and marks the entry protected/un-
protected if the instruction is PROT-prefixed/unprefixed.

2) Tracking Memory Protection: Precisely tracking mem-
ory protections would require a shadow memory [146], which
is impractical [32]. Instead, ProtISA conservatively tracks its
memory ProtSet through the LSQ and L1D only, as follows.

a) Protection-tagged LID: Like SPT [32], we extend
each byte in the L1D with one protection bit. Any memory
bytes not present in the L1D (or LSQ) are assumed protected,
i.e., L1D evictions cause ProtISA to forget what data was
unprotected. L1D protection bits require 48KiB/8 = 6 KiB
per Intel Alder Lake P-core and 32KiB/8 = 4KiB per E-
core in our evaluation (§VIII). Cacti [I2] approximates the
area required for a parallel L1D protection bit array for
22 nm technology (Cacti does not support Alder Lake’s 10 nm)
at 0.0418/0.0292 mm?2 for P-cores/E-cores, introducing 1.4%
area overhead for a P-core/E-core’s 3.0560/2.1527 mm? L1D.

b) Protection-tagged LSQ: Each LSQ entry is tagged
with a single protection bit, indicating the protection of
accessed memory bytes.

At execute, stores copy their data operand’s protection bit
into their LSQ entry’s protection bit. At writeback, stores copy
their LSQ entry’s protection bit to the L1D protection bits
corresponding to the written bytes.

Also at execute, loads either read from the L1D or forward
from a store in the LSQ. An LID load sets its LSQ entry’s
protection bit to the logical OR of the L1D protection bits
of the bytes it reads. Forwarding loads simply copy both the
protection bit from the store’s LSQ entry into their own. At
commit, loads with unprotected outputs clear the protection
bit of all accessed memory bytes in the L1D.

D. Security Properties of ProtISA

Attackers cannot use ProtISA to architecturally unprotect
victim secrets due to two key properties. First, an attacker can-
not use ProtISA to architecturally unprotect (via an unprefixed
instruction) architecturally inaccessible data, like data outside
its sandbox. Second, ProtISA embeds the ProtSet directly into
executable code (as PROT is an instruction prefix). An attacker
cannot architecturally tamper with another program’s ProtSet
(e.g., by removing PROT prefixes or triggering out-of-bounds
unprefixed loads) unless it can first overwrite or hijack victim
code, a more severe security concern [[125].

An attacker cannot use transient execution (e.g., by tran-
siently jumping to an unprefixed load of secret memory) to ar-
chitecturally unprotect registers or memory, since instructions
only update protections on retired state when they commit.
An attacker cannot exploit race conditions on shared memory
accesses to improperly unprotect it, since ProtISA’s memory
protection tags shadow the L1D, which maintains coherence.

E. ProtISA’s Interface with Protection Mechanisms

ProtISA’s purpose is to enable software to tell hardware
protection mechanisms (§III-B) what architectural state re-
quires protection from (transient) hardware side-channel leak-
age. Thus, ProtISA must expose protection tags throughout
the entire pipeline, including the out-of-order backend where
transmitters execute/resolve (§II-BT). While ProtISA’s tagging
of the LSQ and L1D already exposes protection bits to the
backend, its tagging of the rename map does not. Thus,
at rename time, ProtISA also tags each renamed input and
output physical register operand with its rename map entry’s
protection tag. Note that PROTEAN’s hardware protection
mechanisms (§VI) enforce that no data that ProtISA archi-
tecturally protects leaks transiently; future work could also
prevent this data from leaking architecturally (akin to [140]).

V. PROTCC

This section presents ProtCC, a set of compiler passes
that can automatically and programmer-transparently program
ProtISA ProtSets to target any of the four classes of vulnerable
code in Fig. 2] We explain ProtCC’s passes (§V-A)), compila-
tion requirements (§V-B), and possible extensions (§V-C).

A. ProtCC Passes

ProtCC features four passes (one trivial), whose outputs are
shown in Fig. for an example program in Fig. ProtCC
accommodates both single- and multi-class programs by allow-
ing each component/function to be instrumented independently
according to its corresponding (single) class (§III-A), which
the user specifies via ProtCC compilation flags.

1) ProtCC-ARCH (no-op): Securing non-secret-accessing
(ARCH) programs requires protecting architecturally unac-
cessed memory. Unmodified binaries, lacking PROT prefixes,
naturally program this ProtSet by unprotecting only architec-
turally accessed memory. So, ProtCC-ARCH is a no-op pass.



static int A[]; <foo>: # CTS
int foo(int *p) { <foo>: # ARCH 1 mov Rp,Rp
X = *p; 1 mov Rx, [Rp] 2 mov Rx, [Rp]
y = 0; 2 mov Ry,0 3 mov Ry,0
if (x >= 0) 3 cmp Rx,0 #rflags 4 cmp Rx,0 #rflags
y = A[x]; 4 jl .skip #rflags 5 jl .skip #rflags
return y; 5 mov Ry, [A+Rx] 6 PROT mov , [A+Rx]
} .skip: ret .skip: ret

(a) C source (b) ProtCC-ARCH (¢) ProtCC-CTS

<foo>: # CT

1 mov Rp,Rp

2 PROT mov , [Rp] <foo>: # UNR

3 mov Ry, 0 1 PROT mov , [Rp]

4 PROT cmp Rx,0 # 2 mov Ry,0

5 jl .skip # 3 PROT cmp Rx,0 #

6 mov Rx,Rx 4 31 .skip #

7 PROT mov Ry, [A+Rx] 5 PROT mov , [A+Rx]
.skip: ret .skip: ret

(d) ProtCC-CT (e) ProtCC-UNR

Fig. 3: Assembly output for each ProtCC pass on example code.
Instructions or PROT prefixes inserted by ProtCC are bold.

2) ProtCC-CTS: Recall that static constant-time (CTS)
programs only place secrets in registers that can be statically
typed secret per standard secrecy typing rules (§III-A). Thus,
ProtCC-CTS can automatically infer a conservative secrecy
typing for CTS code, without access to explicit secrecy labels,
by: (i) initializing all registers to be secretly-typed and then
iteratively (ii) applying such standard secrecy typing rules and
(iii) resolving type errors by retyping the culprit register as
public, until convergence. The authors of Serberus, a software
Spectre defense [97]], prove that this approach is guaranteed
to find a conservative secrecy typing of the program (i.e., all
secrets are typed as such). Specifically, our implementation of
ProtCC-CTS applies type rules 2, 6, 7, 8 in Definition 4.5 of
the Serberus paper. By forgoing its other type rules (which are
specific to the strict subclass of CTS code Serberus considers),
ProtCC-CTS may secretly-type some registers that Serberus
will publicly-type, but never vice versa.

After inferring which registers are secretly-typed, ProtCC-
CTS PROT-prefixes all instructions that define a secretly-
typed register. Then, it inserts identity moves (§IV-B3) to
architecturally unprotect each publicly-typed argument at func-
tion entry, ensuring all registers that may hold secrets are
protected. To see why all secret memory is protected, recall
again that memory can only be unprotected by an architectural
load/store to/from an unprotected and therefore publicly-typed
output/data register. Such memory must also hold public data.

Example (Fig.[3c): ProtCC-CTS initially types Rx secret,
but changes it to public, because it is passed to the transmitter
on line 6 (a load) along some control-flow path. At conver-
gence, ProtCC-CTS types the definitions of Rp, Rx, Ry (line
3) as public and the definition of Ry (line 6) as secret. Thus,
ProtCC-CTS inserts an identity move to unprotect Rp on line
1 and PROT-prefixes the (re)definition of Ry on line 6.

3) ProtCC-CT: Recall that constant-time (CT) programs
never place secrets in registers that are architecturally fully
(or partially) transmitted (§[I-BT). Thus, ProtCC-CT can safely

unprotect all registers that were fully transmitted in the past
or will be in the future architectural execution. Based on
this observation, ProtCC-CT implements two register-level
data-flow analyses to compute the set of registers at each
architectural program point that already fully leaked (or hold
constant data) along all prior control-flow paths or are bound
to leak along all future control-flow paths.

ProtCC-CT then (i) PROT-prefixes all instructions with any
output register (including rf1lags) that is neither past-leaked
nor bound-to-leak and (ii) inserts an identity move (§IV-B3)
along every control-flow edge on which a register becomes
newly bound-to-leak in order to label it unprotected. Case
(1) ensures all registers that may hold secrets are protected,
and case (ii) architecturally declassifies a previously protected
register once it must hold public data.

Example (Fig. [3d): ProtCC-CT analyses find that Rp is
bound-to-leak on function entry and Rx becomes bound-to-
leak along the not-taken direction of the branch (line 5—6)
since it will be architecturally transmitted by the load on line
7. Thus, ProtCC-CT inserts identity moves on lines 1 and 6
to unprotect Rp and Rx, respectively. Ry becomes past-leaked
after line 3, since it holds constant data. However, Ry is no
longer past-leaked when overwritten by the load on line 7;
thus, ProtCC-CT PROT-prefixes it.

4) ProtCC-UNR: Recall that unrestricted programs may
place secrets in any data register, including those that are fully
transmitted (§III-A). Thus, we can only unprotect registers
that never hold secret program data. Such registers include
the stack pointer (e.g., rsp on x86), registers initialized with
a constant, and registers computed solely from them (e.g., the
frame pointer, or loop indices starting at 0). ProtCC-UNR
PROT-prefixes all instructions with output registers except
those whose output registers are one of the aforesaid registers.

Example (Fig. Be): ProtCC-UNR only unprotects the
zero-initialization of Ry on line 2, but PROT-prefixes all other
instructions and thus protects all other registers and memory.

B. ProtCC Compilation Requirements

All secret-accessing code loaded into the address space,
including any secret-accessing shared libraries and JITed code,
must be compiled with the appropriate ProtCC pass. This
protects all architectural state that may hold secret data. Failing
to recompile such code allows secret data to leak transiently,
even with PROTEAN’s defenses enabled. Non-secret-accessing
code does not require recompilation (§V-AT]).

Code of an unknown class has multiple compilation options.
For users that want PROTEAN to guarantee that no secrets
will leak, it must be compiled with ProtCC-UNR, at a high
performance cost (§IX). Users willing to permit transient
leakage of a formally bounded amount of secret information
for performance can compile code with ProtCC-CT to uphold
CT-SEQ (§II-C), ProtCC-CTS to uphold CTS-SEQ (§VII-B)),
or forgo recompilation to uphold ARCH-SEQ (§II-C).

C. Possible ProtCC Extensions

Users willing to trade programmer transparency for addi-
tional performance can refine the ProtSets inferred by ProtCC
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Fig. 4: ProtDelay/ProtTrack, but not AccessDelay/AccessTrack, se-
cure the code in (@) by stalling the transient access transmitter
(line 5). For performance, ProtDelay speculatively wakes up line
2, and ProtTrack predicts line 3 is not an access, safely handling
mispredictions as shown in @

through manual annotations or custom ProtCC passes. For
the former, ProtCC can be extended to support the explicit
annotation of variables, expressions, and memory as public.
For the latter, users can either extend one of ProtCC’s existing
passes or provide a new pass entirely.

VI. PROTDELAY AND PROTTRACK

This section introduces the ProtDelay and ProtTrack hard-
ware protection mechanisms, which PROTEAN uses to per-
formantly and comprehensively enforce ProtISA ProtSets.
ProtTrack optimizes for performance at the cost of higher
hardware complexity; ProtDelay makes the opposite tradeoff.

A. Applying Access-Based Defenses to ProtISA ProtSets

ProtDelay and ProtTrack extend state-of-the-art hardware
protection mechanisms that delay waking up the dependents
of (AccessDelay, or taint-track the outputs of (Ac-
cessTrack, speculative access instructions, respec-
tively. AccessDelay and AccessTrack (our terms) define access
instructions as those that read potential secrets into output
registers [|148]] and typically assume they are loads [13]], [[138]],
[148]. For ProtISA hardware, we define them as follows:

Definition 1. On ProtISA hardware, access instructions are
instructions with protected register or memory inputs Ac-
cess transmitters are both access instructions and transmitters
(§IT-A) and have a protected sensitive input.

As we discuss next, applying AccessDelay or AccessTrack
directly to ProtISA’s access instruction definition results in a
partial and nonperformant defense, since these mechanisms
were not designed with programmable ProtSets in mind.

1) AccessDelay: NDA and SpecShield propose the Ac-
cessDelay protection mechanism [13], [138], which allows
all access instructions to execute and write back specula-
tively, but forbids them from waking up dependents until
the access becomes non-speculative. This prevents transient
access instructions (e.g., the add in Fig. fa) from propagating
their protected data inputs to dependent transmitters (e.g.,

2ProtISA’s definition of access instruction admits stores, whereas prior
work’s does not [[148]] because stores lack an output register.

the leak in Fig. @), which is sufficient to secure non-
secret-accessing programs (NDA’s and SpecShield’s target).
However, it does not prevent access transmitters (e.g., Leak

) from transmitting their own protected sensitive input
(e.g., ), a security violation for ProtISA programs, which
can access secrets.

Furthermore, AccessDelay unnecessarily blocks specula-
tive PROT-prefixed access instructions (e.g., PROT mov

,rdx in Fig. fa) from waking their non-transmitter
dependents (e.g., PROT add , 1), a performance issue.
Such dependents can safely execute speculatively, since they
re-access the protected register produced by the PROT-prefixed
access. That is, such dependents are themselves speculative
access instructions, whose wakeup of dependents AccessDelay
will delay as needed.

2) AccessTrack: STT proposes the AccessTrack protection
mechanism, which taints the output registers of access instruc-
tions and their dependents at rename, untainting them once
the youngest access instruction they depend on becomes non-
speculative [148]]. AccessTrack delays the execution/resolution
of transmitters with tainted sensitive inputs (§II-BI) until
untainted. Like AccessDelay, AccessTrack allows access trans-
mitters to transiently transmit untainted, yet protected, input
registers, which do not arise in non-secret-accessing programs
(STT’s target) but do arise in ProtISA programs. For example,
AccessTrack taints output of the access instruction PROT
add , 1 and thus delays leak ’s transmission of
its tainted input. However, AccessTrack untaints once
the add retires, allowing leak to transiently transmit its
untainted but still protected input, , a security violation
for ProtISA.

Plus, while AccessTrack requires identifying access instruc-
tions at rename, ProtISA cannot determine whether loads
read protected memory until they execute. So, AccessTrack
must conservatively taint the outputs of all loads. Its untaint
broadcast logic [148]] can further only untaint output registers
at commit, preventing early recovery from false positives that
read unprotected memory. Both are performance issues.

B. Adapting Access-Based Defenses for ProtISA ProtSets

ProtDelay and ProtTrack augment AccessDelay and Access-
Track, respectively, to extend their security guarantees to and
improve their performance on ProtISA programs, as follows.

1) ProtDelay: For security, ProtDelay extends AccessDelay
to additionally delay the transmission of access transmitters’
protected sensitive operands, until they are non-speculative.

For performance, ProtDelay relaxes AccessDelay’s wakeup
delay logic to only delay wakeup of the dependents of un-
prefixed, but not PROT-prefixed, accesses. This is safe be-
cause ProtDelay will delay these dependent access instructions
anyway, either in their execution/resolution if they are access
transmitters or in their wakeup of dependents otherwise.

2) ProtTrack: For security, ProtTrack extends AccessTrack
to also delay the speculative execution/resolution of access
transmitters, like ProtDelay. SPT augments AccessTrack in
the same way to target constant-time programs [32].
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Fig. 5: ProtTrack access predictor sensitivity study (x-axis: number
of predictor entries; we choose n = 1024). The access mispre-
diction rate is the fraction of retired non-PROT-prefixed loads with
unprotected outputs for which ProtTrack’s access predictor guesses
incorrectly at rename whether the load reads protected memory at
execute. ProtTrack’s runtime overhead is averaged across ProtCC-
ARCH-/ProtCC-CT-compiled SPEC2017int benchmarks on our P-
core configuration (§VIII-A), normalized to an unsafe baseline.

For performance, ProtTrack untaints loads that are predicted
to read unprotected memory (§VI-B2a), ensuring security by
falling back to ProtDelay when the prediction is wrong or an
untainted load forwards from a tainted store.

a) Secure Access Predictor: ProtTrack uses a simple 1-
bit predictor table with n = 1024 untagged entries, indexed by
the 10 least significant bits of load program counters (PCs).
Each entry stores whether a load accessed protected memory
the last time it executed. The total predictor size is 1024/8 =
128 bytes. We choose n = 1024 entries because our predictor
sensitivity study (Fig. [) shows that it attains a misprediction
rate within 0.6% and a runtime overhead within 0.2% of an
infinitely-sized predictor.

ProtTrack predicts whether a load is an access instruction
at rename time as follows. First, it indexes into the access
predictor. If the load’s entry is no-access and its output is
unprotected (computed in parallel by ProtISA also at rename,
§IV=CI)), ProtTrack predicts the load will not be an access
instruction and predictively untaints the load’s output (Fig. 4b).
Otherwise, ProtTrack taints the load’s output, as it is predicted
to read protected memory.

b) Secure Misprediction Recovery: ProtTrack’s access
predictor can generate two types of mispredictions: false neg-
atives, which predict no-access for a load that reads protected
memory and are a security risk; and false positives, which
predict access for a load that reads unprotected memory but are
benign aside from reducing performance. ProtTrack handles
false negatives by falling back to ProtDelay, i.e., delaying the
wakeup of all non-access dependents until the load retires.
This ensures mispredictions never cause data to speculatively
propagate from protected memory to an untainted, unprotected
register. Empirically, both types of mispredictions are rare
(Fig. B). We update the predictor with the load’s actual access
outcome (1 for access, 0 for no-access) when it retires.

c) Secure Tainted Store Forwarding: ProtTrack also falls
back to ProtDelay for untainted loads that forward from stores
of tainted data, but only stalls the load’s wakeup of dependents
until the store’s data operand becomes untainted (rather than
until the load commits). This prevents attackers from circum-
venting ProtTrack’s register taint tracking by speculatively
storing and reloading tainted data to/from memory.

3) Threat Model Considerations: ProtDelay and ProtTrack
comprehensively block all transient leakage of protected data
via all hardware side channels due to all types of speculation,
since they are fully parametric in their assumed transmitters
and adopt the ATCOMMIT speculation model (§II-B).

VII. SECURITY EVALUATION

This section evaluates PROTEAN’s security. First, we sketch
a proof that for all single- or multi-class programs (§III-A),
PROTEAN blocks all transient leakage of secrets and thus all
Spectre attacks [25] (§VII-A). Then, we empirically validate
that our gem5 [21] prototypes of PROTEAN hardware uphold
one security contract for arbitrary ProtISA binaries and one of
three others for single-class ProtCC binaries (§VII-B).

A. Formal Security Proof Sketch

ProtCC ensures that the architectural ProtISA ProtSet al-
ways contains all architectural state that may hold secret data:

Lemma 1. Given a program and a class-labeling of its
Sfunctions/components, ProtCC programs ProtISA (via PROT
prefixes) to always protect all architectural state that may hold
secret data in all of the program’s architectural executions.
Proof sketch. See class-specific arguments in

Then, ProtISA’s hardware support tags protected all architec-
tural state in ProtISA’s architectural ProtSet (and thus all secret
data, by Lem. [I):

Lemma 2. The set of retired architectural registers and
memory bytes that ProtISA’s hardware support tags protected
is a superset (due to implicitly tagging memory bytes outside
the LSQ/LID as protected) of those in ProtISA’s ProtSet.

Proof sketch. See ProtISA’s hardware implementation (§IV-C).

Lastly, ProtDelay/ProtTrack block the transient transmission
of all architectural state that is tagged protected by ProtISA’s
hardware support (and thus all secret data, by Lem. [2)):

Lemma 3. ProtDelay/ProtTrack prevent the transient trans-
mission of data derived from retired protected-tagged state.
Proof sketch. Such data can only leak via a transmitter’s sensi-
tive operand. If protected, ProtDelay/ProtTrack block its trans-
mission until the transmitter retires (§VI-B). If unprotected,
such data must depend on a speculative access instruction with
an unprotected output. In this case, ProtDelay/ProtTrack block
the data’s transmission until the access instruction retires—at
which point the data is officially architecturally unprotected.

Theorem 4. Given a program and a class-labeling of its func-
tions/components, PROTEAN prevents all transient leakage of
secrets in all of the program’s speculative executions.

Proof sketch. By Lems. [T]and [2] the ProtISA microarchitecture
tags protected all retired architectural state holding secret data.
By Lem. [3] ProtDelay/ProtTrack prevent all retired protected
state from leaking transiently. Thus, the combination, PROTE-
AN, prevents all transient leakage of secrets.



Violations, out of 200

Contract Instrumentation Unsafe PROTEAN
ProtDelay | ProtTrack
UNPROT-SEQ | ProtCC-RAND [189 (1)|0 (0) 0 (0)
ARCH-SEQ ProtCC-ARCH [200 (0)[0 (2) 0(5
CTS-SEQ ProtCC-CTS 200 (0)[0 (1) 0 (0)
CT-SEQ ProtCC-CT 200 (0)[0 (16) 0 (10)
CT-SEQ ProtCC-UNR 199 (1) 0 (20) 0 (17)
TABLE II: AMuLeT*-detected contract violations for ProtCC-

RAND/-ARCH/-CTS/-CT/-UNR test binaries on unsafe, ProtDelay,
and ProtTrack hardware. False positives (§VII-BI)) are in parentheses.

B. Empirical Security Evaluation with AMulLeT"

We empirically assess the security of our gem5 prototypes
of PROTEAN (ProtISA with ProtDelay/ProtTrack) and those of
the secure baselines (STT [40], SPT [31]], and SPT-SB [31]])
that we compare PROTEAN’s performance to in

1) AMuLeT*: We conduct this evaluation with AMuLeT* [
which extends AMuLeT [41], a fuzzing framework for testing
gem5 implementations of Spectre defenses against §II-Cstyle
security contracts, with the following enhancements:

a) New test generator: Adds a new LLVM-IR test gener-
ator based on llvm-stress [85]]. Unlike the assembly tests that
AMuLeT generates, these IR tests can be compiled by ProtCC.

b) Enhanced CT observer mode: Extends AMuLeT’s CT
observer mode, which exposes instructions’ PCs and accessed
addresses, to also expose individual address registersﬂ match-
ing our and prior defenses’ transmitter assumptions (§II-BT).

c) New observer modes: Adds new UNPROT and CTS
observer modes, which further extend CT to also expose all
data held in ProtISA-unprotected and publicly-typed (§III-A)
registers, respectively. These observer modes enable testing
PROTEAN against the UNPROT-SEQ and CTS—SEQ contracts.

d) New adversary model: Adds a new adversary model
(§II-C) that exposes to an attacker the cycle at which
each instruction reaches each pipeline stage. This adversary
model surfaces contract violations in STT/SPT/SPT-SB that
AMuLeT’s default cache+TLB adversary model does not,
since it exposes fine-grained secret-dependent timing infor-
mation observable to SMT receivers.

e) False positive detection: Largely automates detec-
tion of false-positive contract violations (§II-C) during post-
processing. While AMuLeT filters false positives during
fuzzing, it does not do so during post-processing. AMuLeT"*
classifies a contract violation as a false positive if the com-
mitted microcode sequences of the violating microarchitec-
tural executions differ in their PCs or accessed addresses—
indicating sequential, not transient, leakage. Such cases arise
due to AMuLeT bugs or identical committed instruction se-
quences taking divergent microcode paths.

2) Experimental Setup: We use AMuLeT™" to test the secu-
rity of a series of (gem5 hardware configuration, ProtCC pass,
security contract) triples. For each triple, we run 200 parallel

3 AMuLeT*: https://github.com/StanfordPL ArchSec/protean-amulet.git,

4x86 memory operands can have two address registers, e.g., mov rax,
[rsp+rdi]. AMuLeT exposes the sum rsp+rdi; AMuLeT* exposes rsp
and rdi individually.

instances of AMuLeT”*, with each instance configured to
randomly generate 200 LLVM-IR programs, instrumented with
the triple’s ProtCC pass. For 100 of the AMuLeT" instances,
we test 140 random inputs per program under AMuLeT*’s
default adversary model, which exposes data cache and TLB
tags. For the other 100 instances, we test 5 inputs per program
under our timing-based adversary model (§VII-BI). In total,
we test up to 100 x 200 x (140 + 5) = 2,900, 000 executions
per triple. Each AMuLeT" instance exits upon detecting its
first contract violation or completing all tests.

3) Evaluated Hardware Configurations: To validate
AMuLeT™ itself, we use it to test the unmodified gem5 O3
CPU (base commit 8381elc), our unsafe baseline in

To validate the security of the gem5 implementations of
PROTEAN and the secure baselines, we base PROTEAN’s and
rebase STT/SPT/SPT-SB’s onto the same aforesaid commit
and configure all to adopt the ATCOMMIT speculation model
(§I-B2). We then run AMuLeT* on them all in two stages.
First, we configure all defenses to assume that loads, stores,
and branches are transmitters, as these are the only gem5
transmitters documented in prior work (§II-BI)). During early
testing, AMuLeT" discovers a new transmitter (division micro-
ops) and a new bug in all defense implementations. So, we
extend all defense implementations to treat division micro-
ops as transmitters and also apply a bug fix to them. Then, we
rerun AMuLeT”* on the fixed defense implementations, which
we evaluate in

4) Experimental Results: Tab. [lI] presents final testing re-
sults for the unsafe baseline and PROTEAN specifically. We
describe AMuLeT*’s findings for all experiments next.

a) Unsafe baseline: We use AMuLeT” to test the unsafe
baseline against all security contracts with all ProtCC passes.
As expected, it detects hundreds of violations for each contract
(Tab. . We expect most are true positives, since AMuLeT*
filters many false positives (§VII-BI)); however, due to their
sheer quantity, we do not manually validate them all as such.

b) PROTEAN: We validate that PROTEAN upholds
UNPROT-SEQ for ProtISA binaries and ARCH-/CTS-/CT-SEQ
for ProtCC-ARCH/-CTS/-CT binaries. To obtain random Pro-
tISA binaries for testing against UNPROT-SEQ, we compile
each test with a ProtCC pass (designed for testing) that PROT-
prefixes a random subset of instructions (ProtCC-RAND in
Tab. [). PROTEAN upholds a stronger security property on
ProtCC-UNR binaries than any §[I-C}style security contract
can capture, as such contracts assume sequentially-leaked data
is always public, but in unrestricted code, it may be secret
(§II-A). So, we test PROTEAN against CT—-SEQ, the strongest
contract implemented in AMuLeT™, on ProtCC-UNR binaries.

Early testing results: While testing an early implemen-
tation of PROTEAN, AMuLeT" uncovered two security issues
that also impact all three secure baselines (STT/SPT/SPT-SB).

First, it detected that division micro-ops leak a function of
their n-bit divisor and 2n-bit dividend on the gem5 O3 CPU
by conditionally faulting if the divisor is zero or the 2n-bit
quotient overflows the n-bit output register. No prior work
has found that division micro-ops are transmitters on gemS5.


https://github.com/StanfordPLArchSec/protean-amulet.git

Second, AMuLeT"* found a previously unknown corner-case
bug in PROTEAN’s implementation of delayed branch resolu-
tion, which it borrows directly from STT/SPT/SPT-SB. In this
implementation, the execute stage notifies the commit stage
of the youngest branch misprediction detected in that cycle,
regardless of whether it is tainted/protected or untainted/un-
protected. As a result, an older tainted/protected branch can
conditionally block a younger untainted/unprotected branch
from initiating a squash depending on whether the former
was mispredicted. This creates a secret-dependent squash
signal that leaks the tainted/protected branch predicate. To
restore security, we patched PROTEAN and upstreamed fixes
to STT [96] and SPT/SPT-SB [93] to instead separately notify
the commit stage of the youngest untainted/unprotected branch
misprediction and all tainted/protected branch mispredictions
detected a given cycle.

Final testing results: AMuLeT" finds zero true-positive
contract violations in our final, fixed gem5 implementation of
PROTEAN, out of 28.3 million executed tests. We evaluate the
performance of this implementation of PROTEAN in

c) STT, SPT, and SPT-SB: Like prior work [41], we test
STT and SPT against the ARCH-SEQ and CT-SEQ contracts,
respectively, on unmodified binaries. We also test SPT-SB
against CT-SEQ on unmodified binaries, for reasons discussed
in We set a four-hour time limit for AMuLeT*
instances, due to STT/SPT/SPT-SB’s high host runtimes.

Early testing results: AMuLeT™ finds 9/31/65 true-positive
contract violations for STT/SPT/SPT-SB before patching them
to fix the two security issues found in

Manual inspection results: We manually discover a corner-
case implementation bug in SPT that AMuLeT" misses, which
causes the defense to improperly untaint the output register and
input memory of secret-accessing transient loads following
a pending fault. SPT’s implementation untaints the output
registers of loads (and all other instructions) at rename before
later tainting them upon insertion into the ROB. When a fault
reaches commit and initiates a machine clear, the O3 CPU
stops inserting dispatched (now transient) instructions into the
ROB. Crucially, however, it may still insert loads into the
LSQ and execute them. Because these loads bypass ROB
insertion, their outputs remain incorrectly untainted. So, when
they compute their address, SPT’s shadow L1 propagation
logic erroneously untaints the accessed memory bytes in the
L1D, which may contain secret data.

AMuLeT* misses this likely because our LLVM-IR instru-
mentation for suppressing architectural faults (like AMuLeT’s)
has the unintentional side effect of suppressing most transient
faults too. Suppressing architectural faults is needed to prevent
our randomly-generated tests from crashing gems5.

To restore security, we upstream and locally apply a patch
to SPT that unconditionally taints all output registers at
rename [94]. This ensures that the outputs of any transient
instructions bypassing the ROB are conservatively tainted,
avoiding the above issue, while still allowing SPT to assign the
correct taint for instructions that successfully enter the ROB.

Parameter P-core E-core
Clock frequency 3.4GHz 2.5GHz
Cores 8 cores 8 cores

Pipeline width 6-way fetch/issue/decode/rename
ROB/LQ/SQ size 512/192/114 entries [256/80/50 entries
Predictors 4K-entry BTB, 16-entry RSB, TAGE BP

Physical register file |280/332 int/FP regs. |213/207 int/FP regs.

L1D cache (private) |48KiB, 12-way 32KiB, 8-way

L1I cache (private) |32KiB, 8-way 64KiB, 8-way

L2 cache (private) |1.25MiB, 10-way 256KiB/2MiB,* 8-way
L3 cache (shared) 30MiB, 12-way

Coherence protocol Directory-based 3-level MESI protocol

TABLE III: Our gem5 processor configuration resembling an Intel
Alder Lake hybrid processor. Pipeline parameters (e.g., ROB size) are
taken from prior studies [72], [[73]. ?gemS does not readily support
Alder Lake’s mixed private/shared L2 for P-/E-cores, so we model
both as private but assign each E-core a 2 MiB L2 for single-threaded
workloads and a 256 KiB slice for multi-threaded ones.

Our SPT taint bug fix uncovers a latent performance issue in
its implementation: 32-bit register writes (e.g., mov eax, 42)
implicitly zero the upper 32 bits of the full 64-bit register (e.g.,
rax) but do not untaint them, so subsequent uses of the full
register (e.g., mov [rsp+rax],0) are considered tainted,
degrading performance. To restore performance, we upstream
and locally apply a patch to SPT that untaints the upper 32
bits of a register whenever its lower 32 bits are written to [95].

Final testing results: After applying the bug fixes in
§VII-B4b| and §VII-B4c, AMuLeT* finds zero contract vio-
lations for STT, SPT, and SPT-SB after running 2.7/0.3/1.2
million tests. We evaluate the performance of these fully
patched secure baseline implementations in

VIII. PERFORMANCE EVALUATION

In this section, we show that PROTEAN outperforms state-
of-the-art comprehensive, programmer-transparent defenses
when securing a variety of vulnerable programs.

A. Experimental Setup

We implement ProtCC as a machine IR pass in LLVM [82]E]
We implement ProtISA and ProtDelay/ProtTrack for the gem5
03 speculative, out-of-order processor [ZI]H We obtain a per-
formance comparison between PROTEAN and a given baseline
on a given benchmark as follows.

1) Compilation: First, we use LLVM Clang and Flang
17 [83]], [[84]] to compile each benchmark with and without the
appropriate ProtCC pass (§V-A). We refer to the former as the
ProtCC binary and the latter as the base binary. In the special
case where the class is non-secret-accessing, the base binary
is the ProtCC binary (§V-AT). We similarly compile base and
ProtCC versions of LLVM’s libc and libc++ libraries [80], [[81]]
and statically link them with each benchmark as appropriate.

2) Processor Configuration: We configure gem5’s O3 CPU
to resemble a 12th Gen Intel® Core™ i9-12900KS Alder Lake
processor [57]], which features a hybrid architecture with 8
Golden Cove performance cores (P-cores) and 8 Gracemont
efficiency cores (E-cores). See Tab. for details.

SProtCC: https://github.com/StanfordPLArchSec/protean-1lvm,
SPROTEAN gem5: https://github.com/StanfordPLArchSec/protean-gems5,


https://github.com/StanfordPLArchSec/protean-llvm
https://github.com/StanfordPLArchSec/protean-gem5

3) Single-Thread Simulation: We simulate single-thread
workloads on a single P-core or E-core using the SimPoints
methodology [121]. We select up to 10 representative 50-
million-instruction intervals (simpoints) for the base binary.
We then use the PinCPU methodology [9§]] to translate each
simpoint for the base binary into the equivalent simpoint of the
ProtCC binary that corresponds to the same application region,
using source locations as a progress marker. This ensures that
we evaluate PROTEAN on the same part of the benchmark as
our baselines. We compile both the base and ProtCC binaries
with —02 —g to ensure the availability of source locations.

We resume non-PROTEAN baselines from the base binary’s
simpoints and PROTEAN from the ProtCC binary’s translated
simpoints. To resume from a simpoint, we warm up each
simulated design for 10 million instructions before the in-
struction interval begins, and then record execution statistics
until the instruction interval ends. Finally, we take a weighted
sum of each simpoint’s simulated execution time to obtain the
benchmark’s estimated overall execution time.

4) Multi-Thread Simulation: We simulate multi-thread
benchmarks end-to-end on a full Alder Lake configuration,
with 8 P-cores and 8 E-cores (Tab. [[I).

5) Evaluated Spectre Defenses: We evaluate the unmodi-
fied O3 CPU (our unsafe baseline) and state-of-the-art com-
prehensive, programmer-transparent Spectre defenses with
hardware-defined ProtSets (our secure baselines)—STT, SPT,
and SPT-SB—on base binaries. We omit NDA and SpecShield
(§II-C), since STT is more performant [13]], [138], [148].
We run all evaluated defenses under the comprehensive AT-
CoMMIT speculation model (§II-B2)), unless otherwise stated.

We evaluate PROTEAN using either its ProtTrack or Prot-
Delay protection mechanism, running ProtCC-ARCH/-CTS/-
CT/-UNR binaries, for eight total defense configurations. We
suffix PROTEAN to denote the protection mechanism in use
and which ProtCC pass the binary was compiled with (e.g.,
PROTEAN-Track-CT for ProtTrack on a ProtCC-CT binary).
We omit a protection mechanism (e.g., PROTEAN-CT) to
denote both mechanisms paired with the same ProtCC pass
(e.g., PROTEAN-Delay-CT and PROTEAN-Track-CT).

We run the rebased implementations of STT, SPT, and SPT-
SB described in §VII-B3| with all security and performance
fixes described in §VII-B4b| and §VII-B4c| applied. We evalu-
ate the performance impact of these fixes in

B. Experiments

We evaluate PROTEAN on seven general-purpose, single-
class, and multi-class benchmark suites.

1) General-Purpose (SPEC2017, PARSEC): To gauge
PROTEAN’s performance when securing general-purpose code,
we evaluate all PROTEAN configurations and all baselines on
the single-thread SPEC CPU® 2017 speed (SPEC2017) [24]
benchmarks with reference-size inputs and the multi-thread
PARSEC [20] benchmarks with simsmall-size inputs. We
omit the cam4 SPEC2017 benchmark which exceeds a 2-day
timeout and roms due to a gemS crash. We omit PARSEC’s
bodytrack, facesim, fregmine, raytrace, vips,

PROTEAN PROTEAN

ARCH STT Delay | Track CTS SPT Delay | Track
SPEC | P-core|1.369| 1.299 | 1.089 || SPEC | P-core | 1.708| 1.388 | 1.259
2017 |E-core|1.143]1.110| 1.051 | 2017 |E-core|1.302]1.130| 1.100
PARSEC |1.169]1.022 | 1.007 PARSEC |1.409|1.177 | 1.076
PROTEAN SPT-| PROTEAN

cT SPT Delay | Track UNR SB |Delay | Track
SPEC | P-core | 1.708 | 1.527 | 1.422 | SPEC | P-core |2.949| 2.870 | 2.812
2017 |E-core|1.302]|1.212 | 1.176 | 2017 |E-core|2.081]2.041 | 2.002
PARSEC |1.409|1.270 | 1.191 PARSEC  |3.040]2.125|2.088

TABLE IV: Geometric mean normalized runtime of all eight of
PROTEAN’s single-class configurations on SPEC2017 and PARSEC.

%264, and streamcluster due to gem5 crashes, compile
errors, and 5-day timeouts.

2) Single-Class: We evaluate PROTEAN on representative
single-class workloads to demonstrate that PROTEAN outper-
forms all state-of-the-art defenses that target each class.

ARCH-Wasm: We compare PROTEAN-ARCH to STT on the
subset of the SPEC CPU 2006 benchmarks that compile to
sandboxed WebAssembly [S0], on reference-size inputs. We
use wasi-sdk [[136] to compile to WebAssembly, wasm2c to
transpile it to C, and Clang to compile it to a native executable.

CTS-Crypto/CT-Crypto: We compare PROTEAN-CTS/-CT
to SPT on cryptographic primitives that are static constant-
time (from [97]]) and constant-time (from [32]).

UNR-Crypto: We compare PROTEAN-UNR to SPT-SB on
three OpenSSL cryptographic primitives—modular exponenti-
ation (ossl.bnexp in Tab.[V), Diffie-Hellman key exchange
(ossl.dh), and elliptic curve addition (oss1.ecadd)—that
are not constant-time (curated by us).

3) Multi-Class (NGINX): To showcase how ProtCC enables
PROTEAN to performantly secure complex multi-class applica-
tions, we compare PROTEAN to SPT-SB on the nginx HTTPS
web server [100]], which mixes all four classes (Fig. . The
main nginx executable does not access secrets, so we compile
it with ProtCC-ARCH (§V-AI). Instead, it delegates secret
computation to OpenSSL [104]], which contains all classes
of code (including non-constant-time, §[II-A). We compile
OpenSSL with ProtCC-UNR for security, except for the 2/7/1
hottest ARCH/CTS/CT functions, which we identify via run-
time profiling, classify manually by examining the source, and
compile with ProtCC-ARCH/-CTS/-CT for performance. Like
prior work [118[], we use siege [[124], running directly on the
host, to connect a variable number of clients c, each issuing a
varying number of requests 7, to the gemS5-simulated server.

IX. PERFORMANCE RESULTS

Fig. [6] Tab. and Tab. [V] present the results to the
experiments described in §VIII|

A. General-Purpose Workloads (Fig. [6] Tab. [IV)

Fig. [ plots per-benchmark normalized runtimes for PRO-
TEAN-Track-ARCH/-CT and STT/SPT on SPEC2017 (on a P-
core) and PARSEC. Tab. reports the geomean normalized
runtimes for all defenses and core types. On a P-core, PRO-
TEAN-Track-ARCH/-CT averages less than one-fourth/two-
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Fig. 6: Normalized runtime of PROTEAN-Track-ARCH/-CT versus STT/SPT on the SPEC2017 benchmarks (*.s) on a P-core and PARSEC

(*.p) benchmarks on the full Alder Lake configuration.

PROTEAN PROTEAN
ARCH-Wasm | STT Delay [ Track CT-Crypto | SPT Delay | Track
bzip2 2.771]1.201 | 1.110 | bearssl 1.44411.278 | 1.265
mcf 3.270| 1.429 | 1.333 [ ctaes 1.372]1.129 | 1.006
milc 3.729(1.212 | 1.017 | djbsort 1.264|1.256 | 1.238
namd 2.860| 1.042 | 1.006 | geomean 1.358|1.219 | 1.163
libquantum 2.002|1.344 | 1.003 | UNR- SPT-| PROTEAN
Ibm 1.364|1.001 | 1.001 | Crypto SB |Delay | Track
geomean 2.533|1.195| 1.072 JossL.bnexp |2.590(2.628 | 2.624

PROTEAN |ossl.dh 3.137[2.566 | 2.548
CTS-Crypto | SPT 4y T Track [osslecadd  [2.897] 2.916 | 2.913
hacl.chacha20 | 1.008 | 1.068 | 0.999 | geomean 2.866(2.699 | 2.690
hacl.curve25519|1.026 | 1.071 | 0.991 | Multi-Class | SPT- | PROTEAN
hacl.poly1305 |1.158|1.000 | 1.001 | Web Server| SB |Delay | Track
sodium.salsa20 |1.000| 1.115 | 1.115 | nginx.clrl [2.746] 1.569 | 1.408
sodium.sha256 |1.174|1.073 | 1.073 | nginx.c2r2 [2.776]1.469 | 1.310
ossl.chacha20 [1.096| 1.002 | 1.002 | nginx.clr4 [2.778]1.472| 1.311
ossl.curve25519 [1.109| 1.118 | 1.101 [nginx.c4rl [2.775|1.473 | 1.311
ossl.sha256 1.367|1.062 | 1.061 |nginx.c4rd [2.787]1.428 | 1.267
geomean 1.112]1.063 | 1.042 | geomean 2.772|1.481| 1.321

TABLE V: Normalized runtime of PROTEAN on representative sin-
gle-class and multi-class workloads, simulated on a P-core.

thirds the overhead of STT/SPT, demonstrating how PROTEAN
can more performantly uphold established security contracts
(ARCH-SEQ and CT-SEQ, §II-C). While less performant than
PROTEAN-Track, PROTEAN-Delay outperforms all baselines
on average in each class and core configuration, despite Prot-
Delay’s comparative hardware simplicity. We investigate class-
specific reasons why PROTEAN secures single-class programs
more performantly than prior defenses in §[X-B]

1) SPT-SB vs. PROTEAN-UNR: Notably, SPT-SB incurs a
3.0x slowdown on PARSEC (Tab. [[V), whereas PROTEAN-
UNR incurs a much smaller 2.1x slowdown. To determine
why, we studied blackscholes.p, in which SPT-SB and
PROTEAN exhibit the largest gap in slowdown factor (3.4x vs.
1.2x), and found that all top ten transmitters stalled by SPT-
SB are fixed-offset stack accesses (e.g., mov rax, [rsp]
or ret)—instructions that ProtCC-UNR avoids stalling by
unprotecting the stack pointer (§V-A4).

2) ProtCC Overhead: We evaluate the runtime and code
size overhead of compiling with ProtCC’s three non-trivial
passes (§V-A) on the SPEC2017int benchmarks running on a
P-core. We find that ProtCC-CTS/-CT/-UNR binaries average
8.1%/20.2%/6.0% code size overhead and 2.7%/5.3%/1.3%
runtime overhead when PROTEAN’s protections are disabled.

ProtCC-CT binaries exhibit high code size and runtime over-
head primarily because they insert more identity moves than
ProtCC-CTS (ProtCC-ARCH/-UNR do not insert any). How-
ever, the gem5 O3 CPU does not implement move elimination
to elide identity moves (§IV-B3)); ProtCC-CT/-CTS binaries
would exhibit lower runtime overhead on hardware that does.

3) Protection-Tagged L1D Variants: We find that ProtISA’s
protection-tagged L1D (§IV-CZa) is critical to PROTEAN’s per-
formance, but tracking memory protection beyond the L1D has
diminishing returns. When disabled, PROTEAN-Track-ARCH/-
CT’s overhead increases from 12.0%/46.3% to 32.2%/57.0%
on the SPEC2017int benchmarks running on a P-core. When
the protection-tagged L1D is replaced with a shadow memory
that perfectly tracks memory protection, PROTEAN-Track-
ARCH/-CT’s drops to 4.5%/39.5%.

4) AccessDelay and AccessTrack: To approximate the per-
formance of AccessDelay/AccessTrack (§VI-A) under Pro-
tISA, we disable ProtTrack’s access predictor (§VI-B2Z) and
ProtDelay’s selective wakeup optimizations (§VI-BI). Do-
ing so adds a substantial +87.6%/+15.5% runtime over-
head averaged across ProtCC-ARCH-/ProtCC-CT-compiled
SPEC2017int benchmarks running on a P-core.

5) P-core vs. E-core: All evaluated defenses exhibit lower
overhead on an E-core than on a P-core for SPEC2017. We
attribute this to the E-core’s shorter speculation windows due
to its smaller ROB size (Tab. [[TI).

6) CONTROL Speculation Model: PROTEAN-Track-ARCH/
-CT average 8.2%/21.7% runtime overhead for SPEC2017int
running on a P-core under the noncomprehensive CONTROL
speculation model (§II-B2), whereas STT/SPT average 13.6%/
18.4%. PROTEAN-CT only performs worse than SPT due to
ProtCC-CT’s instrumentation overhead (5.3%, §[X-A2).

7) Secure Baseline Bug Fixes: Our security fixes for
STT/SPT/SPT-SB add +1.5%/+11.4%/+1.6% additional run-
time overhead on SPEC2017int running on a P-core. Our SPT
performance fix reduces the overhead to only +5.4%.

B. Single-Class Workloads (Tab. [V)

PROTEAN-Track exhibits less than one twentieth the run-
time overhead of STT on ARCH-Wasm, less than one half
the overhead of SPT on both CTS-Crypto and CT-Crypto,
and slightly outperforms SPT-SB on UNR-Crypto. PROTEAN-
Delay outperforms all baseline defenses by smaller margins.



1) ARCH-Wasm: To understand PROTEAN’s strong outper-
formance of STT on non-secret-accessing code, we identified
and examined the top ten transmitters that STT cumulatively
delayed the longest in the highest-weight simpoint for the
benchmark on which it performed the worst (milc). All of
them are loads dereferencing a pointer loaded from memory
by the preceding instruction, like mov ptr, [mem]; mov
data, [ptr]. Since STT unconditionally taints ptr until
the first load retires, it effectively serializes all load-load
dependencies. But, only 10% of those top ten dependencies
access protected data in ProtISA’s protection-tagged L1D. So,
PROTEAN only stalls 10% of those load-load dependencies,
allowing the other 90% to execute speculatively.

2) CTS-Crypto: PROTEAN-CTS outperforms SPT because
ProtCC-CTS is able to unprotect all publicly-typed registers—
i.e., registers that are fully or partially transmitted, through
direct or transitive register dependencies—whereas SPT can
only unprotect the strict subset of publicly-typed registers that
are fully transmitted. Thus, SPT protects more data, so more
protected data reaches transmitters, which SPT must therefore
stall more often than PROTEAN.

3) CT-Crypto: PROTEAN-CT outperforms SPT because
ProtCC-CT can detect and unprotect architecturally bound-to-
leak data at compile time before it leaks (§V-AJ), allowing
dependent transmitters to execute speculatively earlier. In
particular, since SPT cannot detect bound-to-leak data under
ATCOMMIT (§II-B2)), it must wait until the first transmitter to
leak this data becomes non-speculative (i.e., reaches the head
of the ROB) before it can unprotect the transmitted register.

4) UNR-Crypto: Notably, PROTEAN-UNR outperforms
SPT-SB on PARSEC (§[X-AT)) much more than UNR-Crypto.
We attribute this to the fact that PARSEC contains compar-
atively more stack accesses than OpenSSL non-constant-time
cryptography, so the latter sees less of a performance boost
from ProtCC-UNR’s unprotection of the stack pointer.

C. Multi-Class NGINX (Tab. [V))

PROTEAN-Delay/-Track average less than one-third/one-
fifth the runtime overhead of SPT-SB when securing the nginx
HTTPS web server. By compiling different components with
different ProtCC passes, PROTEAN is able to target its ProtSet
and thus defense to the code currently executing. In contrast,
SPT-SB—the only prior defense capable of securing nginx—
protects all nginx code as if it is unrestricted.

X. RELATED WORK

1) Noncomprehensive Defenses: Many Spectre defenses
are noncomprehensive, assuming a restricted set of channels or
speculation types and thus still allowing secrets to transiently
leak. Some defend against cache-based channels only [6],
(7], [61], (660, (750, (990, [107], [112], [113], [126], [142].
MI6 [23]] and Dolma [86] defend against cross-core and same-
thread, but not cross-SMT-thread, leakage. Many software
defenses target a single speculation type, like conditional [[15]],
[26]], (301, [52], [101], [102], [108], [[122]], [123], [131], [149],
[152] or indirect 9], [S3]], [129]] branch prediction; some target

multiple but not all [43]], [56], 590, [70], [97], [99], [103],
[119], [134] (e.g., memory order speculation [[111]]).

2) Non-programmer-transparent Defenses: OISA [146],
ProSpeCT [35], ConTEXT [118]], and SpectreGuard [42] rely
on explicit source-level secrecy annotations to label memory
as secret/public and prevent transient leaks of secret memory.
Like ProtISA, these defenses expose programmable ProtSets.
Unlike ProtISA, they cannot be automatically programmed by
standard compiler analyses (§V-A), since they do not support
dynamically protecting [35]], [42], [118] or unprotecting [35],
[42] written memory (requirement 1, §IV-A), or unprotect-
ing read memory [35]], [42], [118], [146] (requirement 2).
SafeBet [46], Okapi [116], and Perspective [[65] require pro-
grammers to modify memory layout, ensuring secrets are not
placed in architecturally accessed cache lines or pages, since
these can transiently leak unless explicitly reset.

3) Defense Optimizations: Prior work proposes security-
preserving optimizations for layering on top of Spectre de-
fenses (like PROTEAN). Rather than stalling transmitters with
tainted inputs, SDO [147] and Doppelganger Loads [71]]
speculatively execute them along predicted hardware paths
or with predicted addresses, respectively. InvarSpec [150],
Clearing Shadows [128]], and Levioso [51] enable earlier,
safe execution through compile-time transformations [|128]] or
by communicating static analyses to hardware [51]], [150].
ReCon [5] marks memory words unprotected if they were
previously leaked via load-load dependencies.

XI. CONCLUSION

We present the PROTEAN Spectre defense—the first that is
comprehensive, programmer-transparent, and programmable.
PROTEAN builds on the insight that performantly securing di-
verse real-world applications requires software-programmable,
rather than hardware-defined, protections against transient
leakage. ProtISA realizes this programmability via the PROT
prefix, introducing an architectural protection set that standard
compiler passes like ProtCC can automatically program and
adaptations of standard hardware protection mechanisms like
ProtDelay/ProtTrack can performantly enforce. With only one
set of hardware changes, PROTEAN fully secures Spectre-
vulnerable code with lower runtime overhead than prior com-
prehensive, programmer-transparent defenses. Future research
on ProtISA programming, e.g., using more advanced analyses
or user hints, stands to reduce PROTEAN’s overhead further.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

Our artifact is a Docker image containing the full source
code and precompiled binaries for our gem5 implementation
of PROTEAN’s ProtISA and ProtDelay/ProtTrack as well as
our LLVM-based implementation of PROTEAN’s ProtCC. This
artifact also provides scripts to run a subset of our PROTEAN
performance and security experiments for the purpose of
artifact evaluation as well as all experiments necessary to
reproduce all results tables and figures in the paper for the
interested reader.

B. Artifact check-list (meta-information)

Program: User must provide the ISO image for:

— SPEC CPU2006 (cpu2006-1.2.1iso, reference inputs,
3.8 GiB)

Included in the artifact:

nginx (v1.29.0, 0.2 GiB)

OpenSSL (v3.5.1, 2.6GiB)

HACL* (v0.4.5, 3.0 GiB)

BearSSL (commit 3d9be2, 0.2 GiB)

Binary: Prebuilt binaries in Docker image.

Run-time environment: Docker (v20+) on Linux host kernel
(v3.17+).

Metrics: Simulated runtime, normalized to unsafe baseline
(performance evaluation) and number of true-positive security
contract violations (security evaluation).

Output: PDF tables table-v.pdf (performance results) and
table-ii.pdf (security results). Expected performance and
security results can be found in Tab. |V|and Tab. [lI} respectively.
Experiments: Run Python scripts within Docker container.
How much disk space required (approximately)? 45 GiB
(Docker image: 30 GiB; experiments: 15 GiB).

How much time is needed to prepare workflow (approx-
imately)? 15 minutes, for downloading and loading Docker
image.

How much time is needed to complete experiments (approx-
imately)? 22 hours on a single core, or 2 hours on an unlimited
number of cores.

Publicly available? Yes.

Code licenses: BSD 3-Clause.

Workflow automation framework used: Snakemake [91].
Archived: https://doi.org/10.5281/zenodo.17857895
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C. Description

1) How to access: The artifact Docker image can be found
at https://hub.docker.com/r/nmosier/protean. PROTEAN
source code and instructions for building the docker image
from source can be found at https://github.com/StanfordPLA
rchSec/protean.

2) Hardware dependencies: The artifact requires a x86-64
host machine.

3) Software dependencies: Docker is required to launch the
artifact Docker image, in which all experiments are run. Users
must provide a copy of the SPEC CPU2006 benchmarks in the
form of an ISO image (e.g., cpu2006-1.2.iso). All other
software dependencies are preinstalled in the provided Docker
image.

D. Installation

To download, load, and start up the artifact Docker image,
simply run the following shell commands. Commands exe-
cuted on the host are prefixed with $; those executed within
the container are prefixed with #.
$ docker pull nmosier/protean:latest
$ docker run --name protean-container -it nmosier/

protean:latest /bin/bash
$ docker cp /host/path/to/cpu2006.iso protean-—

container:/protean/cpu2006.iso
# ./extract-spec-cpu2006-iso.sh

Note that you must execute the docker cp command in a
different terminal while the docker container is running. These
commands are also provided in https://github.com/StanfordP
LArchSec/protean, where they can be easily copied and pasted.

E. Experiment workflow

The Docker image contains Python scripts in the home
directory (/protean) to run the necessary experiments to
reproduce partial or full copies of all results tables and figures
in the paper. Each script (e.g., table-v.py) is named after
the paper table/figure it reproduces (e.g., Tab. and saves
the results table/figure as a PDF (e.g., table-v.pdf) that
can be compared against the version presented in the paper.

F. Evaluation and expected results

Since reproducing all results tables and figures (§A-GI)
takes approximately 500 days of total host runtime, we provide
instructions for reproducing a scaled-back subset of perfor-
mance (§A-FI)) and security (§A-F2) results.

1) Performance results: To reproduce a representative sub-
set of our key performance results in Tab. [V] run the following
shell command:

# ./table-v.py —--bench={lbm,hacl.polyl1305,bearssl,
ossl.bnexp,nginx.clrl}

Description: This simulates the unsafe baseline, PROTEAN
(both ProtDelay and ProtTrack), and the appropriate secure
baseline on the one benchmark for each class-specific suite in
Tab. |V| that exhibits the shortest host runtime (specified with
——bench).

Output: The script outputs a PDF, table-v.pdf, contain-
ing the normalized simulated runtimes of PROTEAN and the
secure baseline formatted into a table resembling Tab. |V| The
results of omitted benchmarks are marked with —.

Comparing to paper results: Normalized runtimes reported
in the artifact may vary slightly (less than a +0.07 difference
in normalized runtime, i.e., 7% runtime overhead) from
normalized runtimes presented in the paper’s Tab.

2) Security results: To reproduce our qualitative empirical
security results in Tab. [} run the following shell command:

# ./table-ii.py —--instrumentation=rand

Description: This tests the unsafe baseline and PROTEAN
(both ProtDelay and ProtTrack) against the UNPROT-SEQ
security contract on randomly PROT-prefixed ProtISA bina-
ries with the following scaled-down parameters compared to
For both the adversary models we evaluate (original
AMuLeT’s default adversary model and AMuLeT*’s timing-
based adversary model), we run 5 AMuLeT* instances (rather
than 100) per defense configuration, 50 programs per instance,
and 50 (resp. 3) inputs per program for AMuLeT’s default
(resp. AMuLeT"’s timing-based) adversary model.

Output: The script outputs a PDF, table-ii.pdf, con-
taining the number of true-positive and false-positive viola-
tions detected for each of the three defense configurations
(unsafe baseline, PROTEAN with ProtTrack, and PROTEAN
with ProtDelay). The results of omitted security experiments
are marked with -.

Comparing with paper results: The generated table should
report (i) at least one true-positive violation for the unsafe
baseline, demonstrating that AMuLeT" successfully detects
Spectre vulnerabilities, and (ii) zero true-positive violations
for PROTEAN with ProtTrack and ProtDelay. The number of
false-positive violations can be ignored, since they do not
indicate a true security issue and their count may vary from
those reported in Tab. [lI| due to reduced testing parameters and
randomness between runs.

G. Experiment customization

Beyond the main artifact evaluation, we provide additional
scripts for running all experiments necessary to generate
complete paper versions of all results tables and figures for the
interested reader (§A-GT)). These scripts can also be configured
via command-line options to only include the results of
specific experiments (§A-G2). Our evaluation infrastructure
can be extended to run new benchmarks (§A-G3)), benchmark
new hardware-software codesigns (§A-G4), and validate the
security of new hardware-software Spectre defenses (§A-G3).

1) Generating complete results tables and figures: We
provide scripts that run experiments for and generate PDFs
of complete results tables and figures in the paper:

# ./table-i.py --all # Generates Tab.
# ./figure-4.py —--all # Generates Fig.
# ./table-ii.py —--all # Generates Tab.
# ./figure-6.py --all # Generates Fig.
# ./table-iv.py —--all # Generates Tab.
# ./table-v.py --all # Generates Tab.
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Note that table-i.py, figure—-4.py, figure-6.py,
and table-iv.py require the user to provide and extract
an ISO image of the SPEC CPU2017 benchmarks using the
following commands:

$ docker cp /host/path/to/cpu2017.iso protean—

container:/protean/cpu2017.1iso
# ./extract-spec-cpu20l7-iso.sh

All scripts above accept an optional ——expected flag,
which instructs the script to generate the figures using
canonical paper results (saved in ./bench/paper and
. /amulet /paper), rather than artifact-reproduced results.

2) Generating partial results tables and figures: All scripts
in §A-GT]support selecting a specific subset of program classes
(with ——program-class for table-iv.py) or bench-
marks (with ——bench for all others) to run, as an alternative
to running all experiments with ——all. For example, the
following command generates a partial version of Fig. [6]
showing only results for the perlbench SPEC CPU2017
and the blackscholes PARSEC benchmarks:

# ./figure-6.py —-bench={perlbench.s,blackscholes.p}

These flags are documented in each respective script’s help
dialog (printed when passed the option ——help).

3) Running new  benchmarks: To add a new
benchmark to our performance evaluation, please see
bench/example/README . md, which contains instructions
for adding a toy example benchmark.

4) Evaluating the performance of other hardware-software
codesigns: To facilitate future research into hardware-software
codesign, we document how researchers can easily adapt our
performance evaluation infrastructure to evaluate their own
hardware-software prototypes in bench/HW-SW.md.

5) Evaluating the security of other hardware-software Spec-
tre defenses: We detail in amulet /HW-SW.md how security
researchers can easily adapt/extend our security evaluation
infrastructure to test their own hardware-software Spectre
defense prototypes.

H. Methodology
Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-revie
w-and-badging-current
o https://cTuning.org/ae
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