
Model Selection for Latency-Critical Inference Serving

Daniel Mendoza
dmendo@stanford.edu
Stanford University

Francisco Romero
faromero@stanford.edu
Stanford University

Caroline Trippel
trippel@stanford.edu
Stanford University

Abstract

In an inference service system,model selection and scheduling
(MS&S) schemes map inference queries to trained machine
learning (ML) models, hosted on a finite set of workers, to so-
licit accurate predictions within strict latency targets. MS&S
is challenged by both varying query load and stochastic
query inter-arrival patterns; however, state-of-the-art MS&S
approaches conservatively account for load exclusively.
In this paper, we first show that explicitly considering

inter-arrival patterns creates opportunities to map queries
to higher-accuracy (higher-latency) models during intermit-
tent arrival lulls. We then propose RAMSIS, a framework for
generating MS&S policies that exploits this finding. RAMSIS
leverages a statistical problem model of query load and inter-
arrival pattern to produce policies that maximize accuracy
given some latency target. We evaluate RAMSIS-generated
MS&S policies alongside state-of-the-art approaches. No-
tably, RAMSIS requires as low as 50.00% (on average 18.77%)
fewer resources to achieve the same accuracy for an Ima-
geNet image classification task given 26 trained models.

CCS Concepts: • Computingmethodologies→Machine

learning;Planning under uncertainty;Markov decision

processes.

Keywords: inference serving systems,model selection, query
scheduling, systems for machine learning, machine learning
for systems, Markov decision processes

ACM Reference Format:

Daniel Mendoza, Francisco Romero, and Caroline Trippel. 2024.
Model Selection for Latency-Critical Inference Serving. In Nine-
teenth European Conference on Computer Systems (EuroSys ’24), April
22–25, 2024, Athens, Greece. ACM, New York, NY, USA, 23 pages.
https://doi.org/10.1145/3627703.3629565

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629565

Figure 1. Inference applications specify SLOs (e.g., latency
and/or accuracy) and submit queries to the ISS, which imple-
ments a resource manager and a model selector & scheduler
(§1) to derive predictions given SLO constraints.

1 Introduction

Machine learning (ML) inference has proliferated to many
application domains, e.g., recommendation [13], finance [12],
analytics [55], computer vision [21], healthcare [24], and nat-
ural language processing [10, 34]. Thus, modern hyperscalars
devote significant systems infrastructure to inference serv-
ing—the task of soliciting accurate predictions for inference
queries (i.e., inference requests) from a corpus of trained ML
models. For example, at AmazonWeb Services, ML inference
consumes more than 90% of infrastructure costs [2]. At Meta,
more than 200 trillion predictions are made each day [27].
Inference serving systems (ISSs) [6, 7, 15, 16, 32, 38, 43, 54,

57] have been designed to produce accurate predictions for
application inference queries while satisfying agreed-upon
latency constraints and maintaining low infrastructure costs.
They commonly feature five main components, depicted in
Fig. 1 (top): (1) a central queue, (2) trained ML models, (3)
workers, (4) a resource manager [6, 16, 38, 54], and (5) a
model selector and scheduler [16, 32, 38, 57].

Applications submit inference queries (e.g., images or text
segments) that are buffered at a central queue. Queries are
then dispatched from the central queue and assigned towork-
ers, i.e., compute resources which host the ML models and
serve batches of inference requests.

As inference queries are often user-facing, ISSs must abide
by strict service level objectives (SLOs)—generally constraints
on response latency [6, 7, 15, 32, 43, 54, 57], but sometimes

https://doi.org/10.1145/3627703.3629565
https://doi.org/10.1145/3627703.3629565

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

constraints on inference accuracy [16, 38]. For example, in-
ference applications (e.g., ads, new feed, facial tag recom-
mendation) typically require response latencies within tens
to hundreds of milliseconds [17, 20].
To co-optimize for latency, accuracy, and cost, ISSs typi-

cally implement a central controller, which consists of a re-
source manager and a model selector and scheduler. Resource
managers handle resource allocation, which includes pro-
visioning workers to run ML inference and maintaining a
pool of loaded models at each worker. Given a finite set of
workers and loaded models, model selectors and schedulers
employmodel selection and scheduling (MS&S) schemes to as-
sign queries to models on workers that can satisfy their SLOs.
This process requires navigating accuracy-latency tradeoffs,
sincemore accurate models typically exhibit longer inference
latencies [4, 16, 32, 38, 57], and even hardware performance
characteristics [16, 32, 38, 57].
Clearly, an ISS’s resource manager directly impacts its

infrastructure costs. However, the MS&S scheme (our focus)
determines achievable inference accuracy within a latency
SLO when resources are fixed [16, 32, 57]. Notably, MS&S is
challenged by varying query load (i.e., query arrival rate) and
stochastic query inter-arrival patterns [1, 6, 17, 20, 26, 37, 38,
54, 57], which are characteristic of real-world inference appli-
cations. Shifts in query load impact the set of models capable
of satisfying an application’s latency SLO. Plus, stochastic
inter-arrival patterns (e.g., Poisson [17]) lead to unexpected
arrival bursts, enabling MS&S decisions for one batch of
queries to adversely affect future queries.

To cope with the above challenges, ISSs (e.g., INFaaS [38],
Jellyfish [32], ModelSwitching [57], Cocktail [16]) imple-
ment load-granular MS&S schemes, which select models
and workers whose throughput can sustain a given query
load regardless of the inter-arrival pattern. However, we ob-
serve that ignoring the inter-arrival pattern results in overly-
conservative MS&S decisions and missed opportunities to
achieve higher inference accuracy or the same accuracy at
lower cost.

This Paper. Given our observation, we propose Random
Arrival Model Selection for Inference Serving (RAMSIS), an
MS&S framework that explicitly accounts for variable query
load and stochastic inter-arrival patterns in order to achieve
maximally accurate predictions for queries within a user-
defined latency SLO. Our key insight in designing RAMSIS
is that stochastic inter-arrival patterns exhibit arrival lulls
(in addition to bursts), during which slower, more accurate
models can be safely selected for queries.
During its offline phase, RAMSIS formulates the MS&S

problem as a Markov Decision Process (MDP) [36, 39, 42].
Naïvely formulated, states consist of central queue states
(i.e., finite queues of pending query deadlines) and worker
statuses (e.g., busy or available), and actions are MS&S de-
cisions. Central to our approach, transition probabilities be-
tween states are derived from a query arrival distribution: in

our experiments, a Poisson distribution [17, 37, 38, 54, 57]
which is parameterized by query load.

The naïve MDP formulation above is computationally
challenging to solve as it requires modeling all possible cen-
tral queue states. Thus, Our second insight is the state
space can be greatly simplified in three ways. First, since
inference latency is predictable [15, 31, 43], the finite set of
models loaded on workers and supported batch sizes quan-
tize the space of satisfiable deadlines, i.e., RAMSIS policies
do not require a continuous time space for deadlines. Second,
RAMSIS policies need only account for the earliest deadline
when serving a batch of queued queries; an MS&S decision
that meets the earliest deadline in a batch meets the rest.
Third, RAMSIS decomposes the MS&S problem into two
sub-problems: query load balancing (assigning queries to
workers) and worker-level model selection (assigning queries
to models) [57]. Doing so reduces the MDP state space by
enabling RAMSIS to derive model selection (MS) policies
per-worker, independent of other workers. Given simpli-
fied worker-level MDPs (which account for a query load
balancing strategy) and a reward function, RAMSIS uses an
exact solution method (value iteration [36, 39, 42]) to de-
rive optimal MS policies that maximize overall accuracy and
minimize latency SLO violations.
During its online phase, RAMSIS performs query load

balancing following a round-robin strategy and conducts
worker-level model selection dynamically according to the
pre-computed MS policies. Overall, RAMSIS achieves higher
accuracy per inference query than state-of-the-art systems
with the same resources and latency SLO violations, or the
same accuracy and latency SLO violations with fewer re-
sources. We summarize our contributions as follows:

• We demonstrate that existingMS&S approaches are overly-
conservative in the presence of stochastic inter-arrival
patterns which give rise to periods of arrival lulls.

• We show that an MS&S policy which accounts for query
inter-arrival patterns can be efficiently pre-computed of-
fline by leveraging predictable ML model latencies and de-
composing the MS&S problem into simpler sub-problems.

• We design RAMSIS, a framework for generating MS&S
policies, which provide probabilistic guarantees on infer-
ence accuracy and latency.

• Using a real-world inference query trace from Twitter [1],
we evaluate RAMSIS-generated MS&S policies alongside
state-of-the-art approaches. RAMSIS achieves the same ac-
curacy as state-of-the-art approaches with as low as 50.00%
(on average 18.77%) fewer resources on an image classifi-
cation task. For a text classification task, RAMSIS requires
as low as 75.00% (on average 28.28%) fewer resources.

2 Background and Motivation

In this work, we consider an ISS architecture like the one in
Fig. 1 (top), consistent with prior work [7, 15, 32, 38, 43, 57].

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

Queries from inference applications arrive at a central queue
and are subsequently assigned to models on workers by a
model selector and scheduler. A resource manager strives
to minimize infrastructure cost through model and worker
scaling [6, 38, 54]. Each worker has one or more pre-loaded
models. For inference latency predictability, each worker’s
hardware resources are assumed to be isolated and work-
ers execute one model at a time [15, 32, 43]. However, ap-
proaches which do not assume isolation are still applicable
to the assumed ISS architecture [7, 38, 57].

2.1 Challenges in Model Selection & Scheduling

Our focus is on improving the model selector and sched-
uler component of ISSs. Given fixed resources (workers and
loaded models), the model selector and scheduler ideally
produces the highest possible inference accuracy per query
while meeting response latency constraints. Such a goal is
challenged by variable query load and stochastic inter-arrival
patterns [1, 6, 17, 20, 26, 37, 38, 54, 57].
Production inference workloads exhibit variable query

load [1, 6, 17, 20, 26, 37, 38, 54, 57], typically calculated as av-
erage query arrivals over a time interval. Query load impacts
the set of models which are able to satisfy a query’s latency
SLO, since different models offer different throughput.

Inference query traces also exhibit stochastic inter-arrival
patterns, i.e., variance in the time elapsed between query
arrivals at a constant query load. Prior work observes that
the inter-arrival patterns of inference workloads conform to
a Poisson process [17, 37, 38, 54, 57], exhibiting intermittent
arrival bursts and lulls. Ideally, the model selector and sched-
uler would select lower latency models during bursts and
higher latency models during lulls. However, the stochastic
nature of query inter-arrivals makes it difficult to ensure
that an optimistic MS&S decision for one query will not ad-
versely impact future queries. Unexpected bursts in query
arrivals can quickly overload workers, resulting in latency
SLO violations [20, 38, 54].

2.2 Model Selection and Scheduling: Limitations

MS&S schemes in state-of-the-art ISSs (e.g., INFaaS [38],
Cocktail [16], Jellyfish [32], ModelSwitching [57]) conserva-
tively account for query load exclusively, which is sufficient
to mitigate SLO violations. Such a load-granular approach
employs an offline profiling step to characterize the accuracy
of each model (using an application-provided test set) as
well as the response latency and throughput of each model
running on each worker [16, 32, 38, 57]. During inference
serving (online), MS&S decisions ensure that the through-
put and response latency of the target (worker, model) pair
can meet the current query load and latency SLO, respec-
tively. That is, the query load uniquely defines what model
to run for each worker. Moving averages or neural networks
are used to anticipate query load for short time windows
(one second to one minute in the future) [16, 32, 38, 57].

ISS MS Latency Accuracy Constraints

Clipper [7] - SLO - -
Nexus [43] - SLO - D

Clockwork [15] - SLO - D
MArk [54] - SLO - -

Inferline [6] - SLO - -
INFaaS [38] X min SLO -
Cocktail [16] X min max P, E
Jellyfish [32] X SLO max D

ModelSwitching [57] X SLO max -
RAMSIS (this paper) X SLO max D

Table 1. Key features of ISSs. D: assumes deterministic, pre-
dictable inference response latency, E: model ensembling, P:
preemptible workers. ISSs without a model selection (MS)
component rely on users to select models. All ISSs here per-
form query scheduling, or mapping queries to workers.

Moreover, load granular MS&S decisions aim to maximize
accuracy while accounting for the above throughput and
latency restrictions [16, 32, 57] or accept accuracy SLOs as
input [38].

In this paper, we propose anMS&S approachwhich aims to
maximize an application’s inference accuracy while meeting
its latency SLO. Thus, ModelSwitching [57] and Jellyfish [32]
are the most relevant points of comparison, as highlighted
in Table 1 and explained in further detail in §7. Other MS&S
schemes from the literature, namely those implemented in
Cocktail [16] and INFaaS [38], are less relevant for the fol-
lowing reasons. Cocktail specifically targets MS&S for model
ensembling with preemptible workers, which is outside the
scope of our assumed ISS architecture (Fig. 1). INFaaS re-
quires an accuracy SLO and chooses the lowest cost model
(typically lowest latency/accuracy model) that satisfies it.
Thus, INFaaS differs in its objective and constraints (see §H
for more discussion).

We observe that by ignoring query inter-arrival patterns,
load-granular MS&S approaches satisfy latency SLOs at the
cost of overly-conservative MS&S decisions. We illustrate
this point in Fig. 2, which depicts the same timeline of query
inter-arrivals subject to two distinct MS&S schemes: the load-
granular approach (left) and our approach, RAMSIS (right). In
both scenarios, two models (A and B) are pre-loaded on both
Worker 1 and Worker 2. Assume that both models’ response
latencies (on both workers) are less than the latency SLO of
incoming queries, but only model B has sufficient throughput
to meet the query load. Fig. 2 (left) shows a load-granular
MS&S approach would select model B for all queries.
We show that an MS&S policy which explicitly accounts

for query inter-arrival patterns can leverage intermittent
arrival lulls to proactively select higher accuracy models
while avoiding SLO violations. Fig. 2 (right) highlights the
benefits of this approach where model A is occasionally
selected during arrival lulls, thereby achieving higher overall

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

Figure 2. State-of-the-art MS&S versus RAMSIS, assuming
the same query load and inter-arrival pattern. Blue arrows de-
note query arrivals over time. Red dotted lines denote query
deadlines. Each query has the same latency SLO. RAMSIS
achieves higher accuracy with the same latency SLO viola-
tions (none) by accounting for the inter-arrival pattern when
selecting between models A and B.

average inference accuracy than the load-granular approach
with the same resources.

3 RAMSIS Overview

We present Random Arrival Model Selection for Inference Serv-
ing (RAMSIS), a framework for automatically generating (of-
fline) and deploying (online) load- and inter-arrival pattern-
aware MS&S policies. We summarize RAMSIS in this section
and give the details of its design in §4.

3.1 Offline Phase: MS&S Policy Generation

Offline (pre-deployment), RAMSIS formulates the MS&S
problem as an MDP [36, 39, 42] that captures the central
queue state, query load, and query inter-arrival pattern.With
respect to our assumed ISS architecture in Fig. 1 (top), the
MS&S problem refers to the task of mapping a batch of in-
ference queries in the central queue to a loaded model on a
particular worker. The goal of this mapping is to ensure that
the latency SLO violation rate is held below an acceptable
threshold, while the average inference accuracy is maxi-
mized. MDPs are a natural choice for modeling the MS&S
problem where outcomes are partially stochastic due to the
query arrival pattern and partially determined by a decision
making policy [36, 39, 42]. RAMSIS generates MS&S policies
that are each specialized for a particular query inter-arrival
pattern and response latency SLO, given the available re-
sources (workers) and pre-loaded models for an application
as allocated by the resource manager.

3.1.1 Offline Inputs. To formulate theMDP problemmodel,
RAMSIS requires the following inputs:
• Response latency SLO: We define an application’s re-
sponse latency SLO as the maximum time that an ISS may
take to produce an inference response after receiving an
inference request at its central queue.

• Query arrival distribution: The query arrival distribu-
tion PF (𝑘,𝑇) defines the probability of 𝑘 queries arriving

during a time interval of length𝑇 ; it is a function of query
load and captures the stochastic nature of the inter-arrival
pattern. For web-services, including inference-serving, the
query arrival distribution is typically the Poisson distri-
bution [17, 37, 38, 54, 57], as assumed in our experiments
(§7). However, RAMSIS is parameterized by the arrival dis-
tribution (e.g., the Gamma distribution could be used [28]).
Upon encountering an unexpected inter-arrival pattern
with no corresponding pre-computed policy, RAMSIS gen-
erates a new one (§3.2.2).

• Latency profiles: As in prior work [15, 32, 38, 43], to
anticipate the latency of MS&S decisions, RAMSIS requires
profiling the inference latency for all models on all workers
with all supported batch sizes. Note that only (worker,
model, batch size) triples which exhibit a latency less than
the application’s latency SLO are relevant.1 We define
inference latency 𝑙𝑤 (𝑚,𝑏) as the time elapsed between
sending a batch of 𝑏 queries from the central queue to
model𝑚 on worker𝑤 and receiving an inference response
at the central controller.

• Inference accuracy profile: To assess the accuracy of a
MS decision, RAMSIS collects an inference accuracy profile
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑚) for each trained ML model 𝑚. As in prior
work [16, 32, 38, 57], accuracy profiles are collected with
respect to a test set provided by the application (§7).

3.1.2 Simplifying Policy Generation. A naïve formu-
lation of the MS&S problem as an MDP is challenged by
state space explosion. States are most naturally comprised
of central queue states (i.e., finite queues of pending query
deadlines) and worker statuses (i.e., busy or available). For-
tunately, due to the predictability of ML model inference la-
tencies [15, 31, 43], discrete time is sufficient to represent all
possible central queue states consisting of relevant deadlines.
Nevertheless, a direct formulation of the MS&S problem as
a discrete time MDP [42] still requires an exponential state
space. Assuming a discrete time space of size 𝐷 , a maximum
queue size of 𝑁 , and𝐾 workers, the number of possible MDP
states is𝑂 (𝑁𝐷 +𝐾𝐷). This state space complexity limits the
efficiency and scalability of MS&S policy generation. For
example, with 𝑁 = 32, 𝐷 = 100 (as required for our experi-
ments, §4.2.2), and 𝐾 = 1, we find that policy generation via
value iteration [36, 39, 42] does not complete after a 24 hour
timeout. Since accounting for the entire arrival distribution is
computationally hard, existingMS approaches [16, 32, 38, 57]
are conservatively load-granular—the load uniquely deter-
mines the model to select.
To avoid an exponential state space, we simplify RAM-

SIS’s MDP in two ways. First, as shown in Fig. 1 (bottom),
we decompose the MS&S problem into query load balancing
(§3.2.1) and model selection (§3.2.2) components. Load bal-
ancing maps queries in the central queue to worker queues,

1If the same worker types exhibit near identical profiles, (worker type, model,
batch size) triples are sufficient. This is the case in our experiments (§7).

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

so that model selection, including batch selection, can be
performed per-worker, independent of other workers. With
this problem split, we can construct per-worker MDPs that
capture the worker-level arrival process (which accounts for
the load balancing policy) and worker-level state space only.
Second, RAMSIS models each worker queue state as a tuple
(𝑛,𝑇𝑗), where 𝑛 is the number of queued queries, and 𝑇𝑗 is
the time remaining to service the query with the earliest (i.e.,
strictest) deadline (§4.2). This approach is a simplification
over explicitly tracking 𝑛 deadlines.

Together, the design choices above reduce the state space
size from exponential to polynomial, enabling MS&S policies
to be efficiently derived and verified to meet SLOs.

3.1.3 Offline Outputs. RAMSIS’s policy generator (in
Fig. 1) constructs per-worker MS policies. Since MS policy
generation with RAMSIS is specialized to a query arrival dis-
tribution (§3.1.1), which is a function of the arrival load and
inter-arrival pattern, the policy generator pre-computes a set
of policies. In our experiments (§7), we assume a Poisson ar-
rival distribution and direct RAMSIS to compute MS policies
for a range of expected query loads, as in prior work [28, 57].

3.2 Online Phase: Inference Serving

Online, RAMSIS performs load balancing across workers and
worker-level MS. The latter is performed according to the
offline-generated policies which assume the former.

3.2.1 Load Balancing: Assigning Queries to Workers.

Per Fig. 1, all incoming queries arrive at the central queue .
Upon arrival of query 𝑞 at time 𝑡𝑞 , it is assigned a deadline
𝑡𝑞 + 𝑆𝐿𝑂 (the arrival time plus the response latency SLO).

We design RAMSIS’s load balancer to distribute the
queries in the central queue to worker queues in a round-
robin manner, as it encourages high resource utilization [18].
However, this choice is not fundamental; RAMSIS can be
extended in a straightforward manner to use other load-
balancing strategies, e.g., shortest-queue-first [18]. Doing so
requires changes to only the MDP transition probabilities,
as defined in §4.4.2. All other components of RAMSIS are
unchanged.

3.2.2 Model Selection: Assigning Queries to Models.

During inference serving, query load is tracked by a load
monitor . Given a set of offline-generated MS policies
specialized for differing inter-arrival patterns, worker-level
model selectors use the lowest-load MS policy that meets
the anticipated query load. If that anticipated load is higher
than any pre-computed MS policy can support, a new one is
generated.
Each worker is associated with a local worker queue to

buffer queries distributed by the load balancer. Per-worker
model selectors service queries from their worker queue
in deadline order (earliest first) according to their offline-
generatedMS policies. EachMS decision considers theworker

queue state (§3.1.2) to select a pre-loaded model𝑚 and batch
size 𝑏, directing 𝑏 queries with the earliest deadlines to run
on𝑚.

4 MS&S Problem Formulation

Per §3.1.2, RAMSIS formulates the per-worker model selec-
tion problem as a discrete time MDP. MDPs provide a math-
ematical framework for modeling decision making problems
where outcomes are partially stochastic and partially con-
trolled by a decision making policy [36, 39, 42]. As such,
they are commonly used in scheduling under uncertainty for
applications such as queueing systems, robotics, and manu-
facturing [3, 23, 36, 39, 42, 44, 51].

AnMDP is a stochastic control process that defines a finite
state transition system, denoted by (𝑆,𝐴, 𝑃𝑎, 𝑅𝑎) [36, 39, 42],
where:

• 𝑆 is a set of states (worker queue states, §4.2).
• 𝐴 is a set of actions (model and batch size decisions,
i.e., MS decisions, §4.3).

• 𝑃𝑎 (𝑠, 𝑠′) = P[𝑠𝑑+1 = 𝑠′ |𝑠𝑑 = 𝑠, 𝐴𝑑 = 𝑎] is the probability
that action 𝑎 ∈ 𝐴 taken in state 𝑠 ∈ 𝑆 at decision epoch
𝑑 will result in a transition to state 𝑠′ for decision epoch
𝑑 + 1 (§4.4).

• 𝑅𝑎 (𝑠, 𝑠′) defines the reward received for transitioning
to state 𝑠′ by taking action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 (§4.1).

At each decision epoch 𝑑 , a decision making policy can
take any action 𝑎 ∈ 𝐴 that is valid in the current state 𝑠 ∈ 𝑆 .
Taking action 𝑎 in 𝑠 results in a random transition to next
state 𝑠′ ∈ 𝑆 with transition probability 𝑃𝑎 (𝑠, 𝑠′), giving the
decision maker a reward 𝑅𝑎 (𝑠, 𝑠′). Notably, MDPs exhibit the
Markov property: the probability of transitioning from state
𝑠 to state 𝑠′ given action 𝑎, 𝑃𝑎 (𝑠, 𝑠′), solely dependents upon
𝑎 and 𝑠 [36, 39, 42].

4.1 Policy Generation

A worker-level MS policy is designed to maximize the joint
expectation of accuracy per query and latency SLO satis-
faction over the state space of the worker’s MDP. Thus,
𝑅𝑎 (𝑠, 𝑠′) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑎) ∗ SLOSatisfied (𝑠, 𝑎). Accuracy(a) re-
turns the inference accuracy of the model selected by ac-
tion 𝑎; SLOSatisfied (s, a) returns a Boolean value indicating
whether action 𝑎, an MS decision, satisfies the strictest dead-
line in the batch of queries selected for inference from state
𝑠 .

We use an exact solution method to generate an opti-
mal MS policy given a worker’s MDP, namely value itera-
tion [36, 39, 42]; other exact solution methods, like policy
iteration [36], may be used. Value iteration [36, 39, 42] is a
dynamic programming algorithm that repeatedly updates
estimates of the expected reward of each state (i.e., the value
of each state) by considering the maximum expected reward
of all possible next states. It iteratively refines state values

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

until convergence at which point the MDP is solved and an
optimal (MS) policy is produced.
Per-worker MS policies generated this way are optimal

with respect to the arrival distribution to the worker as cap-
tured by the transition probabilities of the MDP. Transition
probabilities are defined by the query arrival distribution
to the central queue and the load balancing strategy (i.e.,
round-robin) (§4.4).

4.2 States

A state 𝑠 ∈ 𝑆 in a worker 𝑤 ’s MDP formulation encodes
its worker queue state as a tuple: 𝑠 = (𝑛,𝑇𝑗). Recall that
𝑛 is the number of queries in 𝑤 ’s worker queue, and 𝑇𝑗 is
the amount of time remaining to service the query with
the earliest deadline (§3.1.2); we call 𝑇𝑗 the slack time of the
queued query in 𝑠 with the earliest deadline.
Slack times are continuous in general and induce an infi-

nite state space for a worker’s MDP. However, a continuous
representation of slack times is unnecessary (§3.1.2).

We present two discretization strategies used by RAMSIS
in §4.2.1 and §4.2.2. The result is a finite sequence of unique
time lengths, T𝑤 = (𝑇0,𝑇1, ...), where each 𝑇𝑗 represents a
possible slack time and𝑇𝑗 < 𝑇𝑗+1. Note that we use 𝑗 to index
into T𝑤 ; T𝑤 [𝑗] = 𝑇𝑗 . With our time discretization, every
continuous slack time Δ is represented with a time length
𝑇𝑗 ∈ T𝑤 , where 𝑇𝑗 ≤ Δ < 𝑇𝑗+1.

4.2.1 Model-Based Discretization. RAMSIS’s slack time
discretization need only be able to identify which actions
(𝑚,𝑏), or (model, batch size) pairs, are valid in a given state.
For worker 𝑤 ’s MDP, action 𝑎 = (𝑚,𝑏) is valid in state 𝑠 =
(𝑛,𝑇𝑗) if the inference latency of runningmodel𝑚with batch
size 𝑏 on𝑤 satisfies the slack time 𝑇𝑗 (i.e., 𝑙𝑤 (𝑚,𝑏) ≤ 𝑇𝑗).
Suppose worker𝑤 has𝑀𝑤 models, and 𝐵𝑤 is the largest

batch size that meets the inference application’s latency SLO
among all 𝑚 ∈ 𝑀𝑤 . Then, the upper bound on unique in-
ference latencies exhibited by 𝑤 , which meet the latency
SLO, is |𝑀𝑤 | ∗ 𝐵𝑤 . So, O(|𝑀𝑤 | ∗ 𝐵𝑤) distinct time lengths
are sufficient to represent all relevant slack times.

From the above observation, we propose Model-based Dis-
cretization (MD) which defines T𝑤 as the sequence of all
unique inference latencies 𝑙𝑤 (𝑚,𝑏) for worker 𝑤 , for all
𝑚 ∈ 𝑀𝑤 where 𝑏 ≤ 𝐵𝑤 .

4.2.2 Fixed Length Discretization. With MD (§4.2.1), a
worker𝑤 ’s MDP state space grows linearly with the number
of loaded models |𝑀𝑤 | and maximum batch size 𝐵𝑤 . How-
ever, this reduced state space still poses scalability challenges
if |𝑀𝑤 | and 𝐵𝑤 are large. Given the experimental setting
detailed in §7.3.2 with |𝑀𝑤 | = 60 models per worker and
𝐵𝑤 = 29, policy generation (§4.1) with MD does not complete
within 24 hours, as shown in Table 2.

For cases where MD is too costly (e.g., tens to hundreds of
models per worker), we propose Fixed Length Discretization

|𝑀𝑤 | = 9 |𝑀𝑤 | = 60
TD Batch Runtime (s) Runtime (s)

MD variable 3693.53 timeout
FLD 𝐷 = 100 variable 3014.89 timeout

MD max 115.50 timeout
FLD 𝐷 = 100 max 132.20 1355.09
FLD 𝐷 = 10 max 14.62 148.87

Table 2. Policy generation runtimes for different time dis-
cretization (TD) and batching strategies (§4.3.2) for an image
classification task (§7) when 𝐵𝑤 = 29. Timeout is 24 hours.

(FLD). FLD defines T𝑤 = 0, 𝑆𝐿𝑂
𝐷
, 2 ∗ 𝑆𝐿𝑂

𝐷
, ..., 𝑆𝐿𝑂 , where 𝑆𝐿𝑂

is the application latency SLO and 𝐷 is a hyperparameter.
𝐷 is a knob for reducing the policy generation runtime

that may come at the cost of generating overly-conservative
MS policies that miss opportunities to select higher accuracy
models. That is, FLD may underestimate the real (continuous)
slack time associated with a worker queue state (i.e., 𝑇𝑗 <<
Δ). Empirically, we find that using FLD with large enough 𝐷
(e.g, 𝐷 = 100 in our evaluation) produces equally performant
policies as MD (§C).

4.2.3 Full Queue State. We assume worker queues are of
finite size 𝑁𝑤 for worker𝑤 . We reserve a special state (𝜙,∅)
to represent the situation where the number of queries in a
worker queue accumulate beyond the maximum queue size
𝑁𝑤 (i.e., 𝑠 = (𝑛,𝑇𝑗) for 𝑛 > 𝑁𝑤). For this state, we assume
the worker queue size is truncated to 𝑁𝑤 (i.e., 𝜙 = 𝑁𝑤),
indicating 𝑛 − 𝑁𝑤 queries are dropped. We conservatively
assume the slack time is zero in this state (i.e., ∅ = 0) which
indicates the earliest deadline is not satisfiable by any action.
Generated policies are thus encouraged to avoid this state
by the reward function (§4.1).

The maximum queue size 𝑁𝑤 need only be large enough
to accommodate the maximum batch size 𝐵𝑤 . This is because
accumulating a number of queries in a worker queue beyond
𝐵𝑤 is an indication that the ISS cannot meet the latency SLO
under the query load, i.e., there are not enough workers
and/or the loaded models are too slow. In our evaluation, we
use 𝑁𝑤 = 32 for 𝐵𝑤 = 29 (§7). In practice, we observe that
special state (𝜙,∅) is only reached in situations where the
ISS’s resources (workers and models) cannot provide suffi-
cient throughput to meet the query load. In such a scenario,
the resource manager should provision more workers.

In summary, the state space of the worker MDP is:

𝑆 = {(𝑛,𝑇𝑗) |0 ≤ 𝑛 ≤ 𝑁𝑤,𝑇𝑗 ∈ T𝑤} ∪ {(𝜙,∅)}

4.3 Actions

Let 𝑎 = (𝑚,𝑏) denote an action taken in state 𝑠 = (𝑛,𝑇𝑗) at a
worker𝑤 . Recall that each worker𝑤 is modeled as a distinct
MDP and decision epochs are per-worker. For efficient policy
generation, we only consider an action 𝑎 as valid in a state 𝑠

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

Figure 3. 95𝑡ℎ percentile inference latency vs. accuracy pro-
file for image classification model set of 26 TorchVision Im-
ageNet models. The inference latency includes the time to
transfer input data to the worker, the data pre-processing
time, and the inference time.

if it conforms to particular latency (§4.3.1), batch size (§4.3.2),
and model (§4.3.3) constraints.

4.3.1 Latency Constraints. Per §4.2.1, we constrain the
action space (i.e., the set of valid actions) at each state 𝑠 =
(𝑛,𝑇𝑗) to actions 𝑎 = (𝑚,𝑏) which exhibit a inference latency
𝑙𝑤 (𝑚,𝑏) that meets the slack time, i.e., 𝑙𝑤 (𝑚,𝑏) ≤ 𝑇𝑗 . If there
is no action that can satisfy the slack time in 𝑠 , then a latency
SLO violation is unavoidable. Similar to existing work [7,
38, 57], RAMSIS assumes queries are better served late than
never. Thus, in such a state, the only valid action is (𝑚𝑤𝑚𝑖𝑛

, 𝑛),
where 𝑚𝑤𝑚𝑖𝑛

is the lowest latency model available on 𝑤 .
RAMSIS can be re-formulated in a straightforward manner
to drop queries whose deadlines cannot be satisfied [15, 43]
via changes to the transition probabilities in §4.4.2.

4.3.2 Batch Size Constraints. We consider two batch-
ing strategies for RAMSIS: variable batching and maximal
batching. By default, RAMSIS uses the latter.
With variable batching, the action space for state 𝑠 =

(𝑛,𝑇𝑗), where 𝑛 > 0, includes all actions 𝑎 = (𝑚,𝑏), such
that 1 ≤ 𝑏 ≤ 𝑛. That is, 𝑏 can be any non-zero integer batch
size up to n. Empirically, we observe that variable batching
MS policies select the maximum batch size 𝑏 = 𝑛 in 80% of
decisions. Thus, RAMSIS by default uses maximal batching,
where the action space for state 𝑠 = (𝑛,𝑇𝑗), where 𝑛 > 0,
is 𝑎 = (𝑚,𝑛). That is, all queued queries are always col-
lected into a single batch when taking an action in a state.
We observe that policies which use maximal batching offer
equivalent performance in practice to those which use vari-
able batching (§D) while requiring significantly less time for
policy generation, as shown in Table 2.

4.3.3 Model Constraints. To further reduce the action
space for RAMSIS MDPs, we prune from consideration mod-
els that are not on the Pareto Front of accuracy and latency.
Fig. 3 plots accuracy versus latency of 26 ImageNet models
(§7). Of the 26 models, 17 are not on the Pareto Front and
would be pruned, leaving 9 to be involved in valid actions.

4.3.4 Action on Empty Queue. The state 𝑠 = (0,𝑇𝑗) rep-
resents an empty worker queue. Since the worker queue is
empty, 𝑇𝑗 ∈ T𝑤 is left unconstrained. The action space in an
empty queue state consists of a single special arrival action
𝑎, which indicates that the worker will idle until the next
query arrives at its queue.

4.4 Transition Probabilities

Given the (1) states (§4.2) and (2) actions (§4.3) for a worker
𝑤 ’s MDP, together with an (3) arrival distribution for the
central queue and (4) a query load balancing strategy (§3.1.1),
we can precisely define worker MDP transition probabilities.

Recall that transition probability 𝑃𝑎 (𝑠, 𝑠′) defines the prob-
ability that taking action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 results in a
transition to state 𝑠′ ∈ 𝑆 in the next decision epoch (§4).
Given 𝑠 = (𝑛,𝑇𝑗) and 𝑠′ = (𝑛′,𝑇𝑗 ′), transition 𝑠

𝑎−→ 𝑠′, or

(𝑛,𝑇𝑗)
(𝑚,𝑏)
−−−−→ (𝑛′,𝑇𝑗 ′), implies:

(I) 𝑛′ − (𝑛 − 𝑏) queries arrived at the worker between 𝑠
and 𝑠′, by the definition of states and actions, and

(II) 𝑇𝑗 ′ is the slack time of the query with the earliest dead-
line in 𝑠′, by the definition of states.

Thus, 𝑃𝑎 (𝑠, 𝑠′) is the joint probability of (I) and (II). For
brevity, we focus our discussion on the maximal batching
strategy (§4.3) where 𝑏 = 𝑛, although the derivation of transi-
tion probabilities with variable batching (i.e., 𝑏 < 𝑛) follows
similar reasoning. We organize our discussion of transition
probabilities into distinct cases conditioned on the number
of queued queries in current state 𝑛 and future state 𝑛′.

4.4.1 Case 1: 𝑛 = 0 and 𝑛′ = 1. The current state 𝑠 =

(0,𝑇𝑗) represents an empty queue state. Recall that the only

applicable action is the arrival action𝑎, and (0,𝑇𝑗)
𝑎−→ (1, 𝑆𝐿𝑂)

(§4.3.4). That is, taking the arrival action 𝑎 in an empty queue
state yields a next state, which features one queued query
whose slack time is 𝑆𝐿𝑂 . Hence,

P[𝑠′ = (1, 𝑆𝐿𝑂) |𝑠 = (0,𝑇𝑗), 𝑎 = 𝑎] = 1 (1)

4.4.2 Case 2: 0 < 𝑛 ≤ 𝑁𝑤 and 0 ≤ 𝑛′ ≤ 𝑁𝑤 . In this case,
𝑠 = (𝜙,∅), since 𝜙 = 𝑁𝑤 (§4.2.3), or 𝑠 = (𝑛,𝑇𝑗), for 𝑇𝑗 ∈
T𝑤 . The only valid actions are 𝑎 = (𝑚,𝑛), due to maximal
batching, (§4.3.2). Note that special state 𝑠 = (𝜙,∅) exhibits
equivalent transition probabilities to 𝑠 = (𝑁𝑤, 0) given our
assumptions outlined in §4.2.3.
Action 𝑎 = (𝑚,𝑛) taken in current state 𝑠 defines the

time elapsed 𝑙𝑤 (𝑚,𝑛) before next state 𝑠′, which impacts
the number of queued queries 𝑛′ and slack 𝑇𝑗 ′ in 𝑠′. Further,
considering 𝐾 workers, the number of arrivals to worker
𝑤 between 𝑠 and 𝑠′ depends on the number of arrivals to
the central queue and the round-robin load balancer. Thus,
we derive transition probabilities of the worker MDP in this
case in terms of the arrival distribution at the central queue.
Recall that the arrival distribution 𝑃𝐹 (𝑘,𝑇) supplied to

RAMSIS as input expresses the probability of 𝑘 arrivals at

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

the central queue during a time interval of length 𝑇 (§3.1.1).
RAMSIS assumes the arrival process at the central queue
exhibits the independent and stationary increments prop-
erty [41]. Thus, the number of arrivals for any pair of non-
overlapping time intervals are independent. For example,
given non-overlapping time intervals A and B, the joint
probability of 𝑘𝐴 arrivals during interval A of time length
𝑇𝐴 and 𝑘𝐵 arrivals during interval B of time length 𝑇𝐵 is
𝑃𝐹 (𝑘𝐴,𝑇𝐴) ∗ 𝑃𝐹 (𝑘𝐵,𝑇𝐵). Note that independent and station-
ary increments is a property of commonly observed arrival
processes (e.g., Poisson, Gamma). It holds for a general class
of processes called Levy processes [41].
Recall that 𝑃𝑎 (𝑠, 𝑠′) is the joint probability of conditions

(I) and (II) stated at the start of §4.4. With round-robin load
balancing among 𝐾 workers, a worker receives every 𝐾𝑡ℎ
arrival to the central queue. Thus, the probability of 𝑛′ −
(𝑛 − 𝑛) = 𝑛′ arrivals at the worker queue between 𝑠 and 𝑠′
(condition (I) with maximal batching) is a function of the
number of arrivals to the central queue prior to 𝑠 , the time
elapsed between 𝑠 and 𝑠′, and the round-robin load balancer.
Further, given 𝑛′ > 0, and 𝑏 = 𝑛 (due to maximal batching),
the first query arrival at worker𝑤 between 𝑠 and 𝑠′ exhibits
the earliest deadline in next state 𝑠′ = (𝑛′,𝑇𝑗 ′), and defines
slack 𝑇𝑗 ′ . We define time points 𝑡𝛼 ′ and 𝑡𝛽 ′ to encode time
interval (𝑡𝛼 ′ , 𝑡𝛽 ′) during which the query corresponding to
𝑇𝑗 ′ arrives (condition (II) corresponds to the probability of
this “first” query arriving during (𝑡𝛼 ′ , 𝑡𝛽 ′)). Thus, we compute
the joint probability of conditions (I) and (II) by counting
query arrivals during four non-overlapping time intervals:
A, B, C, and D, illustrated in Fig. 4. Through applying the
stationary and independent increment property, we express
the transition probability of a worker𝑤 ’s MDP between state
𝑠 = (𝑛,𝑇𝑗) and state 𝑠′ = (𝑛′,𝑇𝑗 ′) given action 𝑎 = (𝑚,𝑛) as:

P[𝑠′ = (𝑛′,𝑇𝑗 ′) |𝑠 = (𝑛,𝑇𝑗), 𝑎 = (𝑚,𝑛)] = (2)∑
𝑘𝐴,𝑘𝐵 ,𝑘𝐶 ,𝑘𝐷 PF (𝑘𝐴,𝑇𝐴) ∗ PF (𝑘𝐵,𝑇𝐵) ∗ PF (𝑘𝐶 ,𝑇𝐶) ∗ PF (𝑘𝐷 ,𝑇𝐷)∑

𝑘𝐴 PF (𝑘𝐴,𝑇𝐴)

Above, 𝑘𝐴, 𝑘𝐵, 𝑘𝐶 , 𝑘𝐷 denote the number of arrivals to the
central queue and 𝑇𝐴,𝑇𝐵,𝑇𝐶 ,𝑇𝐷 are time lengths, each corre-
sponding intervals A, B, C, and D. We detail each interval in
the following paragraphs.
Interval A. Interval A represents the time elapsed be-

tween 𝑡𝛼 , the arrival time of the query with the earliest
deadline in state 𝑠 = (𝑛,𝑇𝑗), and 𝑡𝑠 , the time at which action
𝑎 is taken in state 𝑠 . 𝑇𝐴 is the amount of time that the query
with the earliest deadline in 𝑠 spends in the worker queue.
Thus, 𝑇𝐴 +𝑇𝑗 = 𝑆𝐿𝑂 , and consequently,

𝑇𝐴 = 𝑆𝐿𝑂 −𝑇𝑗
Since 𝑠 = (𝑛,𝑇𝑗), and one query arrives at 𝑡𝛼 , 𝑛 − 1 queries

arrive at worker𝑤 during interval A. Since RAMSIS uses a
round-robin load balancer with 𝐾 workers, worker 𝑤 gets
every 𝐾𝑡ℎ query that arrives at the central queue. For 𝑛 − 1

Figure 4. Four non-overlapping time intervals for transition
probability analysis when 𝑏 = 𝑛.

queries to arrive at worker𝑤 , the number of arrivals to the
central queue 𝑘𝐴 must be at least (𝑛−1)𝐾 and at most 𝑛𝐾 −1.
That is,

𝑘𝐴 ∈ [(𝑛 − 1)𝐾,𝑛𝐾 − 1]
Interval B. Interval B represents the time elapsed between

𝑡𝑠 , when action 𝑎 = (𝑚,𝑛) is taken in state 𝑠 = (𝑛,𝑇𝑗), and
𝑡𝛼 ′ , when the next query arrives. Note that 𝑡𝑠′ − 𝑡𝛼 ′ defines
how long the query corresponding to 𝑇𝑗 ′ , in next state 𝑠′ =
(𝑛′,𝑇𝑗 ′), is queued at worker𝑤 before being serviced. Thus,
𝑡𝑠′ −𝑡𝛼 ′ +𝑇𝑗 ′ = 𝑆𝐿𝑂 . Moreover,𝑇𝐵 +𝑡𝑠′ −𝑡𝛼 ′ = 𝑙𝑤 (𝑚,𝑛), where
𝑙𝑤 (𝑚,𝑛) is the time elapsed between 𝑡𝑠 and 𝑡𝑠′ from taking
action 𝑎 = (𝑚,𝑛) defined by inference latency of model𝑚
with batch size 𝑛 on worker𝑤 . Consequently,

𝑇𝐵 = 𝑙𝑤 (𝑚,𝑛) +𝑇𝑗 ′ − 𝑆𝐿𝑂
Since the first arrival at the worker following 𝑡𝑠 must

take place at or after 𝑡𝛼 ′ , zero queries arrive at worker 𝑤
during interval B. Since worker 𝑤 is assigned a query for
every 𝐾𝑡ℎ central queue arrival with round-robin, 𝑘𝐴%𝐾
denotes the number of central queue arrivals during interval
A that worker𝑤 does not receive after worker𝑤 ’s last arrival.
Then, after 𝑡𝑠 (interval A), worker 𝑤 receives its first next
query from𝐾−(𝑘𝐴%𝐾) central queue arrivals. Thus, for zero
queries to arrive at worker𝑤 during interval B, the number
of queries that arrive at the central queue during interval B
is at least zero and at most 𝐾 − (𝑘𝐴%𝐾) − 1. That is,

𝑘𝐵 ∈ [0, 𝐾 − (𝑘𝐴%𝐾) − 1]
When solving the MDP, which considers all current-next

state pairs, it is possible that 𝑇𝐵 = 𝑙𝑤 (𝑚,𝑛) +𝑇𝑗 ′ − 𝑆𝐿𝑂 < 0.
This is true for the case where the transition from 𝑠 to 𝑠′ with
action 𝑎 = (𝑚,𝑛) where the sum of the inference latency
𝑙𝑤 (𝑚,𝑛) and the slack time 𝑇𝑗 ′ in state 𝑠′ is less than 𝑆𝐿𝑂 .
Here, we set 𝑇𝐵 = 0. Intuitively, this is sound since exactly
zero arrivals can occur during a time length less than zero.
Interval C. Interval C, of length 𝑇𝐶 , represents the time

interval during which the query corresponding to slack time
𝑇𝑗 ′ arrived at worker 𝑤 ’s queue. From Fig. 4, observe that
𝑇𝐷 +𝑇𝑗 ′+1 = 𝑆𝐿𝑂 (note 𝑇𝑗 ′+1 ∈ T𝑤 as described in §4.2) and
𝑇𝐵 +𝑇𝐶 +𝑇𝐷 = 𝑙𝑤 (𝑚,𝑛). Consequently,

𝑇𝐶 = 𝑙𝑤 (𝑚,𝑛) +𝑇𝑗 ′+1 − 𝑆𝐿𝑂 −𝑇𝐵
If 𝑇𝐶 = 𝑙𝑤 (𝑚,𝑛) + 𝑇𝑗 ′+1 − 𝑆𝐿𝑂 − 𝑇𝐵 < 0, we set 𝑇𝐶 = 0
following the same reasoning as for interval B.

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

We split the derivation of the number of arrivals to the
central queue during interval C into two cases: 𝑛′ = 0 and
0 < 𝑛′ ≤ 𝑁𝑤 . In both cases, the number of arrivals to worker
𝑤 depends on the number of central queue arrivals during
previous intervals A and B due to round-robin scheduling.
For 𝑛′ = 0, the number of queries to the worker during

interval C must be zero. After 𝑡𝛼 ′ (interval B), worker 𝑤
receives its first next query from 𝐾 − (𝑘𝐴%𝐾) − 𝑘𝐵 central
queue arrivals (recall zero queries arrive at worker𝑤 during
interval B). Thus, the number of queries 𝑘𝐶 that arrive at the
central queue during interval C is at least zero and at most
𝐾 − (𝑘𝐴%𝐾) − 𝑘𝐵 − 1. That is, when 𝑛′ = 0,

𝑘𝐶 ∈ [0, 𝐾 − (𝑘𝐴%𝐾) − 𝑘𝐵 − 1]

For 0 < 𝑛′ ≤ 𝑁𝑤 , the number of arrivals to worker 𝑤
during interval C must be at least one and at most 𝑛′. For at
least one query to arrive at worker𝑤 during interval C, the
number of central queue arrivals during interval C must be
at least 𝐾 − (𝑘𝐴%𝐾) −𝑘𝐵 . For at most 𝑛′ arrivals to worker𝑤
during interval C, 𝑘𝐶 must be at most (𝑛′ + 1)𝐾 − (𝑘𝐴%𝐾) −
𝑘𝐵 − 1. Thus, when 0 < 𝑛′ ≤ 𝑁𝑤 ,

𝑘𝐶 ∈ [𝐾 − (𝑘𝐴%𝐾) − 𝑘𝐵, (𝑛′ + 1)𝐾 − (𝑘𝐴%𝐾) − 𝑘𝐵 − 1]

Interval D. Interval D represents the time elapsed be-
tween the end of the interval during which the query cor-
responding to 𝑇𝑗 ′ arrives and the time at which the MDP
transitions to future state 𝑡𝑠′ . From Fig. 4, observe that

𝑇𝐷 = 𝑙𝑤 (𝑚,𝑛) −𝑇𝐶 −𝑇𝐵
Recall that 𝑛′ queries must arrive at the worker between

𝑡𝑠 and 𝑡𝑠′ . Then, the total number of central queue arrivals
during intervals C and D must be at least 𝑛′𝐾 − (𝑘𝐴%𝐾) −𝑘𝐵
and at most (𝑛′+1)𝐾−(𝑘𝐴%𝐾)−𝑘𝐵−1 with respect to round-
robin scheduling with 𝐾 workers. Further, if 𝑖 queries arrive
at the worker during interval C, then 𝑛′ − 𝑖 queries must
arrive at the worker during interval D. Thus, the number of
central queue arrivals along interval D:

𝑘𝐷 ∈[𝑚𝑎𝑥 (0, 𝑛′𝐾 − (𝑘𝐴%𝐾) − 𝑘𝐵 − 𝑘𝐶),
(𝑛′ + 1)𝐾 − (𝑘𝐴%𝐾) − 𝑘𝐵 − 1 − 𝑘𝐶]

4.4.3 Case 3: 𝑛 ≠ 0 and 𝑛′ > 𝑁𝑤 . This case represents the
transition to the state where the number of arrivals accumu-
late beyond the maximum worker queue size (i.e., 𝑛′ > 𝑁𝑤).
Recall that 𝑛′ > 𝑁𝑤 is represented as a special discrete state
𝑠′ = (𝜙,∅) (§4.2.3). Given 𝑠 ∈ 𝑆 , we calculate the proba-
bility of transitioning to state 𝑠′ = (𝜙,∅) in terms of not
transitioning to the state using equations 1 and 2 as follows:

P[𝑠′ = (𝜙,∅)|𝑠 = (𝑛,𝑇𝑗), 𝑎 = (𝑚,𝑏)] = (3)

1 −
∑︁

𝑠′∈𝑆\{ (𝜙,∅) }
P[𝑠′ |𝑠 = (𝑛,𝑇𝑗), 𝑎 = (𝑚,𝑏)]

Together, equations 1, 2, and 3 fully specify the transition
probabilities 𝑃𝑎 (𝑠, 𝑠′).

5 RAMSIS Scalability and Guarantees

In this section, we detail RAMSIS’s accuracy and latency
guarantees (§5.1) and policy generation complexity (§5.2).

5.1 Latency and Accuracy Guarantees

Using a worker 𝑤 ’s MDP (§4), RAMSIS constructs an MS
policy 𝜋𝑤 , which offers probabilistic guarantees on accu-
racy and latency (akin to Cocktail [16]). That is, RAMSIS
can compute latency violation rate and accuracy summary
statistics (e.g., expectation, median, 99th percentile) over the
entire state space of𝑤 ’s MDP; latency violation rate refers
to the fraction of all served queries which do not meet their
deadlines.

In particular, ISSs can benefit from RAMSIS’s support for
computing the expectation of inference accuracy and the ex-
pectation of latency SLO violation rate of a policy 𝜋𝑤 . That
is, either users or the ISS resource manager can use the ex-
pectation of inference accuracy and latency violation rate
provided by RAMSIS to direct resource scaling decisions, e.g.,
via an offline search for resource configurations that achieve
sufficient accuracy and latency SLO violation rate.
The expected latency SLO violation rate for 𝜋𝑤 can be

expressed as:

𝐸𝜋𝑤 [𝑆𝐿𝑂𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛] ≤
∑︁
𝑠

𝑃𝜋𝑤 (𝑠) ∗ (1 − 𝑆𝐿𝑂𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 (𝑠, 𝜋𝑤 [𝑠]))

where 𝑃𝜋𝑤 (𝑠) is probability of being in state 𝑠 for each state in
worker𝑤 ’s MDP which is calculated via power iteration [40]
from the transition probabilities (§4.4).

The expected accuracy for 𝜋𝑤 can be expressed as:

𝐸𝜋𝑤 [𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦] ≥
∑︁
𝑠∈𝑆∗

𝑃𝜋𝑤 (𝑠) ∗𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝜋𝑤 [𝑠])

where 𝑆∗ = {𝑠 |𝑠 ∈ 𝑆, 𝑆𝐿𝑂𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 (𝑠, 𝜋𝑤 [𝑠]) = 1}.
Empirically (§7.3.1), we find that observed (online) aver-

age accuracy and latency violation rate closely follow their
expectations as computed above. Notably, the expected ac-
curacy provides a lower bound while the expected latency
violation rate serves as an upper bound. We provide the
following intuition for this finding:
(1) The slack time of a state 𝑇𝑗 underestimates the real

slack Δ (§4.2) and thus a 𝑆𝐿𝑂𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 may report
false negatives but does not return false positives.

(2) Given state 𝑠 and action𝜋𝑤 [𝑠], 𝑆𝐿𝑂𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 (𝑠, 𝜋𝑤 [𝑠])
assumes all the queries served in the action are missed
if the earliest deadline is not met.

5.2 Scalability

Recall RAMSIS uses value iteration (§4.1) for policy gener-
ation, which reasons about all possible transitions 𝑃𝑎 (𝑠, 𝑠′),
i.e., for all 𝑎, 𝑠 , and 𝑠′. Policy generation thus exhibits a run-
time complexity of O(|𝑆 |2 |𝐴|), where |𝑆 | and |𝐴| denote the
state and action space size (§4), respectively [8].
Since the maximum worker queue size 𝑁𝑤 need only be

roughly large enough to handle the largest possible batch

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

size 𝐵𝑤 (§4.2.3), 𝑁𝑤 = O(𝐵𝑤). Since all relevant slack times
𝑇𝑗 ∈ T𝑤 can be represented by a discrete space of size |T𝑤 | =
O(|𝑀𝑤 | ∗ 𝐵𝑤) (§4.2), the state space required to represent
𝑠 = (𝑛,𝑇𝑗), including special states §4.2.3, is |𝑆 | = O(𝑁𝑤 ∗
|T𝑤 |) = O(|𝑀𝑤 | ∗ 𝐵2𝑤). The action space size with maximal
batching (§4.3.2) is O(|𝑀𝑤 |) which counts all possible model
selections. Thus, the time complexity to generate an MS
policy is O(|𝑀𝑤 |3 ∗ 𝐵4𝑤).
RAMSIS’s offline policy generation is polynomial in the

number of models and maximum batch size. The total num-
ber of pre-loaded models per worker |𝑀𝑤 | is often small
(i.e., much less than 100 [15, 28, 32, 38, 57]) since there are
few models on the Pareto Front (e.g., Fig. 3) [4, 37, 47, 56],
and available memory capacity limits the number of models
which can be simultaneously loaded on a worker [15, 28, 32].
Further, maximum batch sizes 𝐵𝑤 are often small (1-64) due
to the prevalence of low latency SLOs [5, 17, 25, 29] (e.g., we
observed 𝐵𝑤 = 29 in our experiments). If the policy genera-
tion runtime with MD is too slow due to large |𝑀𝑤 | or 𝐵𝑤 ,
FLD (§4.2.2) can be used to reduce runtime (Table 2).

6 RAMSIS Implementation

We evaluate RAMSIS in simulation and as a prototype imple-
mentation.2 We design RAMSIS as a client-server architec-
ture, where the central controller is a single virtual machine
(VM) that receives all client queries and dispatches them to
worker VMs.

Simulation Framework. The RAMSIS simulator is im-
plemented in 1K lines of Python. Given a trace of arrival
times [1], it records MS&S decisions and tracks the central
queue state (queued queries/deadlines) and worker statuses
(busy or available). We use the model inference latency pro-
files collected on the target hardware platform to determine
how long a worker is busy as a result of an MS decision.
Prototype Implementation. Our RAMSIS prototype

consists of about 3K lines of Python code using TorchServe [35]
for executing inference. The central controller VM runs a
workload generator process in addition to a load balancer pro-
cess and per-worker model selector processes. The workload
generator produces a stream of query arrivals according to a
query load trace (§7) under a stochastic inter-arrival pattern
(e.g., Poisson). The central queue is implemented as a first-in-
first-out data structure in shared memory that stores the wall
clock arrival time of each query and a reference to its input
data (e.g., an image or text). The load balancer distributes
queries in the central queue to worker queues; one worker
queue is associated with each worker VM. Worker model
selectors dispatch queries from their respective queues to
their associated worker VMs. Worker VMs run a TorchServe
server which exposes an HTTP Request API for their worker
model selectors to send queries.

2https://github.com/dmmendo/RAMSIS

Load Monitor. Both RAMSIS and our baselines (§7) use
the same load monitor implementation (§3), which tracks
query load via a moving average over a window of 500 mil-
liseconds [38, 57]. Other approaches to track query load (e.g.,
neural network load prediction [16, 54]) can be used.
Policy Generation. Unless otherwise stated, RAMSIS

policy generation uses maximal batching (§4.3) and fixed-
interval time discretization (§4.2) with 𝐷 = 100 throughout
our evaluation. We set max queue size 𝑁𝑤 = 32 in policy
generation since we observed the maximum batch size for
the largest evaluated SLO was 29 (§4.2.3).

Query Load Adaptation. RAMSIS pre-computes model
selection policies for a range of arrival distributions; all fea-
ture Poisson inter-arrivals but vary according to query load
(§3.1.3). We generate (pre-compute) policies for differing
query load such that the largest difference between the ex-
pected accuracies (§5.1) among all pairs of adjacent policies
(when ordered by increasing load) is below a threshold—1%
in our experiments.

7 Evaluation

Our main evaluation answers the following questions, and
§C, §D, §F contain additional results. How does MS&S with
RAMSIS compare to state-of-art approaches [32, 57] on a
production trace [1] (§7.1)? To what degree does accounting
for the query inter-arrival pattern improve achieved query
accuracy (§7.2)? Does the observed accuracy and latency
violation rate on our RAMSIS implementation align with
simulation observations and theoretical expectation (§7.3.1)?
How does the available set of ML models impact RAMSIS’s
accuracy (§7.3.2)?

Hardware Setup.We conduct our experiments on Google
Cloud Platform (GCP) VMs [14]. The central controller VM
is a GCP n2 instance, equipped with 128 Intel Haswell CPUs
and 512GB of DRAM. Workers VMs are GCP n1 instances,
equipped with 4 Intel Haswell CPUs and 16GB of DRAM. By
design, compute, memory, and network bandwidth are not a
bottleneck to meeting latency SLOs.

Inference Tasks. We evaluate RAMSIS on two tasks: im-
age classification and text classification. For image classifica-
tion, RAMSIS has access to 26 models from Torch Vision [30]
(Fig. 3): 11 EfficientNets [47], 5 ResNets [21], 2 ResNexts [53],
GoogleNet [45], 2 MobileNets [22], Inception [46], and 4
ShuffleNets [58]. For sequence classification, RAMSIS is sup-
plied with 5 Bert models [11] from huggingface [52] (Fig. 9):
tiny, mini, small, medium, and base.
For each task, all models are pre-loaded on each worker

VM. Worker homogeneity is not a fundamental requirement
for RAMSIS since policies are generated per worker (§4).

We evaluate each task under three representative latency
SLOs: 150 ms, 300 ms, and 500 ms for image classification,
and 100 ms, 200 ms, and 300 ms for text classification. The
middle SLO is set as the latency of the highest-latency model

https://github.com/dmmendo/RAMSIS

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

rounded up to the nearest hundred milliseconds. The lowest
SLO is half the middle SLO. The highest SLO is 1.5× the la-
tency of the highest-latency model rounded up to the nearest
hundred milliseconds. Latency SLOs for ML applications are
typically in the range of a few hundred milliseconds [17, 38].

Workloads.Weevaluate RAMSIS and existing approaches
using a 24-hour production inference query trace from Twit-
ter [1], which exhibits both diurnal patterns and unexpected
spikes in query load [38, 54]. We scale the Twitter trace down
to five minutes (from one day) for our experiments, as is done
in prior work [38]. The resulting trace defines query loads
over time ranging from 1,617 to 3,905 queries per second
(QPS). Since the Twitter trace logs query load over fixed time
intervals rather than explicit query arrival times, we sample
arrival times of each query via a Poisson process under the
aforementioned range of query loads, resulting in 554,395
total queries.
In addition to the production trace, we evaluate RAMSIS

and baselines on constant query load (specified per experi-
ment) for 30 seconds under Poisson arrivals to measure the
impact of the inter-arrival pattern on MS&S.
Baseline MS&S Policies. We compare RAMSIS to two

MS&S approaches, Jellyfish+ and ModelSwitching [57]. Jelly-
fish+ extends Jellyfish [32] with support for balancing query
load from an inference application across multiple workers.
RAMSIS, Jellyfish+, and ModelSwitching all collect model
profiles and generate MS policies offline. Policies are gen-
erated once per query load (and worker type for RAMSIS),
resulting in negligible overhead online for MS&S decisions.
Like RAMSIS, Jellyfish and ModelSwitching aim to maximize
inference accuracy within a comparable ISS architecture (Ta-
ble 1). Unlike RAMSIS, they conservatively do not explicitly
account for the query inter-arrival pattern to support this
goal. We describe both baselines in more detail below. Note
that since both baselines are load-granular MS&S approaches
(§2), model selections switch only on query load changes.
For fair comparison, we evaluate RAMSIS and baselines in
the same implementation framework (§6) and they do not
drop queries when facing latency SLO violations.

Jellyfish+. JellyFish [32] assumes a single worker per SLO,
and JellyFish+ extends JellyFish with multiple workers per
SLO. Given some query load, Jellyfish+ selects the most ac-
curate model such that the model’s average throughput is
greater than the anticipated query load, and the model’s
inference latency is less than half the latency SLO. The in-
ference latency is constrained to half the latency SLO to
avoid latency SLO violations in anticipation of the worst-
case (maximum) wait times in the central queue [32, 43].
Jellyfish+ estimates a model’s throughput as the sum of the
average profiled throughput among each worker. Workers
eagerly grab and service queries from the central queue in
batches up to a maximum batch size set according to adaptive
batching [7].

Figure 5. Existing MS&S approaches vs. RAMSIS prototype
implementation, given production Twitter trace on the im-
age classification (top) and text classification (bottom) tasks.
RAMSIS achieves higher accuracy with same resources or
the same accuracy with fewer resources.

ModelSwitching. ModelSwitching [57] measures the re-
sponse latency of each model under anticipated query loads
offline. Given some query load, it selects the most accurate
model such that the model’s 99𝑡ℎ percentile response latency
is less than the latency SLO under the anticipated query
load. ModelSwitching and Jellyfish+ employ the same im-
plicit load balancing strategy with adaptive batching. The
response latency of each model is collected in an offline pro-
filing step over the relevant a range of query load (i.e., 400 to
4000 QPS in increments of 100 QPS) on all evaluated resource
configurations (i.e., 20 to 100 workers).

Performance Metrics. We compare RAMSIS, Jellyfish+,
and ModelSwitching for each classification task and work-
load (i.e., query trace) with respect to their observed Latency
SLO Violation Rate and Accuracy Per Satisfied Query, as is
done in prior work [16, 32, 57]. Latency SLO Violation Rate is
the fraction of all serviced queries whose latency deadline is
missed. Accuracy Per Satisfied Query is the average profiled
accuracy over all satisfied queries given the model selection
decision of each query.

7.1 Evaluating RAMSIS on a Production Trace

We now compare MS&S with our prototype RAMSIS im-
plementation to our baselines given the Twitter trace. We
consider each application separately (image and text classifi-
cation) and vary the number of workers from 20 to 100 in
increments of 10.
Fig. 5 plots accuracy versus number of workers for this

experiment. Only data points which correspond to a latency
SLO violation rate of less than 5% are included. RAMSIS and
the baselines are susceptible to inference latency variance
where the inference latency is occasionally unexpectedly
long (e.g., beyond profiled 95th percentile). Thus, SLO viola-
tion rates vary slightly between runs for both RAMSIS and

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

Figure 6. Existing MS&S schemes vs. RAMSIS prototype
implementation, queried with constant load on the image
classification (top) and text classification (bottom) task. RAM-
SIS achieves equal or higher accuracy given same constant
query load and resources.

the baselines. However, when query load is satisfiable, RAM-
SIS and the baselines exhibit low SLO violation rates. The
average latency violation rates for RAMSIS, ModelSwitching,
and Jellyfish+ are 0.14%, 0.24%, and 0.21%, respectively (see
§F for more details). Given the same resources and latency
SLO, compared to ModelSwitching and Jellyfish+, RAMSIS
exhibits a 0.04% and 0.07% lower SLO violation rate for im-
age classification while achieving 0.15% and 0.06% lower
SLO violation rate for text classification, respectively, and
always achieves higher accuracy. For image classification,
RAMSIS achieves up to 15.09% and 15.08% (on average 4.43%
and 4.35%) higher accuracy than ModelSwitching and Jelly-
fish+, respectively. For text classification, RAMSIS achieves
up to 3.85% and 4.55% (on average 1.93% and 2.01%) higher
accuracy than ModelSwitching and Jellyfish+, respectively.
RAMSIS’s accuracy benefits are a direct result of its fine-
grained, inter-arrival pattern-aware decisions, where models
are selected per batch of queries. In contrast, Jellyfish+ and
ModelSwitching adapt MS decisions upon changes in query
load only.

The accuracy improvements of RAMSIS enable reduction
in costs through achieving the same accuracy with fewer
resources than the baselines. Notably, to meet the same ac-
curacy as ModelSwitching and Jellyfish+ for image classi-
fication, RAMSIS requires as low as 50.00% and 42.86% (on
average 20.01% and 17.53%) fewer resources, respectively. To
meet the same accuracy as ModelSwitching and Jellyfish+ for
text classification, RAMSIS uses as low as 44.44% and 75.00%
(on average 25.31% and 31.25%) fewer resources, respectively.

Insight: RAMSIS significantly improves ISS accuracy com-
pared to our baselines for a real-world trace and enables con-
siderable cost reduction while providing the same accuracy.

7.2 Evaluating RAMSIS with Constant Query Load

Next, we demonstrate howRAMSIS can leverage inter-arrival
patterns to maximize accuracy even at constant query load
and constant resources (i.e., workers). We conduct the same
experiment with our prototype RAMSIS implementation at
several representative 30-second constant load traces, rang-
ing from 400 QPS to 4000 QPS in increments of 400. We select
the number of workers so that at high load (3600-4000 QPS)
only the lowest latency model exhibits sufficient throughput
to meet the load with both baselines. The result is 60 and 20
workers for image and text classification, respectively. For
these experiments, we assume the load monitor perfectly
predicts the query load to focus our evaluation on compar-
ing the best possible performance of all evaluated MS&S
approaches.

Fig. 6 plots accuracy versus query load for this experiment.
Again, only data points with a latency SLO violation rate
of less than 5% are included. Given same resources, query
load, and latency SLO, RAMSIS consistently achieves equal
or higher accuracy with a comparable latency violation rate
compared to the baselines. The average latency violation
rates for RAMSIS, ModelSwitching, and Jellyfish+ are 0.30%,
0.23%, and 0.39%, respectively (see §F for more details). For
image classification, RAMSIS compared to ModelSwitching
and Jellyfish+ achieves up to 15.42% (on average 4.82% and
4.95%) higher accuracy with a 0.13% higher and 0.15% lower
average violation rate, respectively. For text classification,
RAMSIS achieves up to 4.88% (on average 2.25% and 2.26%)
higher accuracywith a 0.02% and 0.01% lower average latency
violation rate compared to ModelSwitching and Jellyfish+,
respectively.
At the extreme ends of the query load range (low and

high), RAMSIS performs similarly to the baselines. This is
because at high load, close to the largest satisfiable load,
the only MS decision which can meet the query load and
stochastic inter-arrival pattern is the lowest latency model.
At low load, queries arrivals are too infrequent for the inter-
arrival pattern to significantly impact performance.

Insight: Accounting for the inter-arrival pattern enables
RAMSIS to achieve consistent and significant accuracy ben-
efits over load-granular approaches across the range of satis-
fiable query loads with constant resources.

7.3 Sensitivity Experiments

7.3.1 RAMSIS’s Fidelity. We now evaluate the ability of
our theoretical expectation calculations (§5.1) and simula-
tion infrastructure to emulate the RAMSIS implementation
(§6). We consider these three RAMSIS variants—expectation,
simulation, and implementation—on the image classification
task for 30 second constant query load traces with 40, 60,
and 80 workers. Fig. 7 plots accuracy (top) and latency SLO
violation rates (bottom) for each variant.

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

Figure 7. Comparison of RAMSIS’s achieved accuracy and
latency SLO violation rate in expectation, in the simulation
framework, and in the prototype implementation. RAMSIS’s
performance in simulation and in the prototype implemen-
tation closely follow the expectation.

The simulation framework uses the same scheduling code
as the implementation. The only discrepancy between sim-
ulation and implementation is that the simulation assumes
inference latency is deterministically the 95𝑡ℎ percentile of
the model profile (i.e., Fig. 3 and Fig. 9). In general, RAMSIS
achieves higher accuracy and a lower SLO violation rate
in implementation than in simulation. This is because our
RAMSIS simulation does not capture inference latency vari-
ance. In our real implementation, inference latency may be
shorter than its profile, enabling RAMSIS MS&S policies to
select higher accuracy models for subsequent batches. We
observe a standard deviation in inference latency of around
10 milliseconds for all models during latency profiling.

Fig. 7 also shows that RAMSIS simulation closely follows
expected accuracy. The same is true for SLO violation rate,
except at high query loads which are close to the largest
satisfiable query load given the resources (i.e., the peak ca-
pacity). This is because at satisfiable query load (below peak
capacity), the number of latency violations is low both in
expectation and simulation. However, under high query load
(beyond peak capacity), latency violations are unavoidable.
In the latter case, RAMSIS expectation overestimates latency
violation rate. This is because with a load beyond the peak ca-
pacity, the probability of reaching the special full queue state
(§4.2.3) becomes high. RAMSIS assumes latency violations
in the state are unavoidable, thereby causing the expectation
to overestimate the violation rate at high query load.

7.3.2 Scaling to Many Models. To evaluate sensitivity to
the number of available models for RAMSIS and our base-
lines, we compare performance (accuracy and latency vio-
lation rate) for image classification assuming low and high
model counts. For the lowmodel count scenario, all MS&S ap-
proaches use𝑀 = 9 models taken from the accuracy-latency
Pareto Front spanned by the original image classification

Figure 8.ModelSwitching and RAMSIS with differing model
set sizes where the larger model set (𝑀 = 60) is constructed
based on the Pareto Front of the image classification task
(Fig. 3) consisting of𝑀 = 9 models.

model set (Fig. 3). For the high model count scenario, we
construct a synthetic set of 𝑀 = 60 models. We use linear
interpolation on the Pareto front of the original 9 models
to instantiate synthetic models in 0.5% accuracy increments.
The set of models in the high model count scenario is a strict
superset of those in the low model count scenario. Our ex-
periments in this section consider 30 second constant query
load traces with 100 workers. For brevity, we include results
for RAMSIS and ModelSwitching only, as ModelSwitching
is the best performing baseline in this experiment.

Fig. 8 plots accuracy versus query load for this experiment.
Only data points which correspond to a latency SLO viola-
tion rate of less than 5% are included. Notably RAMSIS sees
negligible performance improvement when equipped with
60 models versus 9.

Insight: RAMSIS emulates a large model set through fine-
grained MS&S decisions that maximize accuracy.

Alternately,ModelSwitching exhibits significantly improved
accuracy in the high model count scenario—still lower than
RAMSIS, however. This is because ModelSwitching must
select the same model for a constant query load. To avoid
latency SLO violations, ModelSwitching is forced to consis-
tently select a model which exhibits an inference latency
that is (sometimes significantly) lower than required.

Insight: RAMSIS MS&S policies, which exploit the query
inter-arrival pattern, offer higher accuracy improvements
for existing ISSs compared to increasing the model count for
load-granular approaches.

8 Related Work

MS&S for Inference Latency Variance. Some MS&S ap-
proaches, likeMDInference [33] andALERT [48], target hard-
ware resources which exhibit high inference latency vari-
ance, e.g., due to network latency, co-location interference,
or dynamic frequency scaling [27, 33, 48]. These systems
greedily select the most accurate model given the current
arrived queries and their deadlines, which is not sufficient
to avoid latency SLO violations under varying query load
and stochastic inter-arrival patterns. In contrast, we focus

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

on model selection for hardware resources which exhibit
predictable latency [15, 28, 43].
MLModel Ensembling.MS&S approaches specialized

for ML model ensembling have been proposed [7, 16, 50].
Here, multiple models are invoked per query and the output
of each model is aggregated via some weight scheme (e.g.,
most popular class). Ensembling has only been shown to be
cost-effective with preemptible instances [16]. Further, these
model selection techniques do not account for stochastic
inter-arrival patterns—our focus.

Resource Management. Alpaserve [28] partitions mod-
els across hardware resources to optimize operator parallel
strategies. MArk [54] and Inferline [6] autoscale workers in
order to save cost while meeting latency SLOs. INFaaS [38]
proposes model autoscaling with heterogeneous resources
to minimize cost. REEF [19] demonstrates a GPU kernel pre-
emption strategy to share GPUs across both latency-critical
and best-effort tasks. RAMSIS is an MS&S framework that
maximizes accuracy constrained to latency SLOs given a
resource allocation from the resource manager. RAMSIS can
be combined with existing resource management strategies.

9 Conclusion

Existing MS&S approaches are overly-conservative in the
presence of stochastic inter-arrival patterns, missing oppor-
tunities to improve inference accuracy by sending queries
to higher accuracy/latency models. Our solution is RAMSIS,
an MS&S framework which efficiently pre-computes MS&S
policies offline that explicitly account for the query inter-
arrival pattern to maximize query accuracy given a latency
SLO. We evaluate RAMSIS against state-of-the-art MS&S ap-
proaches and show that it achieves the same accuracy with
as low as 50.00% and 75.00% (on average 18.77% and 28.28%)
fewer resources on an image classification task and a text
classification task, respectively.

Acknowledgments

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) through fund-
ing for the CISPA-Stanford Center for Cybersecurity (FKZ:
16KIS1138). We thank the anonymous reviewers and our
shepherd Shivaram Venkataraman for their valuable feed-
back.

References

[1] ArchiveTeam 2018. Twitter Streaming Traces. https://archive.org/
details/archiveteam-twitter-stream-2018-04.

[2] AWS. 2019. Deliver high performance ML inference with AWS
Inferentia. https://d1.awsstatic.com/events/reinvent/2019/REPEAT_
1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_
CMP324-R1.pdf.

[3] Pamela Badian-Pessot, Mark Lewis, and Douglas Down. 2019. OP-
TIMAL CONTROL POLICIES FOR AN M/M/1 QUEUE WITH A RE-
MOVABLE SERVER AND DYNAMIC SERVICE RATES. Probabil-
ity in the Engineering and Informational Sciences 35 (07 2019), 1–21.

https://doi.org/10.1017/S0269964819000299
[4] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano.

2018. Benchmark Analysis of Representative Deep Neural Network
Architectures. IEEE Access 6 (2018), 64270–64277. https://doi.org/10.
1109/ACCESS.2018.2877890

[5] Marshall Choy. 2021. Accelerating the Modern Machine
Learning Workhorse: Recommendation Inference. https:
//sambanova.ai/blog/accelerating-the-modern-ml-workhorse-
recommendation-inference/

[6] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Sto-
ica, Joseph Gonzalez, and Alexey Tumanov. 2020. InferLine: Latency-
Aware Provisioning and Scaling for Prediction Serving Pipelines. In
Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual
Event, USA) (SoCC ’20). Association for Computing Machinery, New
York, NY, USA, 477–491. https://doi.org/10.1145/3419111.3421285

[7] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation (Boston,
MA, USA) (NSDI’17). USENIX Association, USA, 613–627.

[8] Tapas K. Das, Abhijit Gosavi, Sridhar Mahadevan, and Nicholas Mar-
challeck. 1999. Solving Semi-MarkovDecision Problems UsingAverage
Reward Reinforcement Learning. Management Science 45, 4 (1999),
560–574. http://www.jstor.org/stable/2634824

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 248–255.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs.CL]

[12] Matthew F. Dixon, Igor Halperin, and Paul Bilokon. 2020. Machine
Learning in Finance. Springer International Publishing. https://doi.
org/10.1007/978-3-030-41068-1

[13] Facebook Research. 2021. An implementation of a deep learning recom-
mendation model (DLRM). https://github.com/facebookresearch/dlrm.

[14] Google. 2023. Google Cloud Platform. https://cloud.google.com/
[15] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-

mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up. In Pro-
ceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation (OSDI’20). USENIX Association, USA, Article 25,
20 pages.

[16] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R. Das.
2022. Cocktail: A Multidimensional Optimization for Model Serv-
ing in Cloud. In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22). USENIX Association, Renton, WA,
1041–1057. https://www.usenix.org/conference/nsdi22/presentation/
gunasekaran

[17] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon
Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-
Jean Wu. 2020. DeepRecSys: A System for Optimizing End-To-End
At-Scale Neural Recommendation Inference. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). 982–
995. https://doi.org/10.1109/ISCA45697.2020.00084

https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://doi.org/10.1017/S0269964819000299
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1109/ACCESS.2018.2877890
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-recommendation-inference/
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-recommendation-inference/
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-recommendation-inference/
https://doi.org/10.1145/3419111.3421285
http://www.jstor.org/stable/2634824
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-030-41068-1
https://doi.org/10.1007/978-3-030-41068-1
https://github.com/facebookresearch/dlrm
https://cloud.google.com/
https://www.usenix.org/conference/nsdi22/presentation/gunasekaran
https://www.usenix.org/conference/nsdi22/presentation/gunasekaran
https://doi.org/10.1109/ISCA45697.2020.00084

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

[18] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. 2007.
Analysis of join-the-shortest-queue routing for web server farms. Per-
formance Evaluation 64, 9 (2007), 1062–1081. https://doi.org/10.1016/j.
peva.2007.06.012 Performance 2007.

[19] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022.
Microsecond-scale Preemption for Concurrent GPU-accelerated DNN
Inferences. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIXAssociation, Carlsbad, CA, 539–
558. https://www.usenix.org/conference/osdi22/presentation/han

[20] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, and Xiaodong Wang. 2018. Applied Ma-
chine Learning at Facebook: A Datacenter Infrastructure Perspective.
In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.2018.
00059

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 770–778. https:
//doi.org/10.1109/CVPR.2016.90

[22] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv:1704.04861 [cs.CV]

[23] Qiying Hu and Wuyi Yue. 2003. Optimal replacement of a system
according toa semi-Markov decision process in a semi-Markov en-
vironment. Optim. Methods Softw. 18, 2 (2003), 181–196. https:
//doi.org/10.1080/1055678031000111803

[24] Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, Yilong
Wang, Qiang Dong, Haipeng Shen, and Yongjun Wang. 2017. Artificial
intelligence in healthcare: past, present and future. Stroke and Vascular
Neurology 2, 4 (2017), 230–243. https://doi.org/10.1136/svn-2017-
000101 arXiv:https://svn.bmj.com/content/2/4/230.full.pdf

[25] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,
Zongwei Zhou, and David Patterson. 2021. Ten Lessons From Three
Generations Shaped Google’s TPUv4i : Industrial Product. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA). 1–14. https://doi.org/10.1109/ISCA52012.2021.00010

[26] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. NoScope: Optimizing Neural Network Queries over
Video at Scale. Proc. VLDB Endow. 10, 11 (aug 2017), 1586–1597. https:
//doi.org/10.14778/3137628.3137664

[27] Kevin Lee, Vijay Rao, and William Arnold. 2019. Acceler-
ating Facebook’s infrastructure with application-specific hard-
ware. https://engineering.fb.com/2019/03/14/data-center-
engineering/accelerating-infrastructure/.

[28] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. 2023. AlpaServe: Statistical Multiplexing with Model
Parallelism for Deep Learning Serving. arXiv:2302.11665 [cs.LG]

[29] machynist and kippinitreal. 2020. How We Scaled Bert To Serve 1+
Billion Daily Requests on CPUs. https://blog.roblox.com/2020/05/
scaled-bert-serve-1-billion-daily-requests-cpus/

[30] TorchVision maintainers and contributors. 2016. TorchVision: PyTorch’s
Computer Vision library.

[31] Daniel Mendoza, Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. 2021. Interference-Aware Scheduling for Inference
Serving. In Proceedings of the 1st Workshop on Machine Learning and
Systems (Online, United Kingdom) (EuroMLSys ’21). Association for
Computing Machinery, New York, NY, USA, 80–88. https://doi.org/
10.1145/3437984.3458837

[32] Vinod Nigade, Pablo Bauszat, Henri Bal, and Lin Wang. 2022. Jellyfish:
Timely Inference Serving for Dynamic Edge Networks. In 2022 IEEE
Real-Time Systems Symposium (RTSS). 277–290. https://doi.org/10.
1109/RTSS55097.2022.00032

[33] Samuel S. Ogden and Tian Guo. 2020. MDINFERENCE: Balancing
Inference Accuracy and Latency for Mobile Applications. In 2020 IEEE
International Conference on Cloud Engineering (IC2E). 28–39. https:
//doi.org/10.1109/IC2E48712.2020.00010

[34] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[36] Martin L. Puterman. 1994.Markov Decision Processes: Discrete Stochastic
Dynamic Programming (1st ed.). John Wiley & Sons, Inc., USA.

[37] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody
Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf
Inference Benchmark. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture.

[38] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. {INFaaS}: Automated Model-less Inference Serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
397–411.

[39] Sheldon M. Ross. 1983. Introduction to Stochastic Dynamic Program-
ming: Probability and Mathematical. Academic Press, Inc., USA.

[40] Christopher De Sa, Bryan He, Ioannis Mitliagkas, Christopher
Ré, and Peng Xu. 2017. Accelerated Stochastic Power Iteration.
arXiv:1707.02670 [math.OC]

[41] Ken-iti Sato. 2001. Basic Results on Lévy Processes. Birkhäuser Boston,
Boston, MA, 3–37. https://doi.org/10.1007/978-1-4612-0197-7_1

[42] Linn I. Sennott. 1998. Stochastic Dynamic Programming and the Control
of Queueing Systems. Wiley-Interscience, USA.

[43] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 322–337. https://doi.
org/10.1145/3341301.3359658

[44] Shaler Stidham and Richard R. Weber. 1993. A survey of Markov
decision models for control of networks of queues. Queueing Systems
13 (1993), 291–314.

[45] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. 2014. Going Deeper with Convolutions.
arXiv:1409.4842 [cs.CV]

[46] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. 2015. Rethinking the Inception Architecture for
Computer Vision. arXiv:1512.00567 [cs.CV]

https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1016/j.peva.2007.06.012
https://www.usenix.org/conference/osdi22/presentation/han
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1704.04861
https://doi.org/10.1080/1055678031000111803
https://doi.org/10.1080/1055678031000111803
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1136/svn-2017-000101
https://arxiv.org/abs/https://svn.bmj.com/content/2/4/230.full.pdf
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.14778/3137628.3137664
https://doi.org/10.14778/3137628.3137664
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://arxiv.org/abs/2302.11665
https://blog.roblox.com/2020/05/scaled-bert-serve-1-billion-daily-requests-cpus/
https://blog.roblox.com/2020/05/scaled-bert-serve-1-billion-daily-requests-cpus/
https://doi.org/10.1145/3437984.3458837
https://doi.org/10.1145/3437984.3458837
https://doi.org/10.1109/RTSS55097.2022.00032
https://doi.org/10.1109/RTSS55097.2022.00032
https://doi.org/10.1109/IC2E48712.2020.00010
https://doi.org/10.1109/IC2E48712.2020.00010
https://arxiv.org/abs/2303.08774
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1707.02670
https://doi.org/10.1007/978-1-4612-0197-7_1
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

[47] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhut-
dinov (Eds.). PMLR, 6105–6114. https://proceedings.mlr.press/v97/
tan19a.html

[48] Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann,
Michael Maire, and Shan Lu. 2020. ALERT: Accurate Learning for
Energy and Timeliness. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 353–369. https://www.usenix.
org/conference/atc20/presentation/wan

[49] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. GLUE: A Multi-Task Bench-
mark and Analysis Platform for Natural Language Understanding.
arXiv:1804.07461 [cs.CL]

[50] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen,
Teck Khim Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Rafiki:
Machine Learning as an Analytics Service System. Proc. VLDB Endow.
12, 2 (oct 2018), 128–140. https://doi.org/10.14778/3282495.3282499

[51] D. J. White. 1993. A Survey of Applications of Markov Decision
Processes. The Journal of the Operational Research Society 44, 11 (1993),
1073–1096. http://www.jstor.org/stable/2583870

[52] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf,
Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush.
2020. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. arXiv:1910.03771 [cs.CL]

[53] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
2017. Aggregated Residual Transformations for Deep Neural Networks.
arXiv:1611.05431 [cs.CV]

[54] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In Proceedings of the 2019 USENIX Con-
ference on Usenix Annual Technical Conference (Renton, WA, USA)
(USENIX ATC ’19). USENIX Association, USA, 1049–1062.

[55] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, andMichael J. Freedman. 2017. Live Video Analyt-
ics at Scale with Approximation and Delay-Tolerance. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17).

[56] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, andMichael J. Freedman. 2017. Live Video Analyt-
ics at Scale with Approximation and Delay-Tolerance. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17). USENIX Association, Boston, MA, 377–392. https://www.usenix.
org/conference/nsdi17/technical-sessions/presentation/zhang

[57] Jeff (Jun) Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Sid-
dharth Garg. 2020. Model-Switching: Dealing with Fluctuating Work-
loads in Machine-Learning-as-a-Service Systems. In Proceedings of
the 12th USENIX Conference on Hot Topics in Cloud Computing (Hot-
Cloud’20). USENIX Association, USA, Article 5, 1 pages.

[58] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. Shuf-
fleNet: An Extremely Efficient Convolutional Neural Network for
Mobile Devices. arXiv:1707.01083 [cs.CV]

https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://www.usenix.org/conference/atc20/presentation/wan
https://www.usenix.org/conference/atc20/presentation/wan
https://arxiv.org/abs/1804.07461
https://doi.org/10.14778/3282495.3282499
http://www.jstor.org/stable/2583870
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1611.05431
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://arxiv.org/abs/1707.01083

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

A Artifact Appendix

A.1 Abstract

This artifact evaluates the performance of RAMSIS, Jelly-
fish+ [32], and ModelSwitching [57] in terms of achieved
inference accuracy and latency SLO violation rate in a simu-
lation of stochastic query arrivals. Compared to the baselines,
RAMSIS achieves higher accuracy while incurring similar
or fewer latency SLO violations. In this evaluation, we first
generate MS policies offline for each approach. Then, each
approach is simulated across various settings of query load
and number of workers. Both policy generation and simula-
tion are implemented in Python.

A.2 Description & Requirements

We provide a docker image with all required software depen-
dencies pre-installed. This section details the contents of the
container and how to run it.

A.2.1 How to access. The artifact features a Docker im-
age which contains all software dependencies and needed
datasets. It can be accessed at this link:
https://doi.org/10.6084/m9.figshare.24223438

A.2.2 Hardware dependencies. Minimally, a four-core
CPU with 16 GB RAM.

A.2.3 Software dependencies. Docker is required to run
the artifact.

Required Dependencies (pre-installed in Docker im-

age): Python3 and Python modules including NumPy, Py-
torch, SciPy, tqdm, Numba, Scikit-learn, and tabulate.

A.2.4 Benchmarks.

• Twitter trace. We use a five minute Twitter trace [1]
to simulate inference queries as described in §7. The
trace is located in twitter_trace/twitter_04_25_
norm.txt, a text file that lists the average queries per
second (QPS) for ten-second intervals, ranging from
1,617 to 3,905 QPS.

• Inference model profiles. We evaluate RAMSIS and
baselines on a text classification and image classifica-
tion task. Each task consists of a unique set of infer-
ence models, as described in §7. We collect a profile for
each model, which consists of its inference accuracy
(ImageNet [9] for image task and GLUE-MNLI [49]
for text task) and inference latency running on n1
GCP CPU instances. The latency profiles are located in
profiles/MODELNAME/BATCHSIZE.json where each
latency profile is a list of latencies for the model in-
voked 100 times. The accuracy profiles are located in
profiles/image_models.py and profiles/seq_
models.py which are dictionaries that map model
name to its accuracy for the image and text models,
respectively.

A.3 Set-up

This section provides step-by-step instructions to prepare
the system environment for the artifact evaluation.

1. Extract and Run the Docker container

docker load -i ramsis_ae.tar
docker run -it ramsis_ae

2. Verify set up

python3 RAMSIS_gen.py --worker 1 --load 1

The message script complete! should be output to
terminal within two minutes.

A.4 Evaluation workflow

You are now ready to run the evaluation.

A.4.1 Major Claims. In this artifact evaluation, we ver-
ify the main claim of the paper: RAMSIS achieves signifi-
cantly higher accuracy than state-of-the-art approaches (i.e.,
ModelSwitching and Jellyfish+) given the same number of
resources under the same query load while incurring similar
latency SLO violations.

Note there is a discrepancy in measurements on achieved
accuracy and latency SLO violation rate between this artifact
evaluation and results in §7. This is because this artifact eval-
uation is conducted in simulation while the results reported
in §7 are collected from a real implementation as explained
in §7.3.1.

A.4.2 Experiments. We first generate all MS policies be-
fore deploying them on a production query trace and under
constant query load.

So that this artifact evaluation can be completed within a
few hours, the following steps are designed to reproduce a
subset of the main results in §7.1 and §7.2 for the image clas-
sification task. However, the scripts we provide can be used
to reproduce all main results in §7.1 and §7.2 via simulation
and we detail how to do so in §A.5.

Policy Generation [5 human-minutes + 1 compute-

hour]. To run the experiments, we first generate the policies
for each technique. The following generates all required
RAMSIS policies for the evaluation:
python3 RAMSIS_gen.py

As each RAMSIS policy is specialized to a query load and re-
source configuration, we generate a set of policies for query
load ranging from 200 to 4,000 QPS in intervals of 200 and
number of workers ranging from 60 to 80 in intervals of 10.
For brevity of compute time, the policies for ModelSwitch-
ing are provided in the container and thus generation is not
needed. We detail how the ModelSwitching policies can be
generated in §A.5. Jellyfish+ only requires the model profiles
to enforce its MS policies. Thus, there is not an explicit policy
generation step. Each policy can be viewed in
policy_gen/METHOD_NUMWORKERS_SLO/LOAD.json. Each file

https://doi.org/10.6084/m9.figshare.24223438

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

contains a policy, which is a dictionary mapping states of
the MDP to actions.

Experiment: Production Trace [5 human-minutes +

1 compute-hour]. Once RAMSIS policies have been gener-
ated, we can evaluate RAMSIS and baselines with a Twitter
trace [1] across varying resource configurations on the image
classification task.

1. Simulation. Simulate RAMSIS, ModelSwitching (MS),
and Jellyfish+ (JF) on image classification task with
150 millisecond latency SLO while sweeping number
of workers from 60 to 80 in intervals of 10.
python3 run_sim.py --m RAMSIS --trace real
python3 run_sim.py --m MS --trace real
python3 run_sim.py --m JF --trace real

This step measures the achieved accuracy and latency
SLO violation rate of each technique and stores the re-
sults in results/TASK_METHOD_TRACE_SLO_*.json.

2. Plot Results. Plots the accuracy and latency SLO vio-
lation rate across varying number of workers:
python3 plot.py --trace real

The plots are printed to terminal and saved as
image_real_accuracy.png and
image_real_violation.png. The following output
should be printed to terminal:
average accuracy % increase for RAMSIS vs. Jellyfish: 5.70
highest accuracy % increase for RAMSIS vs. Jellyfish: 8.07
average accuracy % increase for RAMSIS vs. ModelSwitching: 3.48
highest accuracy % increase for RAMSIS vs. ModelSwitching: 4.63

The results correspond to Fig. 5 in §7.1 demonstrating
that RAMSIS achieves significantly higher accuracy
than state-of-the-art approaches on a real production
trace given same number of workers. In other words,
RAMSIS can achieve same accuracy as the baselines
with less resources.

Experiment: constant load [5 human-minutes + 1

compute-hour]. Evaluate RAMSIS and baselines with 60
workers under Poisson arrivals with constant load on the
image classification task.

1. Simulation. Simulate RAMSIS, ModelSwitching (MS),
and Jellyfish+ (JF) on image classification task with
150 millisecond latency SLO, while sweeping load from
400 to 4,000 QPS in intervals of 400.
python3 run_sim.py --m RAMSIS --trace constant
python3 run_sim.py --m MS --trace constant
python3 run_sim.py --m JF --trace constant

This step measures the achieved accuracy and latency
SLO violation rate of each technique and stores the
results in
results/TASK_METHOD_TRACE_SLO_LOAD_*.json.

2. Plot Results. Plots the accuracy and latency SLO vio-
lation rate across varying query load:
python3 plot.py --trace constant

The plots are printed to terminal and saved as
image_constant_accuracy.png and
image_constant_violation.png. The following out-
put should be printed to terminal:
average accuracy % increase for RAMSIS vs. Jellyfish: 3.70
highest accuracy % increase for RAMSIS vs. Jellyfish: 15.04
average accuracy % increase for RAMSIS vs. ModelSwitching: 1.84
highest accuracy % increase for RAMSIS vs. ModelSwitching: 6.71

The results correspond to Fig. 6 in §7.2 demonstrating
that RAMSIS achieves significantly higher accuracy
than state-of-the-art approaches under the range of
satisfiable query load.

A.5 Notes on Reusability

The scripts we provide can be used to evaluate RAMSIS and
baselines across configurations beyond those evaluated in
§A.4.2.

The inference task, latency SLO, query load, and number
of workers can be specified via commandline arguments for
RAMSIS_gen.py for policy generation:

• --task ["image" or "text"] Specify image or text
classification task.

• --SLO [float] Specify latency SLO in milliseconds.
• --worker [int] Specify number of workers.
• --load [float] Specify query load in queries per
second.

For example, the following generates a RAMSIS policy for
the text classification task with 200 millisecond latency SLO,
query load of 10 queries per second, and 20 workers:
python3 RAMSIS_gen.py --task text --SLO 200 --worker 20 --load 10

The ModelSwitching policies used in the evaluation can
be generated with python3 MS_gen.py. This script supports
the same commandline arguments to generate policies as
RAMSIS_gen.py.

The inference task, latency SLO, query load, and number
of workers can be specified via commandline arguments for
run_sim.py for simulation and plot.py as well:

• --m ["RAMSIS", "JF", or "MS"] Specify model
selection method.

• --trace ["real" or "constant"] Specify query
load trace as the production trace or constant load.

• --task ["image" or "text"] Specify image or text
classification task.

• --SLO [float] Specify latency SLO in milliseconds.
• --worker [int] Specify number of workers.
• --load [float] Specify query load in queries per
second (for "constant" load trace).

To reproduce the results of Figure 5 with SLO = 150ms
and 100 workers for the image classification task:
python3 RAMSIS_gen.py --task image --SLO 150 --worker 100
python3 MS_gen.py --task image --SLO 150 --worker 100
python3 run_sim.py --m RAMSIS --task image --trace real --SLO 150 --worker 100
python3 run_sim.py --m MS --task image --trace real --SLO 150 --worker 100
python3 run_sim.py --m JF --task image --trace real --SLO 150 --worker 100

Then, to view the results:
python3 plot.py --task image --trace real --SLO 150 --worker 100

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

Figure 9. 95𝑡ℎ percentile inference latency vs. accuracy pro-
file for text classification model set of 5 Bert models from
Huggingface [11, 52]. Accuracy of each model is measured
on the GLUE-MNLI test set [49].

B Model Profiles for Text Classification

Fig. 9 shows model profile for text classification task in our
evaluation (§7).

C Impact of Time Discretization

Fig. 10 shows the accuracy of MS&S with RAMSIS using
different 𝐷 for FLD (§4.2.2). When 𝐷 = 100, FLD performs
similarly to MD (§4.2.1).
Overly-conservative actions can occur with FLD in the

situation where the slack represented in the state space 𝑇𝑗
underestimates the actual slack Δ. To avoid latency SLO vio-
lations, only actions which meets the slack𝑇𝑗 are considered
at each decision (§4.3.1). However, in situations where 𝑇𝑗
severely underestimates the actual slack Δ, the policy may
be taking actions with significantly lower inference latency
than necessary and may miss out on opportunities to select
slower, but higher accuracy models. Note that with MD, this
situation is not possible since the state space represents all
possible relevant slack times defined by all possible inference
latency are represented in the state space.
For FLD, as 𝐷 decreases, in addition to the state space

size decreasing, the distance between time lengths 𝑇𝑗 ,𝑇𝑗+1
increases since the distance between adjacent 𝑇𝑗 ,𝑇𝑗+1 is 𝑆𝐿𝑂𝐷 .
Thus decreasing𝐷 for policy generation makes it more likely
to be in the situation where the actual slack is severely un-
derestimated (i.e., 𝑇𝑗 << Δ < 𝑇𝑗+1) and may result in gener-
ating a more conservative policy. As 𝐷 increases, accuracy
improves. However, there are diminishing returns: the per-
formance gap between 𝐷 = 100 and 𝐷 = 10 is smaller than
between𝐷 = 2 and𝐷 = 10. This is because the adjacent slack
times 𝑇𝑗 ,𝑇𝑗+1 ∈ T𝑤 are increasingly similar as 𝐷 increases
and the generated policy often makes the same decisions for
similar slack times.

D Impact of Batching

Fig. 11 compares the performance of MS&S with RAMSIS
under the maximal and variable batching policies (see 4.3).
The performance difference between these approaches in
negligible, since variable batching selects maximum batch
size (i.e., all pending queries in the worker queue) in 80% of
its decisions.

E Evaluation with Fewer Models

Fig. 12 shows the comparison of Jellyfish+ and RAMSIS with
model removed from the original model set of the image clas-
sification task. 3 model Jellyfish and 3 model RAMSIS demon-
strate the results of when the approaches only have 3 models
to select from. Overall, RAMSIS does not rely on many mod-
els to achieve high accuracy, and always achieves higher
accuracy than Jellyfish+. The 3 models are chosen from Fig.
3 where the minimum latency model (shufflenet_v2_x0_5), a
medium latency model (efficientnet_b2), and a long latency
model (efficientnet_v2_s) are kept in the model set.

F Latency SLO Violation Rates

In this section we show the latency SLO violation rates for
RAMSIS and baselines corresponding to the experiments
conducted in §7.

Production Trace. Table 3 shows the SLO violation rates
corresponding to Fig. 5 with the prototype RAMSIS imple-
mentation. Except for image classification with 20 workers,
RAMSIS’s violation rate is less than 1%. For image classifica-
tion with 20 workers, both RAMSIS and the baselines cannot
meet the load, i.e., the lowest latency model does not offer
sufficient throughput.

Constant Query Load. Table 4 shows the SLO violation
rates corresponding to Fig. 6 with the prototype RAMSIS
implementation. Except for image classification at 3600-4000
QPS, RAMSIS violation rate is less than 1%. 3600-4000 QPS
is near the peak throughput of the lowest latency model.

G Multiple Latency SLOs

RAMSIS handles multiple latency SLOs similar to existing
systems [32]: each worker is assigned a latency SLO, per-SLO
central queues are instantiated, and workers are associated
with a central queue whose SLO matches.

H Notes on INFaaS

INFaaS [38] requires accuracy and latency SLOs from the
application and its model selector and scheduler chooses
the lowest cost model (i.e., typically lowest latency) that
meets both. RAMSIS requires only a latency SLO and maxi-
mizes accuracy given the latency target. A fair comparison
between RAMSIS and INFaaS would require re-designing
RAMSIS to target the same objective as INFaaS. To demon-
strate, we adapted INFaaS to our experimental evaluation

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

Figure 10. Comparison of time discretization strategies (see §4.2). With large enough 𝐷 , FLD can match performance of MD.

Figure 11. RAMSIS maximal batching vs. variable batching (see §4.3). Variable batching performs similarly to maximal
batching.

(§7) by sweeping a range of accuracy targets equal to the set
of accuracies achievable by each inference model. However,
its objective to minimize latency effectively minimizes ac-
curacy, and INFaaS always selects the minimally accurate
model which achieves the accuracy target. As a result, we
found that INFaaS performs no better than RAMSIS or the

baselines (§7), reinforcing the notion that RAMSIS and IN-
FaaS are not directly comparable due to differing objectives
and constraints.

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

Figure 12. Ablation study to show impact of RAMSIS against existing approach from ablating model from the model set.

I Other Load Balancing Strategies

Our RAMSIS evaluation and implementation uses a round-
robin load balancing strategy (§3). In this section, we explain
how RAMSIS can be extended to other load balancing strate-
gies.
The MDP transition probabilities are the only aspect of

RAMSIS which directly depend on the load balancing strat-
egy. In §4.4, we derive transition probabilities for worker
𝑤 assuming round-robin load balancing applied to the ar-
rival distribution to the central queue. Moreover, only case 2
of the transition probabilities (§4.4.2) depends on the load
balancing strategy.

I.1 Shortest-Queue-First

To demonstrate how RAMSIS can be extended to another
load balancing strategy, we show how to formulate the case
2 transition probabilities (§4.4.2) given a shortest-queue-first
strategy. Shortest-queue-first load balancing (i.e., join-the-
shortest-queue [18]) is a dynamic load balancing approach
which on a query arrival to the central queue, assigns the

query to the shortest worker queue (i.e., the worker queue
with lowest number of queued queries) [18]. As in §4.4.2, we
express the transition probabilities for the MDP of worker𝑤
in terms of the arrival distribution to the central queue PF
assuming independent and stationary increments.

For case 2 (i.e., when 0 < 𝑛 ≤ 𝑁𝑤 and 0 ≤ 𝑛′ ≤ 𝑁𝑤) given
the same intervals B, C, and D from §4.4.2 (Fig. 4), we express
the transition probability of a worker𝑤 ’s MDP between state
𝑠 = (𝑛,𝑇𝑗) and state 𝑠′ = (𝑛′,𝑇𝑗 ′) given action 𝑎 = (𝑚,𝑛) as:

P[𝑠′ = (𝑛′,𝑇𝑗 ′) |𝑠 = (𝑛,𝑇𝑗), 𝑎 = (𝑚,𝑛)] = (4)∑︁
𝑘𝑤
𝐶

PF𝑤 (𝑘𝑤𝐵 ,𝑇𝐵 |𝑠) ∗ PF𝑤 (𝑘
𝑤
𝐶
,𝑇𝐶 |𝑠) ∗ PF𝑤 (𝑘𝑤𝐷 ,𝑇𝐷 |𝑠)

where PF𝑤 (𝑘,𝑇 |𝑠) denotes the probability of 𝑘 arrivals at
worker𝑤 during a time interval of length𝑇 given the current
state 𝑠 ; 𝑘𝑤

𝐵
, 𝑘𝑤
𝐶
, and 𝑘𝑤

𝐶
correspond to the number of arrivals

to worker𝑤 during intervals B, C and D, respectively (Fig 4).
Note the distinction between PF𝑤 and PF where PF denotes
the arrival distribution at the central queue.

Recall 𝑇𝐵 , 𝑇𝐶 , 𝑇𝐷 denote the time lengths of intervals B, C,
and D, which for shortest-queue-first, are derived identically

EuroSys ’24, April 22–25, 2024, Athens, Greece Daniel Mendoza, Francisco Romero, and Caroline Trippel

Latency SLO (ms) 150 300 500
#Workers RAMSIS JF+ MS RAMSIS JF+ MS RAMSIS JF+ MS

20 93.38% 100.00% 100.00% 81.77% 99.90% 99.90% 58.61% 99.76% 99.78%
30 0.6430% 0.8607% 0.9707% 0.4408% 0.0047% 0.0121% 0.0592% 0.2152% 0.1474%
40 0.2296% 0.6137% 1.3070% 0.0369% 0.3482% 1.0709% 0.1023% 0.3209% 0.2147%
50 0.0500% 0.1041% 0.2030% 0.0297% 0.0588% 0.1464% 0.0129% 0.0498% 0.1043%
60 0.1277% 0.4141% 0.4136% 0.1471% 0.2260% 0.6517% 0.1607% 0.0863% 0.2296%
70 0.2231% 0.7234% 0.2368% 0.5036% 0.0913% 0.0937% 0.2586% 0.0556% 0.1523%
80 0.4329% 0.8292% 0.6080% 0.2226% 1.0460% 0.7470% 0.1540% 0.0824% 0.3155%
90 0.4914% 0.1652% 0.2141% 0.1132% 0.2618% 0.2861% 0.1117% 0.1972% 0.2042%
100 0.4428% 0.5811% 0.4767% 0.3213% 0.4693% 0.5000% 0.4201% 0.2911% 0.1949%

Latency SLO (ms) 100 200 300
#Workers RAMSIS JF+ MS RAMSIS JF+ MS RAMSIS JF+ MS

20 0.0009% 0.0032% 0.2244% 0.0001% 0.0144% 0.0727% 0.0009% 0.0000% 0.0043%
30 0.0013% 0.6427% 0.0005% 0.0051% 0.0005% 0.0023% 0.0101% 0.0004% 0.0000%
40 0.0157% 0.0016% 0.0013% 0.0174% 0.0386% 0.0188% 0.0024% 0.0072% 0.0083%
50 0.0354% 0.0009% 0.0406% 0.0492% 0.0081% 0.0863% 0.0119% 0.0293% 0.0964%
60 0.0557% 0.0063% 0.0615% 0.4642% 0.0892% 0.7564% 0.0591% 0.0416% 0.0580%
70 0.1366% 0.0011% 0.1308% 0.0235% 0.0437% 0.0980% 0.0281% 0.0029% 0.0080%
80 0.0680% 0.1382% 0.0775% 0.1376% 0.2673% 0.3012% 0.0049% 0.0002% 0.0165%
90 0.0122% 0.0063% 0.0549% 0.0187% 0.0163% 0.0540% 0.0044% 0.0002% 0.0029%
100 0.0201% 0.6011% 0.2081% 0.0647% 0.6527% 0.0678% 0.0162% 0.0193% 0.0557%

Table 3. Latency SLO violation rate for RAMSIS and baselines queried under the Twitter trace on the image classification (top)
and text classification (bottom) task.

Latency SLO (ms) 150 300 500
load (QPS) RAMSIS JF+ MS RAMSIS JF+ MS RAMSIS JF+ MS

400 0.0669% 0.0000% 1.2377% 0.0252% 0.0419% 0.0000% 0.5038% 0.0000% 0.0000%
800 0.1089% 0.2302% 1.3180% 0.4402% 0.2306% 2.6245% 0.7513% 0.0587% 0.5998%
1200 0.4990% 0.0279% 0.0306% 0.0725% 0.8504% 1.4995% 0.1312% 0.2090% 0.6742%
1600 0.3637% 0.1087% 0.0543% 0.3390% 0.0000% 0.0084% 0.2324% 0.1366% 1.7317%
2000 0.3076% 0.0150% 0.0000% 0.2876% 0.0067% 0.0284% 0.1739% 0.0938% 0.0033%
2400 0.0516% 0.0140% 0.0084% 0.0168% 0.1340% 0.1173% 0.0112% 0.3522% 0.0028%
2800 0.2288% 0.0695% 0.0084% 0.2278% 1.0823% 0.0970% 0.0239% 0.4759% 0.1678%
3200 0.4786% 3.6645% 0.0587% 0.0745% 0.1419% 0.0126% 0.0935% 0.6393% 0.0032%
3600 2.4540% 2.7240% 0.0019% 0.3375% 0.6982% 0.0000% 0.5560% 0.3343% 0.1402%
4000 19.460% 24.119% 97.874% 4.3920% 4.2465% 0.0210% 1.7970% 2.8462% 0.7437%

Latency SLO (ms) 100 200 300
load (QPS) RAMSIS JF+ MS RAMSIS JF+ MS RAMSIS JF+ MS

400 0.0000% 0.0000% 0.0499% 0.0083% 0.0416% 0.1831% 0.0583% 0.0000% 0.1249%
800 0.0793% 0.0000% 0.0042% 0.0292% 0.0000% 0.0042% 0.0000% 0.6353% 0.0084%
1200 0.0056% 0.0111% 0.0000% 0.0194% 0.0000% 0.0000% 0.2137% 0.0000% 0.0000%
1600 0.0021% 0.0728% 0.0812% 0.0354% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
2000 0.0000% 0.0033% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0033%
2400 0.0028% 0.0000% 0.0000% 0.0014% 0.0153% 0.0028% 0.2767% 0.0000% 0.0042%
2800 0.0048% 0.0000% 0.0000% 0.0072% 0.0072% 0.2219% 0.0000% 0.6573% 0.0131%
3200 0.0073% 0.0000% 0.0000% 0.0000% 0.0042% 0.0063% 0.0000% 0.0000% 0.0000%
3600 0.0065% 0.0000% 0.0000% 0.0019% 0.0000% 0.0223% 0.0000% 0.0000% 0.0009%
4000 0.0050% 0.0000% 0.2287% 0.0084% 0.0034% 0.0000% 0.0008% 0.0000% 0.0000%

Table 4. Latency SLO violation rate for RAMSIS and baselines queried under constant query load on the image classification
(top) and text classification (bottom) task.

to §4.4.2. Recall that during interval B, the number of arrivals
to worker 𝑤 is 0 (§4.4.2). Thus, 𝑘𝑤

𝐵
= 0. Further, recall the

number of arrivals to worker𝑤 during interval C is at least
0 and at most 𝑛′. Therefore, 𝑘𝑤

𝐶
∈ [0, 𝑛′]. Finally, recall that

𝑛′ queries must arrive between 𝑠 and 𝑠′ to worker𝑤 . Thus
𝑘𝑤
𝐶
+ 𝑘𝑤

𝐵
+ 𝑘𝑤

𝐷
= 𝑛′ and 𝑘𝑤

𝐷
= 𝑛′ − 𝑘𝑤

𝐶
.

With shortest-queue-first load balancing, given PF is a
Poisson distribution with arrival rate 𝜆 at the central queue,

Model Selection for Latency-Critical Inference Serving EuroSys ’24, April 22–25, 2024, Athens, Greece

the arrival distribution to worker𝑤 , PF𝑤 (𝑘,𝑇 |𝑠), can be ap-
proximated as a conditional Poisson distribution with arrival
rate 𝜆𝑤 (𝑛) [18]. Recall current state 𝑠 = (𝑛,𝑇𝑗) where 𝑛 is the
number of queued queries at worker𝑤 . We can approximate
𝜆𝑤 (𝑛) using an established approach [18]:

𝜆𝑤 (𝑛) =
{

(𝜆
𝐾𝜇

)𝐾 𝜇 𝑛 ≥ 3
𝜆
𝐾

0 ≤ 𝑛 ≤ 2

where 𝜇 is the mean inference latency of worker𝑤 . We con-
servatively assume 𝜇 is the maximum inference latency of
the model that meets the query load given the latency SLO.

Thus, we set 𝜇 =𝑚𝑎𝑥𝑚∈𝑀∗
𝑤
𝑙𝑤 (𝑚, 1) such that ∃𝑏.𝑙𝑤 (𝑚,𝑏) ≤

𝑆𝐿𝑂/2 ∧ 𝑏
𝑙𝑤 (𝑚,𝑏) ≥ 𝜆

𝐾
.𝑀∗

𝑤 denotes the set of models on the
Pareto Front of accuracy and latency on worker 𝑤 (4.3.3).
Recall that 𝑙𝑤 (𝑚,𝑏) denotes the inference latency of model
𝑚 with batch size 𝑏 on worker 𝑤 and 𝐾 is the total num-
ber of workers. Note 𝜆𝑤 (𝑛) for 𝑛 ≥ 3 is an approximation
introduced in prior work [18], and 𝜆𝑤 (𝑛) for 0 ≤ 𝑛 ≤ 2
is the time-average arrival rate to worker𝑤 with shortest-
queue-first load balancing [18]. Note that for when PF is
not a Poisson distribution, PF𝑤 can be empirically estimated
using simulation.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Challenges in Model Selection & Scheduling
	2.2 Model Selection and Scheduling: Limitations

	3 RAMSIS Overview
	3.1 Offline Phase: MS&S Policy Generation
	3.2 Online Phase: Inference Serving

	4 MS&S Problem Formulation
	4.1 Policy Generation
	4.2 States
	4.3 Actions
	4.4 Transition Probabilities

	5 RAMSIS Scalability and Guarantees
	5.1 Latency and Accuracy Guarantees
	5.2 Scalability

	6 RAMSIS Implementation
	7 Evaluation
	7.1 Evaluating RAMSIS on a Production Trace
	7.2 Evaluating RAMSIS with Constant Query Load
	7.3 Sensitivity Experiments

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability

	B Model Profiles for Text Classification
	C Impact of Time Discretization
	D Impact of Batching
	E Evaluation with Fewer Models
	F Latency SLO Violation Rates
	G Multiple Latency SLOs
	H Notes on INFaaS
	I Other Load Balancing Strategies
	I.1 Shortest-Queue-First

