Automating Requirements Formalization: Using LLMs and
Low-Complexity Distinguishing Traces for Semantic Validation

Daniel Mendoza Anastasia Mavridou Andreas Katis Caroline Trippel
Stanford University KBR Inc. / NASA Ames KBR Inc. / NASA Ames Stanford University
dmendo@stanford.edu anastasia.mavridou@nasa.gov andreas.katis@nasa.gov trippel@stanford.edu
Abstract 1 Introduction

Translating natural language (NL) requirements into formal spec-
ifications is critical for verifying safety-critical systems, but it is
error-prone and time-consuming when done manually. While Large
Language Models (LLMs) can automate this translation, they often
produce incorrect outputs that require extensive validation. In this
paper, we propose ARTEMIS, an LLM-based framework that trans-
lates unstructured NL requirements into formal temporal logic (TL)
specifications. Our framework reduces validation effort through
three synergistic, automated techniques: (i) LLM Translation to
Structured NL: We use LLMs to translate unstructured NL require-
ments into structured NL, which has an unambiguous mapping
to TL. This intermediate representation reduces translation errors.
(ii) Sub-Specification Generation: We generate low-complexity exe-
cution traces (i.e., system behaviors) that correspond to candidate
specification fragments from the LLM translations. Users inspect
these and accept or reject them. (iii) Balanced Distinguishing Trace
Generation: We minimize the number of traces users need to in-
spect by pruning the candidate specification space. Each accepted
or rejected trace eliminates candidates logarithmically. We evaluate
ARTEMIS on five real-world safety-critical requirements datasets.
The results show that it achieves 1.57X higher translation accuracy
while reducing manual validation effort by up to 10.83X compared
to state-of-the-art baselines.

CCS Concepts

« Software and its engineering — Formal methods; Require-
ments analysis; - Computing methodologies — Natural lan-
guage processing.

Keywords

requirements formalization, temporal logic, large language models

ACM Reference Format:

Daniel Mendoza, Anastasia Mavridou, Andreas Katis, and Caroline Trip-
pel. 2026. Automating Requirements Formalization: Using LLMs and Low-
Complexity Distinguishing Traces for Semantic Validation. In 2026 IEEE/ACM
48th International Conference on Software Engineering (ICSE 26), April 12—
18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3744916.3787815

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only. Request permissions
from owner/author(s).

ICSE °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2025-3/2026/04

https://doi.org/10.1145/3744916.3787815

Thorough verification is required to guarantee, or enhance con-
fidence, that software systems will behave correctly. It is espe-
cially important for mission- or safety-critical systems (e.g., health-
care [16], aeronautics [14], aerospace [11], automotive [51], robot-
ics [50, 54]), where failures can lead to the disruption of critical
missions or pose serious risks to human safety.

Whether performed dynamically at runtime or statically using
formal methods (e.g., model checking [7]), thorough verification
relies on formal specifications to precisely define a system’s allowed
behaviors. Such specifications are typically expressed as TL formu-
las (e.g., using linear temporal logic (LTL) [47]), where each formula
encodes a set of allowed execution traces (i.e., system behaviors).
System requirements, however, are usually first written as plain Eng-
lish (unstructured NL) sentences [14, 16, 17, 23, 25, 28, 44, 49, 50, 57].
Unfortunately, manual translation of requirements to specifica-
tions is cumbersome and error-prone, even for formal methods
experts, limiting the use of thorough verification in practice [49].

Recently, automated generation of specifications from unstruc-
tured NL requirements has emerged as a compelling application of
natural language processing (NLP) methods, especially large lan-
guage models (LLMs) [6, 8, 10, 15, 19, 20, 27, 28, 33-35, 37, 38, 41, 52,
55]. These generate-and-validate approaches generate candidate
specifications for a given requirement and, as in manual transla-
tion, rely on manual validation to disambiguate them. The need for
manual validation stems partially from the inherent ambiguity of
unstructured NL, which often leads to multiple plausible candidate
specifications per unstructured NL requirement. Plus, NLP methods
can output blatantly erroneous specifications. To (hopefully) cover
many plausible specifications, generate-and-validate typically pro-
duces many more candidates than manual translation; thus, which
approach demands the least user effort remains unclear.

To manually validate candidate specifications, users inspect
them [4, 10, 41] or execution traces they admit [20, 24], possibly
with NL explanations [24]. Though, analyzing traces is more in-
tuitive; inspecting TL formulas can be as hard as writing them.
Existing trace-based approaches produce either simulation traces
for a single candidate [24] or distinguishing traces [20] between
pairs of candidates for a user to accept/reject. All produce traces that
cover full candidate specifications, often involving many variables,
making them complex and difficult to assess. While distinguishing
traces directly disambiguate candidates, existing methods may re-
quire inspecting O(n) traces to converge on the correct candidate
among n candidates. This becomes impractical for large n, e.g., for
generate-and-validate which often produces many candidates.

This Paper. We propose ARTEMIS (Automated Requirements
Translation and Evaluation with Minimal Interactive Supervision),
an LLM-based generate-and-validate framework that significantly

https://doi.org/10.1145/3744916.3787815
https://doi.org/10.1145/3744916.3787815
https://doi.org/10.1145/3744916.3787815

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

reduces manual effort compared to manual translation and exist-

ing generate-and-validate approaches. ARTEMIS comprises three

synergistic, automated techniques.

First, with LLM Translation to Structured NL, ARTEMIS uses
LLMs to generate structured NL requirements, rather than speci-
fications directly, from unstructured NL requirements. Structured
NLs (2, 24, 26, 32], originally designed to support manual translation
of requirements to specifications for non-experts, employ restricted
grammars with unambiguous mappings to TL. Using structured
NL as an intermediate representation (IR) reduces erroneous candi-
date specifications by leveraging LLMs’ stronger reasoning in NL
compared to TL. Consequently, LLMs generate fewer candidates to
produce plausible ones, reducing manual validation effort (§7.2).

Next, ARTEMIS introduces Sub-Specification Generation to pro-
duce distinguishing traces for fragments of full candidate specifica-
tions derived from structured NL requirements. Sub-Specification
Generation is enabled by decomposing a structured NL require-
ment into a tree, where child requirements are sub-requirements of
parent requirements. Because structured NLs define a finite num-
ber of specification templates (§2.2), ARTEMIS can derive a proxy
specification for each sub-requirement to capture some permissible
behavior of all full candidate specifications that could ever con-
tain it, restricted to the sub-requirement’s variables. Distinguishing
traces are then generated for proxies, producing traces with fewer
variables compared to generating traces for full specifications (§7.3).

Finally, with Balanced Distinguishing Trace Generation, ARTEMIS
reduces the worst-case number of traces that a user must inspect to
disambiguate n candidate specifications from O(n) in prior work [20]
to O(log(n)). It achieves this by generating distinguishing traces
that eliminate approximately half of all candidates when accepted
or rejected by a user.

Overall, this paper makes the following contributions:

e LLM Translation to Structured NL: We show that structured
NL IR reduces translation errors, and thus manual validation
effort, when automating specification generation with LLMs.

e Sub-Specification Generation: By using structured NL as a
translation IR and decomposing candidate structured NL require-
ments into sub-requirements, we enable generation of proxy
specifications, which produce low-complexity traces.

¢ Balanced Distinguishing Trace Generation: We develop an
efficient algorithm that enables a user to select one specification
out of n candidates by inspecting O(log(n)) traces.

o ARTEMIS: By combining the three techniques above, we estab-
lish, for the first time, LLM-based generate-and-validate as the
most automated approach to formalizing NL requirements.

e Evaluation: We use ARTEMIS to formalize real-world unstruc-
tured NL requirements from five datasets, covering safety-critical
domains like aeronautics [14], health care [16], and robotics [50].
Compared to state-of-the-art baselines [6, 10, 20, 28, 41], ARTEMIS
achieves 1.57X higher translation accuracy and, for requirements
that have more than 10 candidate specifications, reduces manual
validation effort by 2.52X on average (up to 10.83X).

2 Background and Related Work

We provide background on LTL (§2.1), review prior work translating
unstructured NL requirements to TL specifications (§2.2)—including

Mendoza et al.

FRETish [24], a structured NL we use to demonstrate ARTEMIS’s
translation IR—and discuss manual validation methods (§2.3).

2.1 Linear Temporal Logic Specifications

LTL [47] expresses properties over execution traces, where a trace
is a sequence of system states over time. LTL formulas are built over
a set of atomic propositions (evaluating to true or false), Boolean
constants (T, L), as well as logical operators of propositional logic:
- (negation), A (conjunction), V (disjunction), and — (implication).
LTL extends propositional logic with temporal operators: X¢ (next)
asserts ¢ holds in the next state; F¢ (eventually) asserts ¢ holds in
some future state; G¢ (globally) asserts ¢ holds in all future states;
¢U (until) asserts ¢/ holds in some future state, and ¢ holds at every
future state up to the state where holds. For example, =p A XFp
holds for trace =p; (—p; p)®, where “;” separates timesteps and “()«”
indicates an infinitely repeating sequence.

2.2 From Requirements to Specifications

System requirements are typically written in unstructured NL (§1).

We next discuss prior work that translates unstructured NL re-

quirements to TL specifications via (1) manual translation with

structured NL and (2) generate-and-validate with NLP methods

(see Prior Work:Translation box in Fig. 1).

Manual Translation with Structured NL. Manually translat-
ing unstructured NL requirements into formal specifications is an
error-prone and time-consuming task, even for experts. To sup-
port this process, Specification Pattern System (SPS) [13] and Easy
Approach to Requirements Syntax (EARS) [39] observe that specifi-
cations across domains often follow recurring patterns. Building on
this insight, structured NLs such as FRETish [24], SPIDER [32] and
PSP [2] define restricted NL grammars with deterministic mappings
to LTL specifications, enabling users to conveniently capture com-
mon patterns. A Structured NL grammar defines a finite set of fields,
each capturing a different requirement aspect. Each field offers tem-
plate options that express distinct TL semantics. A structured NL
requirement instantiates these fields by selecting a template op-
tion for each field and filling in its parameters. W.l.o.g., we use
FRETish as an IR throughout the paper to illustrate our approach
for ARTEMIS and use both FRETish and PSP for evaluation in §7.

A FRETish requirement contains up to six fields (**’ = required):
(1) scope specifies time intervals where the requirement is en-

forced, e.g., “while scope,” where scope is a Boolean expression;

(2) triggersa response subject to t iming to occur
at the time that the Boolean expression keyword first evaluates
to true with “ keyword,” or every time keyword evaluates
to true with “ keyword;”

(3) componentx is the system component upon which the re-
quirement is levied;

(4) shallx isused to express that the component’s behavior must
conform to the requirement;

(5) timing specifies when response shall happen, e.g., “imme-
diately,” “at next point,” “eventually,” “within N ticks,” subject to
the constraints defined in scope and ; and

(6) response=~ is the Boolean expression that the component’s
behavior must satisfy.

Automating Requirements Formalization: Using LLMs and Low-Complexity Distinguishing Traces for Semantic Validation

In the paper, we omit component and shall for brevity, since
they do not impact the specification semantics. We also refer to
timingand response together as t iming. For example, a plau-
sible translation of the unstructured NL requirement in Fig. 2 is:
“while !standby & support & !fail limit. at next point pullup”

A FRETish requirement may have multiple s, but
at most one of each scope and timing. Since timing is in-
terpreted relative to a , which is contextualized by a
scope, FRETish fields always follow the following order: scope
— — timing. The algorithm underlying the transla-
tion of FRETish structured NL into LTL is detailed in prior work [24].

Automatic Translation with NLP. Recent NLP advances have
inspired numerous efforts to automatically generate TL specifica-
tions directly from unstructured NL, e.g., using LLMs [6, 8, 10, 15,
19, 27, 28, 33-35, 37, 38, 41, 55] and related methods [20, 52]. Com-
pared to human translators, NLP-based translators often enumerate
many more candidate specifications to cover one that matches the
user’s intent, since they are prone to producing erroneous outputs.

2.3 Manually Validating Specifications

Manual validation is standard for resolving unstructured NL ambi-
guity and errors when formalizing requirements. It enables a do-
main expert to converge to one plausible specification—one consis-
tent with their interpretation of the NL. A requirement is ambiguous
if there are multiple semantically different plausible specifications
according to different experts. A specification is erroneous if there
is no expert that would deem it plausible. Unstructured NL is in-
herently prone to ambiguity, e.g., “latch an autopilot pullup,” which
appears in our running example (§3, Fig. 2), is ambiguous regarding
when to assert pullup and for how long.

Prior work (see Prior Work: Validation box in Fig. 1) proposes
manually validating candidate specifications by inspecting them or
traces they admit.

Inspecting Specifications. NLP-based automated translators [6,
8, 10, 15, 19, 20, 27, 28, 33-35, 37, 38, 41, 52, 55] ask users to man-
ually validate full specifications. Prior work asks users to inspect
full candidates and manually construct a counterexample trace
when a candidate does not match their interpretation of the require-
ment [4]. Upon receiving a counterexample, it leverages specifica-
tion learning [4, 18, 20, 22, 43, 45, 48, 56] to re-generate a candidate
specification consistent with new and previous counterexamples.

Recent work [10, 41] proposes to make LLM-generated specifi-
cations easier to inspect. nI2spec [10] employs unstructured trans-
lation decomposition, which instructs LLMs to decompose a trans-
lation task into simpler sub-tasks and combine their results into a
full specification. Then, it asks the user to inspect the generated
sub-specification of each sub-task and the full specification.

SYNTHTL [41] decomposes the same translation task into a logical
combination of sub-tasks (i.e., structured translation decomposition),
which produce sub-specifications that mechanically compose into
a full specification. The user inspects sub-specifications and their
logical structure, but never the full specification. However, SYNTHTL
attempts to overlay the structure of TL on unstructured NL to
perform decomposition, which restricts compatible inputs (§7.2).
Nevertheless, validating specifications (even sub-specifications [41])
by direct inspection can be as hard as writing them.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Prior Work: Translation (§2.2)
Manual w/ Struct NL
&>BE,-B,

Struct NL Req C

Prior Work: Validation (§2.3)
Inspect n @1 delete n-1
(Fuy 1@ delete 1

@y, D, ..., P> (Simulate n o >91 delete 0
TL Spec (Full) 1@ delete 1

Automatic w/ NLP’ Candi
andidates Distinguish o
" @ (Full, Pairwise) jocoe) @
Natural (™ ARTEMIS: Translation (s4) i
Language Unstruct Struct i i
Requirement Sub-Req Sub-Req ARTEMIS: Validation (§4-6)
Distinguish o
Vi (Sub-Spec, Balanced) d:l;‘:r:;/z
9@-» /

[t |&>wiong

delete ~n/2

Distinguish
(Sub-Spec, Balanced)
B B.-R - By, Dy, ..., D,

Decomposition =)
=152 n
Struct NL Req C. i TL Spec C;

Tree

Figure 1: Prior work and ARTEMIS translate an unstructured
NL requirement to a TL specification ®. Prior work produces
candidate specifications @1, ..., &, manually using structured
NL or automatically using NLP methods. The user validates
candidates via direct inspection, simulation, or pair-wise
distinguishing trace validation. Using LLMs, ARTEMIS auto-
matically decomposes and translates sub-requirements that
collectively imply full structured NL candidates. The user
validates the candidate specifications they imply by inspect-
ing fewer sub-specification-level distinguishing traces.

Inspecting Traces. Manually determining whether one trace rep-
resents an allowed system behavior is often easier than determining
whether a specification, which encodes a set of traces, precisely
captures all allowed behaviors.

FRET [24] uses simulation to produce traces that belong to one
specification, but, this does not directly disambiguate candidates.

LTLTalk [20] produces distinguishing traces, each of which distin-
guishes at least two candidate TL specifications. To generate a dis-
tinguishing trace, LTLTalk collects the most likely pair of candidates
(@1, D7) (according to an NLP model), and uses a model checker to
find a satisfying trace for the formula (®; A =®3) V (=®1 A O3). By
accepting/rejecting such a trace, the user is guaranteed to discard
at least one candidate. Given n candidate specifications, LTLTalk
can supply up to n — 1 traces to the user to converge to a single
correct specification, which is likely impractical for large n.

In general, manually determining whether a trace is allowed can
be difficult for complex requirements involving many variables.

Challenges for Generate-and-Validate. The burden of manual
validation renders it unclear whether generate-and-validate offers
any advantage over manual translation. To see why, suppose a
translation approach produces n = n, + n, candidate specifications,
where n, (ne) denotes the number of plausible (erroneous) candi-
dates. To converge to a single correct specification, the user must
inspect up to O(np + ne) TL formulas or traces. That is, manual
effort increases linearly in the worst case for each erroneous can-
didate. In contrast, expert human translators are unlikely to make
blatant translation errors, and typically only consider plausible
specifications. So, manual translation requires ~ O(n,) effort.

3 ARTEMIS: Approach and Prior Work

We now present ARTEMIS, our generate-and-validate framework
for translating unstructured NL requirements to LTL specifications.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Mendoza et al.

. i 2\
4 a ARTEMIS: Translation /ARTEMIS: Validation For each node in depth-first order \\
LLM Translation to N (3) Sub. icati (4) Disti Trace i
[~z | Unstructured Structured
gstructured NL (84) NLSub-Req NL Sub-Req (SSG, §5) (BDTG, 86) Validated
1. while !standby& - - Structured NL
i 0 B - While :stancbyde . ediatel < (pull
NL Requirement: A SK“;‘;Z‘;CD‘ support&!fail, B . 1. immediately pullup 1 (pullup) Requirement
E}xc?calw@ sensor e e 2. whenever Istandby& 9. at next point pullup ¢S (pullup) i
LI.VM,Lt’s, shall latch an support&!fail. B 2) Upon converge, visit next | while !standby& .
autopilot pullup whew D Py Ll support&!fail,
the piLot is not in B Exceedwyg' 1. upon limit, C Validation (84) upon limit
control. (not standby) sensor Limits C | 2, whenever limit, C “Could be scope, B| at next point pullup
and the system is ¥ n T — ,or
‘. shall Lateh an . immediately pullup ” °
S‘*ji?"’“’" W‘t“"‘“,L autonilot pultico | (R 1. while Istandby& $f(standby, L
failures (not apfail). ; 9. at next point pullup | suport&lfail, B SSG | | support, fail, B) BDTG 5 5
N L 2. whenever Istandby& ¢4 (standby, 2 L
,1\ . supporté&!fail. B support, fail, B) Y, Specification
4

Figure 2: NL to TL Translation with ARTEMIS: (1) generate a decomposition tree mapping unstructured sub-requirements to
candidate structured sub-requirements; (2) query the user to validate the decomposition of unstructured sub-requirements.
If rejected, return to (1). Otherwise, in depth-first order, for each node, (3) derive a proxy for each candidate, (4) generate
distinguishing traces, query the user to accept/reject the traces, and prune candidates inconsistent with user responses. When
no distinguishing traces remain for a node, proceed to the next; after visiting all nodes, the remaining candidates compose a

single full TL specification.

We organize the discussion into two main parts corresponding to
the key phases of the approach:

e Translation (§3.1): How ARTEMIS generates candidate specifi-
cations using LLMs and structured NL as an intermediate repre-
sentation compared with prior work (§2.2).

e Validation (§3.2-§3.3): How ARTEMIS enables users to validate
candidates through low-complexity, low-effort distinguishing
traces, compared with prior work (§2.3).

Fig. 1 provides a high-level comparison of ARTEMIS (bottom) with

prior work (top). While prior work either requires manual transla-

tion to structured NL or uses NLP methods to generate TL directly—
both followed by validation of full specifications or full-specification
traces—ARTEMIS automatically generates structured NL and vali-
dates using sub-specification-level traces. This combination enables

ARTEMIS to achieve higher translation accuracy while requiring

fewer, simpler traces for validation. For n = np +ne candidates with

ny, plausible and n, erroneous, prior generate-and-validate requires

O(n) manual effort and manual translation requires O(np) (§2.3),

whereas ARTEMIS requires O(log(n)) manual effort, establishing

generate-and-validate as the most automated approach (when ne is
subexponential in ny).

Fig. 2 illustrates ARTEMIS’s complete workflow on a real-world
requirement from the LMCPS dataset [14], which serves as our
running example throughout the paper.

3.1 LLM Translation to Structured NL

ARTEMIS introduces LLM Translation to Structured NL (§4), which
uses LLMs to produce candidate structured NL requirements that
deterministically map to TL specifications. Concretely, this step
takes as input an unstructured NL requirement and uses LLMs to
automatically generate a decomposition tree, where each node maps
unstructured NL sub-requirements to candidate structured NL sub-
requirements. For example, on the left side of Fig. 2 (see step 1: LLM
Translation to Structured NL), the input requirement “Exceeding
sensor limits [..] failures (not apfail).” is decomposed into three nodes
(A, B, C), each representing an unstructured sub-requirement. Node
B contains the unstructured sub-requirement “Exceeding sensor

limits”, which the LLM translates into two candidate structured
sub-requirements “ limit” and “ limit” both instances
of the FRETish field with different semantics.

In step 2 (Decomposition Validation, Fig. 2), ARTEMIS asks
the user to confirm that all unstructured sub-requirements (one
per node): (i) do not lose/hallucinate information from the input
requirement and (ii) could conceivably map to some structured
NL field (e.g., FRETish scope,
unstructured sub-requirement is rejected for a node, the user can
either ask ARTEMIS to regenerate the entire tree or manually fix it
and have ARTEMIS regenerate candidates only for that node.

Unlike prior LLM-based approaches that translate directly to
TL [6, 8, 10, 15, 19, 27, 28, 33-35, 37, 38, 41, 55], ARTEMIS’s trans-
lation to structured NL reduces erroneous candidate specifications
and enables decomposed translation without input restrictions.

,or timing). If an

3.2 Sub-Specification Generation

After Decomposition Validation passes, ARTEMIS visits decom-
position tree nodes in depth-first order and, to enable generat-
ing traces that distinguish the node’s candidate structured sub-
requirements, derives a TL specification for each candidate (step 3:
Sub-Specification Generation, Fig. 2). Existing structured NLs [2,
24, 26, 32] only define TL semantics for full requirements, i.e., they
do not provide semantics for individual fields or partial instanti-
ations in isolation. Yet, generating distinguishing traces for sub-
requirements requires defining their TL semantics independently.

ARTEMIS’s Sub-Specification Generation automatically derives
a TL specification, called a proxy, that captures each candidate’s
local TL semantics (detailed in §5). A proxy for a candidate struc-
tured sub-requirement (i) omits ancestor variables: excludes vari-
ables from parent nodes in the decomposition tree and (ii) optionally
omits descendant variables: represents each child node as an atomic
proposition instead of including variables from the child and its de-
scendants. In Fig. 2, consider node B with candidates “ limit, C”
and “ limit, C”. Proxies (]Sf;(limit, C), ¢£3(limit, C) for these
candidates (i) omit variables from B’s parent node A (i.e., standby,
support, fail), (ii) omit variables from B’s child node C (i.e., pullup),

Automating Requirements Formalization: Using LLMs and Low-Complexity Distinguishing Traces for Semantic Validation

and (iii) use an atomic proposition C to abstractly represent node
C’s semantics. As a result, traces for node B involve only limit
and C, making them simpler to inspect. Similarly, for node C with
candidates “immediately pullup” and “eventually pullup,” proxies
¢1C (pullup), ..., ¢9C (pullup) involve only one variable pullup.

Comparable prior work generates traces over full specifications
involving all variables [20]. In contrast, proxies enable generating
traces localized to specific sub-requirements, producing simpler
traces with fewer variables and localizing manual inspection effort
to one sub-requirement at a time.

3.3 Balanced Distinguishing Trace Generation

After deriving proxies for a node, ARTEMIS runs Balanced Distin-
guishing Trace Generation (BDTG) as shown in step 4 of Fig. 2.
BDTG (i) generates distinguishing traces between the node’s candi-
date proxies; (ii) asks the user to accept/reject each trace based on
their understanding of the node’s unstructured sub-requirement;
and (iii) prunes candidates whose proxies contain (do not contain)
a rejected (an accepted) trace. For example, for node C in Fig. 2,
the user is queried to accept/reject traces according to their under-
standing of unstructured sub-requirement “shall latch an autopilot
pullup” Thanks to proxies, all traces for node C involve only the
variable pullup, and thus, are easier to validate.

Once no distinguishing traces can be generated for a node,
ARTEMIS continues to the next node. This happens either when
there is only one remaining candidate for the node or all of its
candidates have the same proxy. From visiting all nodes, ARTEMIS
converges to a full Validated Structured NL Requirement (see right-
hand side of Fig. 2), and produces the corresponding TL specification
as defined by the structured NL.

Prior work produces distinguishing traces between pairs of can-
didate specifications [20], requiring O(n) traces in the worst case.
ARTEMIS’s BDTG considers all candidates simultaneously and aims
to rule out half with each accepted/rejected trace. This reduces the
worst-case number of distinguishing traces needed to converge to
a plausible specification from O(n) to O(log(n)) (detailed in §6).

Manual Effort. Human validation is a mandatory step in re-
quirements engineering, particularly within safety-critical domains.
In these areas, such as avionics (e.g., regulated by standards like
DO-178C [11]), even small specification errors can lead to cata-
strophic failures [3]. This necessity imposes a significant manual
validation burden. ARTEMIS is designed to reduce this manual bur-
den while maintaining the necessary human-in-the-loop oversight
mandated by industry regulations. Manual effort in ARTEMIS is
limited to (i) Decomposition Validation: confirming that unstruc-
tured sub-requirements faithfully represent the input and (ii) Trace
Validation: accepting/rejecting distinguishing traces. However, ef-
fort of the former only requires intuitive reasoning over NL (no
precise reasoning), which is negligible compared to the latter.

4 LLM Translation to Structured NL

This section details how ARTEMIS’s LLM Translation to Structured
NL (step 1 in Fig. 2) produces decomposition trees and validates
them with users. Recall from §3.1 that this step leverages LLMs’
superior reasoning in NL over TL to reduce erroneous outputs.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Natural
Language ”‘ No hallucination or info loss?
Requirement =
v
Unstructured —&-N' Unstructured _.->.)
[~~<| NLSub-Req ~~<| NL Sub-Req
Exceeding Exceeding sensor Limits ... when the pilot || @
A is not in control (not standby) B —an->®1
shall Latch an
B autopilot pullup

B[and the system. C F-&sip

C| is supported without failures (ot apfail).)——&-)‘I

,ortiming?

Could be scope,

Figure 3: Two decomposition trees for the same requirement
rejected during ARTEMIS’s Decomposition Validation (§4).

Decomposition Tree Construction. ARTEMIS uses LLMs to
construct a decomposition tree where: (i) nodes contain an unstruc-
tured sub-requirement and its candidate structured sub-requirements;
(ii) edges denote breaking a parent sub-requirement into simpler
child sub-requirements and (iii) child references are represented
by symbols that parents can reference. E.g., in step 1 of Fig. 2, parent
node A references its child node B using symbol B. The structured
sub-requirement at node A is “while !standby & support & !fail, B,
where B is a placeholder for sub-requirement node B.

An unstructured sub-requirement should be a substring of the
input unstructured NL requirement, or some NL phrase that is syn-
onymous with such a substring. Only structured sub-requirements
(not unstructured ones) must satisfy syntactic restrictions of the
structured NL. ARTEMIS produces a decomposition tree in a single
LLM prompt, following prompting strategies of prior work that
decompose requirements and translate directly to TL [10, 38, 41].

Deriving Full Candidate Specifications. A decomposition
tree compactly represents multiple full candidate specifications. We
derive them as follows:

(1) Initialize a set with the root node’s structured sub-requirements.
(2) For each structured requirement in the set, replace all reference
symbols with a structured sub-requirement from its child node.
(3) Repeat until no requirement contains reference symbols.
(4) Remove any ill-formed structured NL requirements.
For example, see step 1 in Fig. 2. Starting at root node A with
‘while !standby & support & !fail, B, B is expanded to form:
o “while !standby & support & !fail limit, C”
o “while !standby & support & !fail, limit, C”
Then, expanding C yields full candidate structured NL requirements.
Decomposition Validation. To support subsequent trace anal-
ysis (step 4 in Fig. 2), users must be able to determine whether
a trace is allowed or disallowed with respect to the unstructured
sub-requirements. This is possible if the sub-requirements faithfully
represent the input requirement without losing or hallucinating in-
formation. To this end, users must confirm that (i) the unstructured
sub-requirements collectively preserve all information from the
input and (ii) each unstructured sub-requirement could plausibly
map to one or more structured NL fields.
Fig. 3 zooms into step 2 of Fig. 2 showing two rejected decompo-
sition attempts (left and right) for our running example.
o Left example (information loss): Each unstructured sub-requirement
(of nodes A and B) is confirmed to map to a FRETish structured
NL field (thumbs up on each node). However, the user rejects

<

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

the overall decomposition (thumbs down, top left) because in-

formation is missing: no sub-requirement captures the excerpt

“when the pilot is not in control [..] without failures (not apfail)”
o Right example (invalid field mapping): The decomposition pre-

serves all information from the input requirement without loss

or hallucination (thumbs up, top right). However, the user re-

jects node B’s unstructured sub-requirement “and the system C”

because it cannot be mapped to any FRETish field type.

In contrast, notice that the decomposition tree illustrated in Fig. 2
passes Decomposition Validation.

Importantly, Decomposition Validation requires low effort and
expertise: users need only basic familiarity with structured NL fields
(designed to be intuitive) and do not need a detailed understanding
of their semantics. Because each unstructured sub-requirement is
usually a substring of the input requirement, validating it requires
no more effort than straightforward reading comprehension. In our
evaluation (§7.3), decomposition trees contained fewer than four
unstructured sub-requirements per requirement.

Decomposition Expressiveness. By requiring that structured
sub-requirements in a decomposition tree be valid structured NL
fields, ARTEMIS effectively uses LLMs to overlay the structured
NL grammar on top of an input unstructured requirement. Unlike
prior work [41], which overlays TL (§2.3), ARTEMIS’s approach
retains nearly all expressiveness of the input requirement, elicit-
ing better translation accuracy in practice (§7.2). Intuitively, this
is because structured NL is designed to capture common require-
ment/specification patterns (§2.2). Notably, all requirements in our
evaluation are amenable to decomposition by the structured NL
fields. Encountering a requirement that cannot be decomposed is
likely a sign that it corresponds to a new TL pattern not yet captured
by the structured NL, which is likely rare (§7.4). For input require-
ments that cannot be decomposed, ARTEMIS would produce a tree
where each of the nodes’ structured sub-requirements correspond
to one field of the structured NL grammar, and all unstructured
sub-requirements contain the full input requirement.

5 Sub-Specification Generation

Recall from §3.2 that structured NL grammars do not provide TL for
structured sub-requirements, which are required to generate traces
from them. The TL semantics of a single field (§2.2) often depends
on the instantiations of other fields, and thus, cannot be extracted
as subformulas of a full TL specification. Hence, isolating field-
level semantics is non-trivial and requires careful abstraction. This
section details how ARTEMIS solves this problem using the notion
of a proxy, i.e., a TL specification that captures a structured sub-
requirement’s local semantics and Sub-Specification Generation
(SSG), an automated procedure for deriving them.

Given a decomposition tree with N nodes, each with K structured
sub-requirements, prior work [20] must generate distinguishing
traces for all O(K™) full candidate specifications. ARTEMIS only
needs to disambiguate O(K) sub-requirements per node.

5.1 Proxy for Semantics of Sub-Requirements

ARTEMIS supports two proxy types: (i) Standard Proxy, which omits
variables used only in the node’s ancestors, and (ii) Abstract Proxy,

Mendoza et al.

(Inputs Canonicalize by C
. while !fail, B i | Struct NL Sub-Requirement
enever Ifail, B 1 | while tfail, 1pon limit C-
C*@ 2 | whenever !fail, upon limit, C-
[3 [while tfail, whenever limit, ¢-
| 4 [whenever fail, whenever limit, c-

J | Struct NL Sub-Requirement

@ 1 | immediately pullup
2 | at next point pullup

Full TL Specifications

Dy, Dy, ..., Pg \L =)
J

i| Witness i|j | FullTL Specification ®;;

1 (~fail Alimit)® =|1[1 (% I\

2 (~fail A limit)® =|2[1 P21 x

3| —fail A limit; (~fail A—limi)® |=>|3|1 @, i proxyf”

4| —fail Alimit; (fail A =limit)® |=|4]1| G(=fail Alimit - pullup) |==|1 pullup
1(2 P —=|2| X pullup
2|2 D22
3|2 D3, ;
42| G(=fail Alimit - X pullup)

Figure 4: Example of canonicalization and proxies for node
C of Fig. 2. Colors denote index i and j correspondence. Stan-
dard proxy proxyj.c for the j-th sub-requirement of node C~
uses only that sub-requirement’s variables and captures be-
havior common to all specifications ®; j containing it (Eq. 1).

which is a standard proxy that also omits descendants’ variables by
representing each child node with one atomic proposition.

Fig. 4 shows standard proxies for node C of our running example
(Fig. 2). For clarity, the tree in Fig. 4 has been simplified from Fig. 2
by removing variables support and standby in node A, and shows
only two candidate structured sub-requirements for node C.

Canonicalization. To define proxies formally, we first canoni-
calize the decomposition tree with respect to a target node v. Canon-
icalization reshapes the tree structure without changing the full
specifications it represents:

o All structured sub-requirements of node v and its descendants
collapse into a single child node v™.

e All structured sub-requirements of v’s ancestors and their rela-
tives (excluding node v and its descendants) are collapsed into a
single parent node o*.

Let ®; j denote the full TL specification corresponding to pairing

the ith structured sub-requirement of parent o™ with the jth sub-

requirement of child »™.

For example, in Fig. 4, the input tree (top left) is canonicalized
with respect to node C into a tree (top right) with parent node
C* and child node C~. Both trees represent the same set of full
TL specifications, and @1 2 corresponds to the full structured NL
requirement “while !fail, limit, at next point pullup””

Standard Proxy. A standard proxy proxy;.’i for sub-requirement
Jj of child node v~ contains only variables in sub-requirement j of
0™, and satisfies the following:

Vi. Hti‘”i’”ess. Vj. (tiWit”ess = (proxy;r - C[),-,j)) (1)

That is, for all sub-requirements i in parent node v™, there exists
some witness trace ti‘“’””ess over just the variables in v*, where
proxy;.’_ is equivalent to full specification ®; ;. In other words,

proxy;.’_ captures behavior over variables in the j-th sub-requirement

Automating Requirements Formalization: Using LLMs and Low-Complexity Distinguishing Traces for Semantic Validation

of node v~ that is common to all full specifications ®; ; that con-
tain sub-requirement j. Consequently, if a user rejects a trace from
proxy;’ , then for all i in o™, there exists a trace in ®;, j that would
be rejected by the user. Similarly, if a user accepts a trace from
ﬁ(proxy;’), there exists a trace in =(®; ;) that would be accepted.

Thus, any user response that is inconsistent with proxy;’_ implies
that, for all i, the corresponding full specifications ®; ; are also
inconsistent and can be safely eliminated.

E.g., for node C™ in Fig. 4, LTL formulas proxy1C7 = pullup and
proxyzc = Xpullup are proxies for “immediately pullup” and “at
next point pullup,” respectively. Observe that given valuations of
witness trace =fail A limit; (= fail A =limit)® for i = 4, all traces
that satisfy (dissatisfy) full specification ®42 = G(—fail A limit —
Xpullup) for i = 4, j = 2 likewise satisfy (dissatisfy) proxy, T =
Xpullup for j = 2. This shows that proxy? captures the behavior
over variable pullup exhibited by full specification ®4 5. This holds
for all i of node C* and for all j of node C~, satisfying Eq. 1.

Abstract Proxy. An abstract proxy extends a standard proxy by
introducing, for each child of node v in the original tree (before
canonicalization), an atomic proposition representing that child and
its descendants. This allows variables in descendants to be omitted
during trace inspection. Specifically, an abstract proxy abstractjz.’_
for node v~ includes the constraint:

A\ Geroxyl o pu) B)

ueCh(v) j’

where Ch(v) is the set of children of node v, p,, is an atomic propo-
sition representing child u and its descendants, and j’ ranges over
the standard proxies of child u. This ensures that, for every trace sat-
isfying abstract}’_, at each time step, atomic proposition p,, holds
(does not hold) iff all of child u’s standard proxies proxy;.‘,_ hold (do
not hold) at the same time step. In other words, given some trace in
abstract? , atomic proposition py, is consistent with the evaluation
of all of child u’s standard proxies at each time step. Hence, py,
captures the semantics of child u, allowing variables in child u and
its descendants to be omitted from traces shown to the user.

5.2 Deriving Proxies Automatically

Given a canonicalized node v™, SSG produces a standard proxy
for each of its structured sub-requirements, from which abstract
proxies are optionally derived. SSG uses two sub-routines: Proxy
Guess (guesses likely standard proxies) and Proxy Check (confirms
they satisfy Eq. 1). In this section, we provide an overview of Proxy
Guess and Proxy Check; full details can be found in our artifact [42].
Proxy Guess. For a canonicalized node v~, ARTEMIS’s Proxy
Guess inputs the set of full specifications ®; j, and guesses a set of
standard proxies proxy? for each of v™’s candidate structured sub-
requirement that likely satisfy Eq. 1. Each guess is a conjunction
of a subset of all full specifications ®; ;. If a standard proxy for a
sub-requirement satisfying Eq. 1 exists, Proxy Guess is guaranteed
to find it after finitely many guesses. Since Proxy Guess makes
only finitely many guesses, SSG always terminates. A standard
proxy does not exist only when all full specifications containing
the structured sub-requirement exhibit no common traces over its
variables (we did not encounter this in our evaluation, §7).

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Abstract proxies for a node are derived directly from the node’s
standard proxies. The abstraction constraint Eq. 2 is unsatisfiable
when the standard proxies of the child nodes do not exhibit any
common behavior. When the abstraction constraint is satisfiable,
ARTEMIS uses abstract proxies to generate distinguishing traces
since they often produce traces with fewer variables compared to
standard proxies; otherwise, ARTEMIS uses standard proxies.

Proxy Check. For a canonicalized node v~, ARTEMIS’s Proxy
Check procedure verifies that a set of standard proxies for v~ sat-
isfies Eq. 1. Proxy Check takes as input: (i) a set of LTL formulas
encoding one proxy proxy;.’i for each candidate j of o7, (ii) a set
of variables Var that are used in v™’s candidates, and (iii) a set of
LTL formulas encoding all full specifications ®; ;. For each i, Proxy
Check outputs a witness trace ¢ itness gyer the variables not in
Var, for which all proxies proxy;.’i and the full TL specification ®; ;
are equivalent (per Eq. 1). If no witness traces exist, Proxy Check
returns @. Note that a standard equivalence encoding between
proxy;.’i and ®; ; in a satisfiability model checker query is insuffi-

cient to derive tiW””ess

of Eq. 1, as it yields traces over all variables
of all ®; j. To generate tl.W”"ess independent from valuations of
variables in Var, ARTEMIS introduces the Proxy Check procedure.
In contrast, the abstraction constraint for abstract proxies, Eq. 2,
can be checked via a standard LTL model checker query.

Offline Proxy Generation. Instead of regenerating proxies for
every decomposition tree, SSG generates standard proxies for each
sub-requirement once offline. Because a structured NL expresses
a finite set of TL specifications, we can enumerate finitely many
possible canonicalized decomposition trees that each express all
possible full specifications (modulo variables names and boolean
expressions). Then, deriving a proxy for a sub-requirement in such
a tree captures common behavior among all full specifications that
could ever contain it. We conduct this derivation offline, and then,
to produce a proxy for a structured sub-requirement in a node in
any decomposition tree, SSG instantiates an offline-generated proxy
by replacing its variable names and Boolean expressions with those
used in the structured sub-requirement.

6 Balanced Distinguishing Trace Generation

Recall from §3.3 that ARTEMIS introduces Balanced Distinguishing
Trace Generation (BDTG), to reduce the worst-case number of
distinguishing traces from O(n) [20] to O(log(n)). This section
details how BDTG achieves this efficiency.

Given a set of candidate TL specifications S = {@1, P2, ..., dn},
BDTG generates distinguishing traces that minimize the worst-case
number of traces users need to inspect. For a trace t, let ngjj,, (1)
(ngisallow(t)) denote the number of candidates that (dis-)allow ¢. If
the user accepts trace t, then ngjgq1104(t) candidates are eliminated.
Else, ngj04,(t) candidates are eliminated. Intuitively, BDTG aims
to generate balanced traces that eliminate half of the remaining
candidates regardless of user response, maximizing worst-case num-
ber eliminations per trace. Concretely, its objective is to produce
balanced trace t* where:

i allow t"), isallow t* 3
g 3% (i (Mo (£). Mgisalow (1)) 3)

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

shall > & +————pullup; (~pullup)® € ($1A ¢z A b3 A b3 A by A bs A =6 A =7 A —pg A o)

Latch an T 8
autopilot -»*4— pullup; pullup; (~pullup)® € (~¢s A 7 /\m

pullup .
Unstruct *"p‘—ﬂpullup: (pullup)® € (=g A d9)
NL -
Sub-Req Trace 9

Trace Formula

Figure 5: Illustrates BDTG converging to the ninth candidate
“at next point pullup” of node C (Fig. 2). Given TL specifica-
tions @1, ..., p9 representing proxies for each of the candidates,
BDTG produces distinguishing trace between them so that
half of the remaining candidates are pruned per user query.

Fig. 5 illustrates Balanced Distinguishing Trace Generation (BDTG)
for node C of Fig. 2. Given nine candidate proxies ¢ . .. ¢9 for node
C’s structured sub-requirements, BDTG produces distinguishing
traces that prune half the remaining candidates with each user
query, converging to the ninth candidate in just three queries.

One could exhaustively enumerate all O(2") possible combina-
tions of TL formulas and their negations to find balanced distin-
guishing trace t*. However this is likely infeasible for large n.

ARTEMIS’s BDTG addresses this scalability challenge in three
ways. First, as with Sub-Specification Generation (§5), BDTG is ap-
plied to each node individually. Given a translation decomposition
with N nodes and K structured NL sub-requirements per node, the
search space size is O(2K) for each of the N nodes, which is signifi-
cantly smaller than considering all possible O(Z(KN)) full formulas.
Second, BDTG introduces a guided search procedure (§6.1) that
avoids redundant model checker queries by tracking partial order
relations (subset, mutual exclusion) between candidates. Finally,
BDTG introduces optional configurable hyperparameter d (§6.1)
to trade off global optimality of the objective (Eq. 3) for scalability.
If d is set, ARTEMIS partitions all candidates into groups of size
< d and exhaustively searches a group for a balanced trace. Our
evaluation (§7.3) shows that even with d < n, ARTEMIS achieves
results similar to the optimal number of queries to the user.

6.1 Guided Search by Partial Order Relations

Given candidate set S, BDTG first computes partial order relations
between pairs of candidates:

e §; is a subset of ¢; if every trace satisfying ¢; also satisfies ¢;.
e ¢; and ¢; are mutually exclusive if no trace satisfies both.

Consider an example set of n candidates where ¢; C ¢;41 for
i € {1,2,..,n — 1}. These relations imply that any trace formula
with @; A =¢j41 is unsatisfiable, reducing the search space from 2"
to n+ 1 possibly satisfiable trace formulas. In Figure 5, partial order
relations among node C’s nine candidates reduce the search space
significantly. E.g., candidates representing“immediately pullup” and
“eventually pullup” have a subset relationship, allowing BDTG to
prune unsatisfiable combinations.

After computing partial order relations, BDTG partitions the
candidates into groups of size < d. To minimize redundant model
checker queries, candidates are grouped to maximize the number of
partial order relations within each group. BDTG then searches for
a satisfiable trace formula per group, given that the trace formulas
of each group must be satisfiable in conjunction.

Mendoza et al.

Given constant d (d = 10 in our evaluation) and input size n,
BDTG’s time complexity is O(n® + %2”1) = O(n?) (significantly
lower than exhaustive search O(2")). Combined with Sub-Specification
Generation, this yields O(K?) search space per node for decompo-
sition trees with N nodes and K sub-requirements each.

6.2 Manual Effort Analysis

When hyperparameter d > n, BDTG is guaranteed to produce
a trace that achieves the maximum number of eliminations for
any user response (optimal for Eq. 3). The maximum achievable
eliminations vary by candidate set. For example, if all candidates are
mutually exclusive (no shared traces), then the maximum achievable
eliminations for any trace and any user response is one.

Given n candidates and hyperparameter d > n, we show that
BDTG converges to a single candidate in O(log(n)) queries to the
user for all but a vanishing fraction of possible input sets of candi-
dates. Observe that most of the trace formulas among all 2" possible
eliminate nearly half the number of candidates. Concretely, the frac-
tion of all possible trace formulas that eliminate at least (% - d)n
candidates approaches one as n grows:

n/2-1 n n
2 Zkif(%—cs)rﬂ (k) + (n/z)
2”

where § is an arbitrarily small positive constant (0 < § << 0.5).
It follows that, as n increases, the fraction of all possible input
candidate sets exhibiting a satisfiable trace formula that eliminates
at least (% —J)n candidates approaches one. Thus, BDTG converges
to a single candidate in O(logﬁ (n)) = O(log(n)) traces for all
but a vanishing fraction of inputs as n grows.

Given N nodes and up to K structured NL sub-requirements per
node, Sub-Specification Generation and BDTG together converge
to one candidate specification in O(Nlog(K)) traces in most cases
(much lower than all possible TL specifications O(K™)). In Figure 5,
node C has nine candidates. Without BDTG, prior work [20] would
require up to 8 traces (O(n)). With BDTG, ARTEMIS converges in
3 traces, demonstrating its practical benefits.

— lasn— o

7 Evaluation

We investigate the following two research questions:

e RQ1: How does ARTEMIS’s LLM-based translation approach
compare to prior work w.r.t. output specification accuracy?

e RQ2:How does ARTEMIS’s validation approach, Sub-Specification
Generation and Balanced Distinguishing Trace Generation, com-
pare to prior work w.r.t. manual effort?

7.1 Experiment Setup

Implementation and Hardware Setup. We implement ARTEMIS
in ~5K lines of Python, using open-source LTL model checkers
Spot [12] and nuXmv [5]. For all LTL-based approaches (§7.3), Spot
is queried first, falling back to nuXmv after a 1-second timeout.
We configured Spot and nuXmv to generate traces up to length 20.
Experiments were run on a MacBook Pro (M3 Pro, 18 GB RAM). The
LLM prompts use chain-of-thought [53] (CoT) prompting, which
instructs the LLM to generate intermediate reasoning that leads to
a final answer. The prompt contains the input requirement and the
structured NL grammar, and instructs the LLM to translate the input

Automating Requirements Formalization: Using LLMs and Low-Complexity Distinguishing Traces for Semantic Validation

Benchmark Vent. (-H) | Robo. (-H) | LMCPS (-H) | DeepSTL (-H) | Thales (-H)
requirements 121 (89) 46 (21) 15 (4) 14 (5) 22 (15)
plausible range | 1-64 (1-64) | 1-10 (1-6) | 1-20 (1-20) 6) 1()

Table 1: Summary of evaluated benchmarks.

DeepSTL

. directTL
Open Chain-of-Thought JirectTLt
Translation Decomposition

Unstructured ni2spec Tﬂ
Structured

Sub-T F NL2TL+
ub-Task Trees || Liftin SynthL
Structured NL ARTEMIS

Fine-tuned

Unstructured NL

Pre-trained

Figure 6: ARTEMIS vs. baseline prompting strategies.

to structured NL by identifying unstructured sub-requirements and
mapping each to k structured sub-requirement candidates (§4). All
code, benchmarks, results, baselines, and example prompts can be
found in our artifact [42].

Benchmarks. We evaluate ARTEMIS and prior approaches on
real-world NL requirements from diverse domains, with each bench-
mark containing requirements and corresponding expert-curated
LTL specifications. Due to NL ambiguity, some requirements have
multiple plausible specifications vetted by a domain-expert. Table
1 summarizes the size and number of plausible specifications per
benchmark (§2.3). We exclude synthetic benchmarks and those that
are unrepresentative of real-world requirements (e.g., [9, 10]).

The Ventilator benchmark [16] contains 121 NL requirements
for a safety-critical ventilator system. The LMCPS benchmark [14],
created by Lockheed Martin, contains 15 NL aviation requirements
for an autopilot FSM and a control loop regulator. The Robotics
benchmark [50] comprises 46 NL requirements from the nuclear
domain, focused on robot-human teamwork explainability. All three
sets were previously formalized in FRETish [16, 40, 50].

The DeepSTL benchmark [28] consists of 14 NL requirements
paired to STL expressions. The requirements originate from diverse
domains, including driving, robotics, and electronics, and were pre-
viously used to evaluate the accuracy of NLP-based specification
generation. Two TL experts approximated the LTL from STL by dis-
cretizing the time intervals and representing real-valued predicates
as atomic propositions, and then expressed them in FRETish.

The Thales benchmark [2] contains 22 NL requirements of an
industrial indoor positioning system with interactive mobile ad-hoc
devices. Prior work formalized these requirements in PSP [2].

For benchmarks previously formalized in FRETish (Ventilator [16],
Robotics [50], LMCPS [14]), we asked three domain experts to
enumerate additional plausible FRETish specifications per require-
ment by considering as many reasonable interpretations as possible.
Ventilator-H, Robotics-H, LMCPS-H, DeepSTL-H, and Thales-H de-
note subsets with plausible specifications larger than five symbols
(operators or atomic propositions), enabling a comparison of ap-
proaches on more complex specifications w.r.t. formula size.

Structured NLs. To evaluate the efficacy of ARTEMIS’s LLM
Translation to Structured NL, we use two state-of-the-art structured
NLs for its IR: FRETish (§2.2) and PSP [2].

PSP extends SPS [13] with 1) a structured NL grammar for ex-
pressing requirements, 2) timed variants of SPS patterns, and 3) new
patterns. Each PSP requirement includes a scope (defining the trace

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

interval where the requirement applies, e.g., after or before an
event) and a pattern, expressed as either an occurrence (e.g., exis-
tence/absence of an event) or ordering (e.g., a response to an event).

ARTEMIS produces proxies (§5) for FRETish/PSP identically,
using Eq. 1 for standard proxies and Eq. 2 to upgrade them to
abstract proxies. For each benchmark, ARTEMIS uses the same
structured NL IR as that of its plausible specifications. FRETish for
Ventilator, LMCPS, Robotics, and DeepSTL; PSP for Thales.

LLMs. We evaluate ARTEMIS and baselines using OpenAI’s
gpt-4.1 (GPT) [1] and Google’s gemini-2.5-flash (gemini) [21].

7.2 Evaluating Translation Accuracy

We compare the translation accuracy of ARTEMIS’s LLM Trans-
lation to Structured NL to a set of baselines (RQ1), all of which
translate unstructured NL requirements to TL specifications using
LLM prompting. Baselines use either pre-trained [8, 10, 34, 38, 41]
or fine-tuned [6, 28, 37] LLMs, the latter of which have undergone
additional training on curated datasets containing NL-TL pairs.

Baselines Prompting Pre-Trained LLMs. Baselines that prompt
pre-trained LLMs use CoT prompting [8, 10, 34, 38, 41], which can be
open (freely generated reasoning) or guided (specialized reasoning).

We implement two open CoT baselines, directTL and directTL-
t (Fig. 6), which leverage prompts designed after existing open
CoT approaches [8, 34]. Both instruct an LLM to translate an un-
structured NL requirement to a TL specification and generate an
explanation. In directTL-t, the prompt also provides all TL tem-
plates expressible by the structured NL (i.e., either FRETish or PSP)
and asks the LLM to select one. This makes directTL-t analogous
to ARTEMIS, with a key distinction: directTL-t provides a set of
TL templates, whereas ARTEMIS provides a structured NL gram-
mar. Thus, the directTL-t baseline isolates the effect of using LTL
templates without a structured NL grammar.

Guided CoT baselines use translation decomposition (Fig. 6) [6,
10, 37, 38, 41]. nl2spec [10] and CoT-TL [38] use unstructured trans-
lation decomposition (§2.3). CoT-TL adds external context via Se-
mantic Role Labeling (SRL) [46], while nl2spec and ARTEMIS do
not, making nl2spec a more suitable baseline for isolating the effect
of structured NL IRs on translation accuracy.

We categorize approaches using structured translation decom-
position (§2.3) as using lifting [19, 37] or sub-task trees [41] (Fig. 6).

Lifting translates an NL requirement to a TL specification in three
steps. First, a pre-trained LLM replaces domain-specific phrases
with placeholder symbols, producing lifted NL. Next, an LLM con-
verts the lifted NL into lifted TL. Finally, the LLM maps each place-
holder to an atomic proposition, yielding the final TL specifica-
tion. NL2TL [6] and Lang2LTL [37] are the only tools using lifting.
Both assume each placeholder maps to a single atomic proposition,
whereas in our benchmarks, placeholders map to Boolean expres-
sions over multiple atomic propositions. Lang2LTL’s embedding
cannot support mapping to Boolean expressions; thus, to produce
a representative baseline, we adapt NL2TL into NL2TL+ by adding
a prompt to map placeholders to Boolean expressions.

Like ARTEMIS, SYNTHTL (§2.3) uses LLMs to decompose a
translation task into a logical tree of sub-tasks.

Baselines Prompting Fine-Tuned LLMs. Fine-tuning an LLM
requires a large in-domain dataset. Since collecting one demands

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

B DeepSTL (FT)
Ventilator
100

. NL2TL+ (FT)
Robotics

. NL2TL+
LMCPS DeepSTL

nl2spec
Thales

Mendoza et al.

. directTL
LMCPS-H

directTL-t
DeepSTL-H

ARTEMIS
Thales-H

SynthTL

Ventilator-H Robotics-H

80

[=2]
o

accuracy

B
(=]
AN
R

N
o

i |I||| |I.| ‘ LK

.
’

Wi
]
Wi

’
|
]

A
BN NN
Araaaaa

=

o

gemini GPT gemini GPT gemini GPT gemini GPT gemini

GPT

gemini GPT gemini GPT gemini GPT gemini GPT gemini GPT

Figure 7: Specification accuracy of existing LLM prompting vs. ARTEMIS. Stripes in directTL-t/ARTEMIS denote use of PSP.

substantial manual effort and expertise, baselines using fine-tuned
LLMs [6, 28, 37] rely on manually curated unstructured NL-TL pairs
to support synthetic generation of supervised fine-tuning data.
For our baselines using fine-tuned LLMs, we fine-tune gem-
ini [21] on the DeepSTL dataset [28], since it comprehensively cov-
ers commonly used TL patterns across many domains (whereas [6,
37] derive training data from specific domains). The baseline Deep-
STL (FT) uses the fine-tuned LLM to translate unstructured NL
directly to TL without auxiliary CoT (Fig. 6). Since NL2TL [6] uses
a fine-tuned LLM for lifted NL to lifted TL translation, we also
evaluate NL2TL+ (FT), which uses a fine-tuned LLM for this step.
In all baselines and ARTEMIS, each output is checked for syntax
validity. If invalid, the syntax error is appended to the prompt and
the LLM is asked to fix it. Three failed attempts clear the prompt and
trigger a retry until producing k = 10 syntactically valid outputs.
All translation decomposition baselines (nl2spec, SYNTHTL,
NL2TL+) use few-shot prompts with input-output-reasoning ex-
amples to demonstrate decomposition; for consistency, we use each
baseline’s original few-shot examples. To isolate the impact of IRs
and prompting strategies, we conservatively configure ARTEMIS,
directTL, and directTL-t to use zero-shot prompting (no examples).
For all benchmarks except Robotics, all approaches’ prompts con-
tain a component-wise list of atomic propositions to use, following
common practice to enable checking generated/plausible specifica-
tion equivalence [6, 10, 37, 41]. For Robotics, a requirement-wise list
is used instead, since its components contain synonymous atomic
propositions, making component-wise lists redundant.
Orthogonal Translation Optimizations Other work on LLM-
based requirement to specification translation proposes strategies to
optimize an LLM’s outputs through including external context (i.e.,
retrieval augmented generation (RAG) [15, 55] or SRL [38, 46]) or
through refining LLM outputs via LLM self-refinement [30, 33, 35].
Optimizations using external context require a large database of
(rare) in-domain context/examples to be effective and may not
improve accuracy [36]. Self-refinement relies on feedback from
external oracles/tools to be effective, and without them, it is unlikely
to improve accuracy [29, 31]. Since we aim to measure the impact
of using different IRs, we omit such optimizations. We expect them
to benefit ARTEMIS similarly to how they benefit prior work.
Metrics. To measure accuracy, each approach independently
generates k = 10 candidates per requirement, and we report the
percentage of requirements per benchmark for which at least one
plausible specification is produced. For all approaches, plausibility
is assessed by LTL equivalence to a plausible LTL specification.
Results. Fig. 7 shows the accuracy of ARTEMIS and baselines
on each of the benchmarks. Using gemini/GPT, ARTEMIS achieves

1.9X/1.6X, 1.57X/1.73X, 1.25X/1.08X, 1.08X/1X, and 1.33X/2.83X
higher accuracy compared to the best baseline on the Ventilator,
Robotics, LMCPS, DeepSTL, and Thales benchmarks, respectively.
Across all benchmarks, ARTEMIS achieves 1.57X/1.43X higher accu-
racy compared to the best baseline using gemini/GPT, respectively.
Observe that the accuracy difference between ARTEMIS and the
baselines is larger on more complex requirements, i.e., all those
with “-H” appended. In fact, many baselines achieve 0% accuracy.
Using gemini/GPT, ARTEMIS achieves 3.19X/3.43X, 7X/-, 4X/2X,
1.25X/1X, and 1.67X/10X higher accuracy compared to the best
baseline on the Ventilator-H, Robotics-H, LMCPS-H, DeepSTL-H,
and Thales-H benchmarks, respectively. The “-” indicates that the
best baseline achieves 0% accuracy on the Robotics-H benchmark
with GPT, whereas ARTEMIS achieves 38% accuracy.
We identified 101 requirements with plausible specifications
that SYNTHTL cannot decompose, as they involve FRETish scope,
,or PSP scope fields that cannot be expressed as subfor-
mulas. On these requirements, SYNTHTL achieves 0%/0% accuracy
and ARTEMIS achieves 61.39%/26.73% using gemini/GPT, demon-
strating SYNTHTL’s decomposition expressiveness limitation (§4).

7.3 Evaluating Manual Validation Effort

To evaluate manual effort in producing a plausible specification
(RQ2), we measure how many candidate specifications an LLM must
generate to yield one. We then compare effort spent in converging
to a plausible specification using ARTEMIS and prior work.

Number of Candidates to Produce Plausible Specifications.
We configure ARTEMIS to query gemini to generate candidate
specifications until it produces one plausible specification, capped at
1000 candidates per requirement. To elicit unique candidates, each
LLM prompt contains all previously generated outputs and instructs
the LLM to generate the top k = 50 most likely specifications
that are different from the previous ones. For practical reasons we
use k = 50: setting k too small makes generating 1000 candidates
extremely costly, while setting k too large exceeds API limits on
the maximum number of output tokens per query.

Results. Fig. 8a (Fig. 8b) shows the cumulative distribution func-
tion, or CDF, of the number of (unique) candidates generated un-
til producing a plausible specification, among all requirements in
all benchmarks. A plausible specification was not produced for
14.22% of all requirements, indicating these requirements need
more than 1000 candidates. The maximum (99-th percentile) num-
ber of candidates to produce a plausible specification is 994 (854).
This result demonstrates that many candidates must be generated
per requirement to ensure at least one is plausible. The maximum
(99-th percentile) number of unique candidates is 726 (690). Thus,

Automating Requirements Formalization: Using LLMs and Low-Complexity Distinguishing Traces for Semantic Validation

1.0 1.0

0.5 1 l 0.5 r/

0.0+ T T T \ 0.0H : ; .

0 250 500 750 1000 0 250 500 750
candidates # unique candidates

(a) Candidates needed to produce (b) Unique candidates until pro-
a plausible specification. ducing a plausible specification.

Figure 8: CDFs of candidates. Blue (red) distribution indicates
success (failure) within 1000 candidates.

= LTLTalk ARTEMIS —— Joga(n)
[]

100

]
u - L.
PN PR e E—
0 100 200 300 400 500 600 700
unique candidates

traces
N U~
o wuv

Figure 9: Traces inspected to produce a plausible output.

distinguishing trace generation must handle upwards of hundreds
of specifications—many more than considered in prior work [20].

Baseline Comparison. We compare manual effort required by
state-of-the-art LTLTalk (§2.3) and ARTEMIS to converge to a plau-
sible specification using distinguishing traces. To simulate a user,
traces are accepted/rejected according to a plausible specification
produced by an expert. We use ARTEMIS (due to its higher transla-
tion accuracy, §7.2) to generate up to 1000 candidates per require-
ment, stopping early upon producing a plausible candidate (Fig. 8).
We augment candidates for each requirement with expert-curated
specifications to ensure at least one plausible specification per re-
quirement. Both ARTEMIS and LTLTalk are given the same set of
candidates; ARTEMIS expresses them as a decomposition tree and
LTLTalk expresses them as a set of LTL specifications. For all input
requirements, ARTEMIS produces a tree with less than four nodes,
and all unstructured sub-requirements are substrings of the input.
Since Decomposition Validation (§4) requires only intuitive reason-
ing over NL, this effort is negligible compared to trace inspection.
We set ARTEMIS’s grouping hyperparameter to d = 10 (§6).

Metrics. For each requirement in each benchmark, we collect:
the total number of traces to converge to a plausible specification,
the number of variables within each trace, the trace lengths,
and runtime overheads in generating traces. We calculate trace
length as the number of steps in its prefix and cycle.

Manual Validation Effort. Fig. 9 compares the number of
traces inspected vs. number of unique candidates using ARTEMIS
and LTLTalk for all requirements in each benchmark. Observe
that with n candidate specifications, the number of traces with
ARTEMIS follows a loga(n) trend (§6.2). The largest number of
traces inspected for any requirement using LTLTalk and ARTEMIS
is 93 and 11, respectively (8.45X lower for ARTEMIS). ARTEMIS
converged to a plausible specification with up to 10.83X fewer traces
(1.74X on average) and up to 6X (1.40X on average) fewer variables
per trace than LTLTalk (3.33 variables per trace on average for
ARTEMIS). As the number of candidates increases, the difference in
manual effort required by LTLTalk and ARTEMIS becomes greater.
For requirements with more than 10 candidates, ARTEMIS requires

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Method Mean + Std. Dev. | Max Time | Min Time
LTLTalk 7.08 +27.22 273.27 0.08
ARTEMIS 18.89 + 121.76 2437.30 0.36

Table 2: Execution times for trace generation.

2.52X fewer traces on average. The trace lengths for traces produced
by LTLTalk and ARTEMIS are 2.61 (up to 20) and 3.1 (up to 19).
Evidently, the state-of-the-art can require an impractical amount
of effort for a single requirement (up to 93 traces). In contrast, even
for many candidates, ARTEMIS enables low effort, practical use of
generate-and-validate (up to 11 traces).

Trace Generation Runtime Overhead. Table 2 shows the av-
erage and maximum distinguishing trace generation runtimes of
LTLTalk and ARTEMIS. ARTEMIS on average generates traces in
18.89 seconds, demonstrating its practicality. ARTEMIS’s trace gen-
eration runtime could be further decreased by lowering d (§6), but
may result in requiring the user to inspect more traces. Although
ARTEMIS’s trace generation may exhibit higher runtime over-
head than LTLTalk, trace generation is automated, and ARTEMIS
achieves significantly lower manual effort.

Proxy Generation Runtime Overhead. For Sub-Specification
Generation (§5), ARTEMIS generates proxies only once for a struc-
tured NL (§5.2). ARTEMIS generates proxies for all FRETish tem-
plates in 134 seconds and for all PSP templates in 231 seconds.

7.4 Threats to Validity

Our evaluation uses five real-world benchmarks from diverse do-
mains, covering a broad range of LTL specifications. However, they
may not be representative of every specification used in practice.

Each requirement in our evaluation has a plausible specification
expressible in structured NL. While prior work [2, 13, 24] shows
most real-world requirements can be captured by a finite set of
specification patterns (observed to be over 90% [13]), some may fall
outside the structured NL’s expressiveness. However, such cases
are likely rare, and the structured NL can be extended as needed.

For distinguishing trace generation, we set all approaches to gen-
erate traces up to length 20. Although some specifications require
longer traces, this is rare: all approaches have an average trace
length below four across all requirements.

8 Conclusion

While LLMs show promise for automating specification generation
from NL, prior work requires substantial expertise and manual
validation effort, limiting practicality. ARTEMIS introduces a new
generate-and-validate approach that reduces both effort and ex-
pertise needed, achieving 1.57X higher accuracy and up to 10.38X
lower effort on real-world requirements compared to state-of-the-
art baselines, enabling practical adoption.

Acknowledgments

We thank Tom Pressburger, Kelly Ho and, Jessica Phelan for their
work on early prototypes, and we are grateful to the anonymous
reviewers for their constructive feedback. Anastasia and Andreas
were supported in part by NASA contract 30ARC020D0010. Daniel
and Caroline were supported in part by the National Science Foun-
dation (NSF), under awards 2153936 and 2236855 (CAREER), and
also gratefully acknowledge a gift from Google.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

References

(1]
(2]

=

[11]

[12

[13

[14

[15

[16

=
=

[18]

[19

[20]

[21

OpenAlI (2023). 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony
Tang. 2015. Aligning Qualitative, Real-Time, and Probabilistic Property Spec-
ification Patterns Using a Structured English Grammar. IEEE Transactions on
Software Engineering 41, 7 (2015), 620-638. doi:10.1109/TSE.2015.2398877
Mishap Investigation Board. 1999. Mars Climate Orbiter Mishap Investigation
Board Phase I Report November 10, 1999. Technical Report. Report.

Alberto Camacho and Sheila A. Mcllraith. 2019. Learning Interpretable Models
Expressed in Linear Temporal Logic. Proceedings of the International Conference
on Automated Planning and Scheduling 29, 1 (Jul. 2019), 621-630. doi:10.1609/
icaps.v29i1.3529

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
2014. The nuXmv Symbolic Model Checker. In CAV (Lecture Notes in Computer
Science, Vol. 8559), Armin Biere and Roderick Bloem (Eds.). Springer, 334-342.
Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. 2023. NL2TL:
Transforming Natural Languages to Temporal Logics using Large Language
Models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2000. Model checking.
MIT Press, Cambridge, MA, USA.

Itay Cohen and Doron Peled. 2025. End-to-End AI Generated Runtime Verification
from Natural Language Specification. In Bridging the Gap Between Al and Reality,
Bernhard Steffen (Ed.). Springer Nature Switzerland, Cham, 362-384.

Riccardo Coltrinari. 2023. NL-to-LTL-Synthetic-Dataset. https://huggingface.co/
datasets/cRick/NL-to-LTL-Synthetic-Dataset.

Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and
Caroline Trippel. 2023. nl2spec: Interactively Translating Unstructured Natural
Language to Temporal Logics with Large Language Models. In Computer Aided
Verification, Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland,
Cham, 383-396.

RTCA DO-178C. 2011. Software Considerations in Airborne Systems and Equip-
ment Certification. (2011).

Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin,
Alexandre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, An-
toine Martin, Jérome Dubois, Clément Gillard, and Henrich Lauko. 2022. From
Spot 2.0 to Spot 2.10: What’s New?. In Proceedings of the 34th International Confer-
ence on Computer Aided Verification (CAV°22) (Lecture Notes in Computer Science,
Vol. 13372). Springer, 174-187. doi:10.1007/978-3-031-13188-2_9

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns
in property specifications for finite-state verification. In Proceedings of the 21st
International Conference on Software Engineering (Los Angeles, California, USA)
(ICSE *99). Association for Computing Machinery, New York, NY, USA, 411-420.
doi:10.1145/302405.302672

Chris Elliott. 2015. On example models and challenges ahead for the evaluation
of complex cyber-physical systems with state of the art formal methods V&V,
Lockheed Martin Skunk Works. In Safe & Secure Systems and Software Symposium
(S5). 9-11.

Yue Fang, Zhi Jin, Jie An, Hongshen Chen, Xiaohong Chen, and Naijun Zhan.
2025. Enhancing Transformation from Natural Language to Signal Temporal
Logic Using LLMs with Diverse External Knowledge. arXiv:2505.20658 [cs.CL]
https://arxiv.org/abs/2505.20658

Marie Farrell, Matt Luckcuck, Rosemary Monahan, Conor Reynolds, and Oisin
Sheridan. 2024. FRETting and Formal Modelling: A Mechanical Lung Ventilator.
In Rigorous State-Based Methods, Silvia Bonfanti, Angelo Gargantini, Michael
Leuschel, Elvinia Riccobene, and Patrizia Scandurra (Eds.). Springer Nature
Switzerland, Cham, 360-383.

Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. 2017. Pure: A
dataset of public requirements documents. In 2017 IEEE 25th international require-
ments engineering conference (RE). IEEE, 502-505.

Nicole Fronda and Houssam Abbas. 2022. Differentiable Inference of Temporal
Logic Formulas. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 41, 11 (2022), 4193-4204. doi:10.1109/TCAD.2022.3197506
Francesco Fuggitti and Tathagata Chakraborti. 2023. NL2LTL - a python pack-
age for converting natural language (NL) instructions to linear temporal logic
(LTL) formulas. In Proceedings of the Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence and Thirty-Fifth Conference on Innovative Applications of Arti-
ficial Intelligence and Thirteenth Symposium on Educational Advances in Artifi-
cial Intelligence (AAAI'23/IAAI'23/EAAT’23). AAAI Press, Article 1999, 3 pages.
doi:10.1609/aaai.v37i13.27068

Ivan Gavran, Eva Darulova, and Rupak Majumdar. 2020. Interactive synthesis of
temporal specifications from examples and natural language. Proc. ACM Program.
Lang. 4, OOPSLA, Article 201 (nov 2020), 26 pages. doi:10.1145/3428269

Google Gemini Team. 2025. Gemini: A Family of Highly Capable Multimodal
Models. arXiv:2312.11805 [cs.CL] https://arxiv.org/abs/2312.11805

Mendoza et al.

Enrico Ghiorzi, Michele Colledanchise, Gianluca Piquet, Stefano Bernagozzi, Ar-
mando Tacchella, and Lorenzo Natale. 2023. Learning Linear Temporal Properties
for Autonomous Robotic Systems. IEEE Robotics and Automation Letters 8, 5
(2023), 2930-2937. doi:10.1109/LRA.2023.3263368

Shalini Ghosh, Daniel Elenius, Wenchao Li, Patrick Lincoln, Natarajan Shankar,
and Wilfried Steiner. 2016. ARSENAL: automatic requirements specification ex-
traction from natural language. In NASA Formal Methods: 8th International Sym-
posium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings 8. Springer,
41-46.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Jo-
hann Schumann. 2021. Automated formalization of structured natural lan-
guage requirements. Information and Software Technology 137 (2021), 106590.
doi:10.1016/j.infsof.2021.106590

Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. 2011.
Synthesis of AMBA AHB from formal specification: a case study. Interna-
tional Journal on Software Tools for Technology Transfer 15 (2011), 585 — 601.
https://api.semanticscholar.org/CorpusID:15838863

Lars Grunske. 2008. Specification patterns for probabilistic quality properties. In
Proceedings of the 30th International Conference on Software Engineering (Leipzig,
Germany) (ICSE "08). Association for Computing Machinery, New York, NY, USA,
31-40. doi:10.1145/1368088.1368094

Christopher Hahn, Frederik Schmitt, Julia J. Tillman, Niklas Metzger, Julian
Siber, and Bernd Finkbeiner. 2022. Formal Specifications from Natural Language.
arXiv:2206.01962 [cs.SE]

[28] Jie He, Ezio Bartocci, Dejan Nic¢kovi¢, Haris Isakovic, and Radu Grosu. 2022.

DeepSTL: from english requirements to signal temporal logic. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE °22). Association for Computing Machinery, New York, NY, USA, 610-622.
doi:10.1145/3510003.3510171

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei
Yu, Xinying Song, and Denny Zhou. 2024. Large Language Models Cannot Self-
Correct Reasoning Yet. In Proceedings of the 12th International Conference on
Learning Representations. https://arxiv.org/abs/2310.01798

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. 2023.
Towards Mitigating LLM Hallucination via Self Reflection. In Findings of the
Association for Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan
Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore,
1827-1843. doi:10.18653/v1/2023.findings-emnlp.123

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. 2024. When
Can LLMs Actually Correct Their Own Mistakes? A Critical Survey of Self-
Correction of LLMs. Transactions of the Association for Computational Linguistics
12 (2024), 1417-1440. doi:10.1162/tacl_a_00713

Sascha Konrad and Betty H. C. Cheng. 2006. Automated Analysis of Natural
Language Properties for UML Models. In Satellite Events at the MoDELS 2005 Con-
ference, Jean-Michel Bruel (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
48-57.

[33] Jungjae Lee, Dongjae Lee, Chihun Choi, Youngmin Im, Jaeyoung Wi, Kihong

Heo, Sangeun Oh, Sunjae Lee, and Insik Shin. 2025. Safeguarding Mobile GUI
Agent via Logic-based Action Verification. arXiv:2503.18492 [cs.HC] https:
//arxiv.org/abs/2503.18492

Hui Li, Zhen Dong, Siao Wang, Hui Zhang, Liwei Shen, Xin Peng, and Dongdong
She. 2025. Extracting Formal Specifications from Documents Using LLMs for
Automated Testing. arXiv:2504.01294 [cs.SE] https://arxiv.org/abs/2504.01294
Junle Li, Meiqi Tian, and Bingzhuo Zhong. 2025. Automatic Generation of Safety-
compliant Linear Temporal Logic via Large Language Model: A Self-supervised
Framework. arXiv:2503.15840 [cs.LO] https://arxiv.org/abs/2503.15840

Jingyu Liu, Jiaen Lin, and Yong Liu. 2024. How Much Can RAG Help the Reasoning
of LLM? arXiv:2410.02338 [cs.CL] https://arxiv.org/abs/2410.02338

Jason Xinyu Liu, Ziyi Yang, Benjamin Schornstein, Sam Liang, Ifrah Idrees,
Stefanie Tellex, and Ankit Shah. 2022. Lang2LTL: Translating Natural Language
Commands to Temporal Specification with Large Language Models. In Workshop
on Language and Robotics at CoRL 2022. https://openreview.net/forum?id=
VxfjGZzrdn

Kumar Manas, Stefan Zwicklbauer, and Adrian Paschke. 2024. CoT-TL: Low-
Resource Temporal Knowledge Representation of Planning Instructions Using
Chain-of-Thought Reasoning. In 2024 IEEE/RSF International Conference on Intelli-
gent Robots and Systems (IROS). 9636—9643. doi:10.1109/IROS58592.2024.10801817
Alistair Mavin. 2012. Listen, Then Use EARS. IEEE Software 29, 2 (2012), 17-18.
doi:10.1109/MS.2012.36

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Tom Press-
burger, Mohammad Hejase, Pierre-Loic Garoche, and Johann Schumann. 2020.
The Ten Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed,
and Explained. In Proceedings of the 2020 28th IEEE International Requirements
Engineering Conference.

Daniel Mendoza, Christopher Hahn, and Caroline Trippel. 2024. Translating Nat-
ural Language to Temporal Logics with Large Language Models and Model
Checkers. In CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN-FMCAD 2024. 119.

https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/TSE.2015.2398877
https://doi.org/10.1609/icaps.v29i1.3529
https://doi.org/10.1609/icaps.v29i1.3529
https://huggingface.co/datasets/cRick/NL-to-LTL-Synthetic-Dataset
https://huggingface.co/datasets/cRick/NL-to-LTL-Synthetic-Dataset
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1145/302405.302672
https://arxiv.org/abs/2505.20658
https://arxiv.org/abs/2505.20658
https://doi.org/10.1109/TCAD.2022.3197506
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1145/3428269
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.1109/LRA.2023.3263368
https://doi.org/10.1016/j.infsof.2021.106590
https://api.semanticscholar.org/CorpusID:15838863
https://doi.org/10.1145/1368088.1368094
https://arxiv.org/abs/2206.01962
https://doi.org/10.1145/3510003.3510171
https://arxiv.org/abs/2310.01798
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://doi.org/10.1162/tacl_a_00713
https://arxiv.org/abs/2503.18492
https://arxiv.org/abs/2503.18492
https://arxiv.org/abs/2503.18492
https://arxiv.org/abs/2504.01294
https://arxiv.org/abs/2504.01294
https://arxiv.org/abs/2503.15840
https://arxiv.org/abs/2503.15840
https://arxiv.org/abs/2410.02338
https://arxiv.org/abs/2410.02338
https://openreview.net/forum?id=VxfjGZzrdn
https://openreview.net/forum?id=VxfjGZzrdn
https://doi.org/10.1109/IROS58592.2024.10801817
https://doi.org/10.1109/MS.2012.36

Automating Requirements Formalization: Using LLMs and Low-Complexity Distinguishing Traces for Semantic Validation ICSE 26, April 12-18, 2026, Rio de Janeiro, Brazil

[42] Daniel Mendoza, Anastasia Mavridou, Andreas Katis, and Caroline Trippel. 2026. [50
ARTEMIS Artifact. https://github.com/dmmendo/ARTEMIS.

[43] Sara Mohammadinejad, Sheryl Paul, Yuan Xia, Vidisha Kudalkar, Jesse Thomason,
and Jyotirmoy V. Deshmukh. 2025. Systematic Translation from Natural Language [51

Hazel Taylor, Anastasia Mavridou, Marie Farrell, and Louise Dennis. 2025. Ex-
plainability Pattern Specifications for Human-Robot Teamwork. In IEEE Interna-
tional Conference on Engineering Reliable Autonomous Systems (ERAS-25).

Haoxiang Tian, Guoquan Wu, Jiren Yan, Yan Jiang, Jun Wei, Wei Chen, Shuo Li,

Robot Task Descriptions to STL. In Bridging the Gap Between AI and Reality,
Bernhard Steffen (Ed.). Springer Nature Switzerland, Cham, 259-276.

Anmol Nayak, Hari Prasad Timmapathini, Vidhya Murali, Karthikeyan Pon-
nalagu, Vijendran Gopalan Venkoparao, and Amalinda Post. 2022. Req2Spec:
Transforming Software Requirements into Formal Specifications Using Natu-
ral Language Processing. In Requirements Engineering: Foundation for Software
Quality, Vincenzo Gervasi and Andreas Vogelsang (Eds.). Springer International
Publishing, Cham, 87-95.

Daniel Neider and Ivan Gavran. 2018. Learning Linear Temporal Properties. In
2018 Formal Methods in Computer Aided Design (FMCAD). 1-10. doi:10.23919/
FMCAD.2018.8603016

Martha Palmer, Claire Bonial, and Jena Hwang. 2017. 315Verb-
Net: Capturing English Verb Behavior, Meaning, and Usage. In
The Oxford Handbook of Cognitive Science. Oxford University Press.
arXiv:https://academic.oup.com/book/0/chapter/295177378/chapter-ag-
pdf/44511408/book_34641_section_295177378.ag.pdf doi:10.1093/oxfordhb/
9780199842193.013.15

Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). 46-57. doi:10.1109/SFCS.1977.32
Ritam Raha, Rajarshi Roy, Nathanaél Fijalkow, and Daniel Neider. 2022. Scalable
Anytime Algorithms for Learning Fragments of Linear Temporal Logic. In Tools
and Algorithms for the Construction and Analysis of Systems, Dana Fisman and
Grigore Rosu (Eds.). Springer International Publishing, Cham, 263-280.

Kristin Yvonne Rozier. 2016. Specification: The Biggest Bottleneck in Formal
Methods and Autonomy. In Verified Software. Theories, Tools, and Experiments,
Sandrine Blazy and Marsha Chechik (Eds.). Springer International Publishing,
Cham, 8-26.

and Dan Ye. 2023. Generating Critical Test Scenarios for Autonomous Driving
Systems via Influential Behavior Patterns. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering.

Christopher Wang, Candace Ross, Yen-Ling Kuo, Boris Katz, and Andrei Barbu.
2021. Learning a natural-language to LTL executable semantic parser for
grounded robotics. In Proceedings of the 2020 Conference on Robot Learning (Pro-
ceedings of Machine Learning Research, Vol. 155), Jens Kober, Fabio Ramos, and
Claire Tomlin (Eds.). PMLR, 1706-1718. https://proceedings.mlr.press/v155/
wang21g.html

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL] https:
//arxiv.org/abs/2201.11903

Ran Wei, Simon Foster, Haitao Mei, Fang Yan, Ruizhe Yang, Ibrahim Habli, Colin
O’Halloran, Nick Tudor, Tim Kelly, and Yakoub Nemouchi. 2024. ACCESS:
Assurance Case Centric Engineering of Safety—critical Systems. J. Syst. Softw.
(2024). doi:10.1016/j.js5.2024.112034

Yilongfei Xu, Jincao Feng, and Weikai Miao. 2024. Learning from Failures: Trans-
lation of Natural Language Requirements into Linear Temporal Logic with Large
Language Models. In 2024 IEEE 24th International Conference on Software Quality,
Reliability and Security (QRS). 204-215. doi:10.1109/QRS62785.2024.00029
Changjian Zhang, Parv Kapoor, Ian Dardik, Leyi Cui, Romulo Meira-Goes, David
Garlan, and Eunsuk Kang. 2025. Constrained LTL Specification Learning from
Examples.

Rim Zrelli, Henrique Amaral Misson, Maroua Ben Attia, Felipe Gohring de
Magalhaes, Abdo Shabah, and Gabriela Nicolescu. 2024. Natural2ctl: A dataset for
natural language requirements and their ctl formal equivalents. In International
Working Conference on Requirements Engineering: Foundation for Software Quality.
Springer, 205-216.

https://github.com/dmmendo/ARTEMIS
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/295177378/chapter-ag-pdf/44511408/book_34641_section_295177378.ag.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/295177378/chapter-ag-pdf/44511408/book_34641_section_295177378.ag.pdf
https://doi.org/10.1093/oxfordhb/9780199842193.013.15
https://doi.org/10.1093/oxfordhb/9780199842193.013.15
https://doi.org/10.1109/SFCS.1977.32
https://proceedings.mlr.press/v155/wang21g.html
https://proceedings.mlr.press/v155/wang21g.html
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1016/j.jss.2024.112034
https://doi.org/10.1109/QRS62785.2024.00029

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Linear Temporal Logic Specifications
	2.2 From Requirements to Specifications
	2.3 Manually Validating Specifications

	3 ARTEMIS: Approach and Prior Work
	3.1 LLM Translation to Structured NL
	3.2 Sub-Specification Generation
	3.3 Balanced Distinguishing Trace Generation

	4 LLM Translation to Structured NL
	5 Sub-Specification Generation
	5.1 Proxy for Semantics of Sub-Requirements
	5.2 Deriving Proxies Automatically

	6 Balanced Distinguishing Trace Generation
	6.1 Guided Search by Partial Order Relations
	6.2 Manual Effort Analysis

	7 Evaluation
	7.1 Experiment Setup
	7.2 Evaluating Translation Accuracy
	7.3 Evaluating Manual Validation Effort
	7.4 Threats to Validity

	8 Conclusion
	Acknowledgments
	References

