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Abstract—Hardware accelerators (HAs) underpin high-
performance and energy-efficient digital systems. Correctness of
these systems thus depends on the correctness of constituent
HAs. Self-consistency-based pre-silicon verification techniques,
like A-QED (Accelerator Quick Error Detection), provide a quick
and provably thorough HA verification framework that does not
require extensive design-specific properties or a full functional
specification. However, A-QED is limited to verifying HAs which
are non-interfering — i.e., they produce the same result for a given
input independent of its context within a sequence of inputs.
We present a new technique called G-QED (Generalized QED)
which goes beyond non-interfering HAs while retaining A-QED’s
benefits. Our extensive results as well as a detailed industrial case
study show that: G-QED is highly thorough in detecting critical
bugs in well-verified designs that otherwise escape traditional
verification flows while simultaneously improving verification
productivity 18-fold (from 370 person days to 21 person days).
These results are backed by theoretical guarantees of soundness
and completeness.

Index Terms—QED, Quick Error Detection, Accelerators,
Processors, Functional consistency

I. INTRODUCTION

Domain-specific hardware accelerators (HAs) are becoming
increasingly crucial for high-throughput and energy-efficient
digital systems. Today’s digital systems, often referred to
as System-on-Chips or SoCs, contain many HAs spanning
various application domains. Each HA implements a set of
functions referred to as Actions in this paper. HAs may be
tightly-coupled, e.g., integrated within a processor’s pipeline.
More commonly though, HAs are loosely-coupled, interacting
with other SoC components (other HAs, processor cores,
memory) via on-chip networks. Given their pervasiveness [1],
[2], loosely-coupled HAs (LCAs) are the focus of this paper
although our presented techniques can be applied to tightly-
coupled HAs as well.

Every HA must be verified for correctness both thoroughly
and quickly to meet the time-to-market demands of the diverse
applications they support [3]. As discussed in many prior
publications [4]-[7], HA formal verification is challenged by:
(1) the tremendous effort required to craft highly thorough
design-specific properties and full functional specifications,
and (2) the scalability of off-the-shelf formal tools. Beyond
being time-consuming and error prone [4], [5], producing
thorough properties and specifications is an uphill battle due
to the rapidly evolving nature of HAs that support rapidly
evolving applications.

A recent verification technique, Accelerator Quick Error
Detection (A-QED, [6], [7]), overcomes the above challenges
for a class of HAs that are non-interfering — i.e., HAs that
produce the same output for a given action independent of
its context within a sequence of actions. A-QED uses formal
verification based on Bounded Model Checking (BMC, [8]).
Unlike conventional BMC-based verification, A-QED does not

require extensive design-specific properties or a full functional
specification. Instead, A-QED uses self-consistency checks
on a given HA. Specifically, A-QED checks for functional
consistency (FC), the property that actions with identical
inputs always produce the same outputs. In addition to FC, A-
QED also performs single-action checking (SAC) and response
bound checking (RB) explained later in this paper. A-QED is
sound and complete for non-interfering HAs.

While non-interfering HAs readily capture a range of fixed-
function designs, interfering HAs are becoming more and more
prevalent. This is partly due to the rise of programmable
HAs [9]. In fact, traditional processors may be viewed as
an extreme case of interfering HAs where each instruction
is an HA action. Interfering HAs contain interfering actions
whose outputs are dependent on the outputs of other actions,
inherently violating A-QED’s FC checking. To complicate
matters even further, an HA action might read the outputs
produced by another action (or write its outputs to be con-
sumed by another action) at clock cycles that depend on the
execution of various other concurrent actions active in the HA.
Thus, there is an urgent need for a new and general formal
verification methodology for interfering (and non-interfering)
HAs that preserves the benefits of A-QED (i.e., provably
sound and complete verification without requiring extensive
design-specific properties or full functional specifications)
while reasoning about interfering actions (not possible using
A-QED) — a highly difficult challenge.

In this paper, we overcome this challenge through G-QED or
Generalized QED — a new technique for thoroughly verifying
both interfering and non-interfering HAs (and processor cores
by extension) — and make the following contributions:

« Given an HA with its set of actions, we present the G-
QED technique to thoroughly verify that HA without
requiring detailed knowledge about its design or the
interfering nature of its various actions. G-QED supports
both RTL and high-level synthesis design flows and
integrates seamlessly with several industrial BMC tools.

e We provide a formal model of HAs, demonstrate its
broad applicability, and prove soundness and complete-
ness guarantees of G-QED for such HAs.

« We demonstrate the effectiveness and practicality of G-
QED through extensive results on a wide variety of
44 moderate-sized HAs and processor cores (that fit in
existing BMC tools).

« We present an industrial case study on live designs and
demonstrate: (1) Significantly improved bug coverage
of G-QED by uniquely detecting corner-case bugs that
escaped industrial (simulation- and formal verification-
based) verification flow (in addition to detecting all
bugs detected by the industrial flow). (2) Dramatically
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improved verification productivity of G-QED, from 370
person days using industrial flow to only 21 person
days using G-QED - an 18-fold boost. (3) G-QED-
enabled short design-design verification loops with quick
turnaround for rapidly evolving designs.

While we focus on moderate-sized HAs that fit in existing
BMC tools, there are further scaleup opportunities, e.g., new
decomposition techniques enabled by self-consistency check-
ing [7] — a topic of future work.

II. MOTIVATING EXAMPLE

The representative HA in Fig. 1 (adapted from a commer-
cial design) is used to illustrate interfering HA verification
challenges. The HA is connected to other SoC components
via a handshake protocol similar to [6]. The HA only reads
valid inputs (in_valid asserted) from the network when it is
ready (rdy_out asserted). The network reads HA-generated
outputs (out_valid asserted) when it is not blocked by other
components (rdy_in asserted). The HA implements 3 actions
{A;, Ay, A3} as follows:

e A1(D): updates Bypass register with D.

o Ay(D): updates Factor register with D. A, is stored in
FIFO 2.

o As(D, Bypass, Factor): generates an output O = F'(D)
scaled by the Factor register value. The scaling operation
is skipped depending on the Bypass register’s value. Ag
is stored in FIFO 1. The output of this interfering action
depends not only on D, but also on the values of the
Factor and Bypass registers. The Bypass and Factor
registers constitute the Relevant State Registers (RSRs)
of As. RSRs are formally defined in Sec. IV

Menblory lgA Procgssor
N s N7 D >N D
/5 %5 /
SISy IESETei [FSSIels
T AT NI
Interconnect Network
a)
rdy_in rdy_out
| Accelerator Controller -
in_valid| [ out_valid
As [FIFO 1
[pE=0e
in T3 A,
FIFO 2
o -[L{lg
HA A

b)
Fig. 1. a) HA loosely-coupled to other SoC components. b) HA example.

F() and Scaler() take multiple cycles to compute and
pending inputs are stored in the FIFOs. If either FIFO is full,
the HA switches to fast F'() implementation. If any of the
Scaler() inputs is 0, the unit is designed to skip computation
for better power and performance. Thus, when the Scaler()
unit is bypassed, the HA updates Factor register with 0.

Consider the following bug (adapted from an actual bug) -
the FIFO 1 full signal goes high only when the write pointer
reaches 15 (starting from 0) but the FIFO can hold at most 15
entries. Hence, the 16" As overwrites its predecessor. This
bug is only triggered if the rdy_in is low long enough. It can

be detected by checking A3 for FC. However, to perform FC,
we need to constrain the RSRs to prevent false fails.

Challenge I: The exact clock cycles when RSRs are read
depend on the internal state and can be different for different
RSRs. For example, consider action Az. When the result of
F() is fed to the Scaler(), the value stored in Factor is also
read. It is very important to precisely specify the clock cycle
during which this value should be read. That is not an easy
task because it depends on the latency of F'() (which in turn
depends on the FIFO 1 state). Incorrect timing information
can result in false fails.

Challenge 2: Consider the same bug in FIFO 2. If we
constrain Factor to a fixed value, Az will always read the
same value from the F'actor register and pass FC check.

Challenge 3: Checking FC on Aj is a non-trivial problem
since an update can happen either from Ao or because the
HA updates it to 0 when the Scaler() is bypassed. So it is
not necessary that the i!” input will produce the ‘" update
to the Factor register. Thus, we need to understand the
design implementation to figure out when an input updates
the register.

III. G-QED

The new FC approach is shown in Fig. 2. To check FC
for the action pair {a,b}, the BMC runs three copies of the
HA from the reset state. The same input sequence Iy ... I
is fed to the first two copies. For the first copy, the HA is
allowed to finish executing all the inputs and then the RSRs
for actions a and b are saved. For the second copy, input pair
I, I, corresponding to the action pair {a,b} is fed to the
HA and the output pair {O,, O} is recorded. For the third
copy, an input sequence I, ...I,, which is not necessarily
the same as Iy... I, is allowed to finish executing before
sending the input pair I, I to the HA. The RSRs are saved
before sending I,, I, and constrained to be the same as the
RSR values saved in the first copy. Additionally, the output
pair {O,, Oy} is checked with that from the second copy. The
FC property is formulated as:
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Fig. 2. FC check framework for the action pair {a, b}. The inputs Ip — I,
and the sequence lengths k, m and n are chosen symbolically. The inputs I,
and [}, are chosen symbolically with their respective actions a and b.

We assume that they RSRs used to calculate {O,, Oy} in
the second copy have the same values as those saved in the
first copy. This is elucidated in the following design constraint:

Design Constraint: If we send the input pair {I,, I} after
all the inputs have finished executing in the first copy, then the
output pair generated is the same as {O,, Op} in the second
copy.

This means the output generated or the RSR updated by an
action in a sequence is independent of how long the design is
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idle in between the inputs. The HA example in Sec. II is idling
when the in_valid is low. During this time, no more inputs are
accepted by the HA but previous inputs keep executing. We
have seen this constraint to hold for all the designs we looked
at in Sec. V. We avoid the Challenges 1 and 2 by constraining
RSRs when no inputs are being executed.

In case of challenge 3, the Factor value updated by A,
can be propagated as an output of a future Az action. Thus,
we address challenge 3 by FC for the action pair {As, A3}
instead of checking FC for A, action.

Pair wise checking of actions allows us to find bugs in the
RSR updating logic since checking the RSRs directly is non-
trivial for a general HA as discussed in Challenge 3 in Sec. II.
However, this is not the case for processors, so we consider
all the RSRs as the output of every instruction. Thus, we don’t
have to check instructions in pairs for processors.

To catch the FIFO 2 bug, BMC will run:

e In the first copy, an input sequence such that 14 FIFO
entries are filled. It will collect the RSRs after the input
sequence has finished executing.

o In the second copy the same sequence followed by I,
I, and I8 Because of the bug, I> will be overwritten
and output will be F(I}, ) x I}0.

o In the third copy an input sequence such that the RSR
values after it finishes execution, the RSRs values match
that of the first copy. Next, the BMC sends 1}, Iy and
the output will be F(I}‘3) x I’ not equal to the output
in second copy.

The bug in FIFO 1 can be caught in a similar manner.

To ensure completeness, we run RB as well as SAC [6]. RB
checks that the output for an input in a sequence is generated
within some time bound. It works for interfering HAs. To
check SAC for interfering actions, we need to consider the
RSR values. To perform SAC on the action pair {41, A5},
starting from reset state, we check that for all valid input values
and associated RSRs the output produced by the HA is the
same as expected by the A; and A, actions.

IV. FORMAL MODELS AND THEORETICAL RESULTS

In this section, we formalize G-QED. We adapt the HA
formalism from [6] to model a general set of HAs. Such
transition systems implicitly include a clock signal to syn-
chronize transitions between system states [10]. Additionally,
we formally define the notion of RSRs, the total correctness
of the HA in the context of RSRs, and the FC property. We
prove that FC is both sound and complete.

We first simplify the HA model in [6] by modeling all
redundant inputs (either because the HA is not ready to read
or the input is invalid) as an invalid action a, (the two cases
of redundancy were handled separately in [6]). We similarly
model redundant outputs (invalid or the host is not ready to
read the output) as o, . To model actions that only update RSRs
and do not produce any output, we distinguish A,,, from the
full set of actions A. The actions that update the Bypass and
Factor registers in Fig. 1 belong to this class of actions.

Definition 1 (Accelerator): An HA is a finite state transition
system Acc := (S, Sinit, A, Ano,a1,D,0,0,, T, F), where:

« S is the finite set of states of the design. We assume that

the system contains num independent state components
so that S = 57 X - -+ X Spum, where each S; represents
the set of values for the i** component.

o Sinit € S is the set of initial states.

o A is a finite set of actions supported by the accelerator;

e A,, C A is the subset of actions that do not generate a
valid output but do update internal states of the acceler-
ator;

e a) € A is a distinguished element of A used to indicate
that no operation is being selected or that the provided
input is not valid;

e D is a finite set of data inputs;

« O is a finite set of outputs;

e 05 € O is a distinguished element of O used to indicate
that no output is being produced or that the output
produced is not valid;

e T:Sx Ax D — S is the state transition function;

e F': 8 — O is the output function.

For the HA in Fig. 1, S;,;; contains just the reset state, A
consists of the three actions that either update the Bypass or
Factor registers or generate the output. An input has an action
value of a; when in_valid or the rdy_out is low. An output
takes the value o, when rdy_in or out_valid is low.

We assume that an accelerator Acc starts in some initial
state Sinit € Sinst- The execution of Acc is determined by the
current input from the set I = A x D. Each input in € [
includes the input data and an action specifying the function
to perform on the data. We write a(in) and d(in) for the
first (action) and second (data) components of an input in,
respectively. Given a state s and an input in, the next state
is given by s’ = T(s,a(in),d(in)), which we also write
as s = T(s,in). At each state s, Acc produces an output
O = F(s). We use v to denote a sequence with elements

denoted v; and length |v[, so v = (vi,v2,...,v}y|). We
concatenate sequences (and with a slight abuse of notation,
single elements with sequences) using ‘-, e.g., v .= vy - V',
where v/ = (va, ..., Upy|).

Let in be a sequence of inputs with |in| = k. From a

state sg, the sequence in induces a sequence s of states of
the same length such that s; = T'(s;_1, in;) for ¢ € [1,k]. We
abbreviate this as s = T'(sg, in). We lift functions on sequence
elements to functions over sequences in the natural way: e.g.,
F(s)=F(s1)- ... - F(sg).

We use a to model inputs ignored by the HA and similarly
o1 to model outputs ignored by the host. We write in’j_ for a
sequence of inputs in of length & such that a(in;) = a  for
i € [1,k] and similarly olj_ for a sequence of k outputs, all
of which are o, . For an input sequence in, the sequence of
captured inputs, C;,, (in) is the subsequence of in obtained by
keeping only elements in; where a(in;) # ay and a(in;) &
Anpo. Similarly, if s = T'(sg, in), then the sequence of captured
outputs, Cyyt(S0,1n) is the subsequence of F(sq-s) obtained
by keeping all elements F'(s;) not equal to o .

To model interfering actions, we must allow the output pro-
duced by a specific input to depend on the current state as well
as the input itself. To that end, we will introduce a notion of
relevant state components. We first define projections of states.
If s € S is a state, then we denote by s; (with i € [1, num])
the value of the i*" state component in the state s. We also
call s; the projection of s with index i. Let p C [1, num] be
a projection set. Then s, is the sequence containing only the
projections of s whose indices are in p ordered by index (i.e.,
Sp = (Sigye-s Si|p\>’ where p = {i1,... ,i|p|} and 7; < 7541
for j € [1,|p| — 1]). We say that a state s is stable if for
each m > 0, s = T'(s,in]") and |Cout(s,in’")| = 0, i.e., the

Authorized licensed use limited to: Stanford University. Downloaded on September 24,2024 at 17:59:19 UTC from |IEEE Xplore. Restrictions apply.



state does not change and no outputs are produced when any
sequence of invalid actions is applied.

Definition 2 (Relevant State Projection): Given an HA Acc
and an ordered pair (a;,a;) of actions with a; ¢ A,,, the
relevant state projection rsp(a;, a;) is a minimal projection set
p such that for all initial states s;,;;, input sequences iny, ins,
integers k', I1, k2, [? and inputs in; and iny with a(in,) = a;
and a(ing) = a;, if

1
o 517" = T(s;p,iny - in’ ), with s'-"" stable,
o 1-P0St — T(1-P7¢ ip) . ingy - in') ), with s'-P°5* stable,

T

o o = Cout(s1-P iny - ing - inﬂ_),

2
o §%-P = T(84pit,ing - inlj ), with s?-P™ stable,

2

o 52-P0st = T(52-P"¢ iny - ing - inzﬁ_), with $2-Post gtable,

. O2 = Cout(SQ—pTe, in1 . ’iTLQ . il’lll),

then, s!-P7¢ = s2-P7¢ s ol = o2,
Note tﬁat p may not be unique—in that case, we assume
that rsp deterministically picks a minimal projection set from
among those satistfying the above definition. For the example
in Fig. 1, rsp(As,a, ) is p = {i1,i2} where i; and iy are the
indices of the Bypass and Factor registers, respectively.

We can now define a notion of correctness.

Definition 3 (Total Correctness): An HA Acc is correct if
for every ordered pair of actions (a;,a;) such that a; = a
ora; € Ao, and aj ¢ A,, and a; # a, input sequences in,
in’, inputs inq and iny with a(ing) = a; and a(ing) = aj,
and integers k and [, if

o 8P = T(Sipit,in - ini), with sP™ stable,

o 0 = Cout(Sinit,in - ing - ing - in’) with |o| = |Cyy, (in -
i’ﬂ1 . Zn2)|
then o)) = Spec” (d(in1),d(inz),s"* ), where Spec :

rsp(aqi,a;)
D x D x Siy x - xS — O (with rsp(a;,a;) = p =
{i1,...,4|p}) defines the expected output for actions (a;, a;).

This definition of total correctness assumes an important
design constraint—the output produced is independent of the
presence of a actions in the input sequences. This is the same
constraint as Constraint in Sec. III.

Now, we will define functional consistency.

Definition 4 (Functional Consistency Property): Given an
HA Acc and an ordered pair of actions (a;, a;) such that a; =
a; ora; € Ap,, and a; ¢ A,, and a; # ay, for any input
sequences ing, ing, inj, inputs ing, iny with a(iny) = a;
and a(ing) = aj, and values k', k% and [, if

. Sl—pre = T(Sinit; il’l]_ . inlj_l), with sl_p'r'e Stable,

. O:l = out(Sinit; inl'in1~in2~in’1) with |01‘ = |Czn(il’11

Z"le . in2)|, )
o 827 = T(s;.,in5 - in" ), with 527" stable,

. . .1 .
o 02 = Cout(8%-P™ iny - ing - in') ) with |02 =1,
1_pre 2_pre 1 2
hen s, -* = = .
then .5 (aiay) = Srsp(aiay) 7 %ot| = %o

We will now show the soundness and completeness of FC.
Lemma 1 (Soundness of FC): If an HA Acc is totally correct,
it is functionally consistent.

Proof 1: In def. 4, 0‘101| = Spec™ (d(iny), d(ins), si;}f(aev a5)
.. R
by definition 3. o, = Spec”(d(ml)7d(z’n2),si;}f(rja_))
i,Qj
by definition 3 with in as ins in’i2 and
in = in/ from definition 4. Then, si};p (s'a')
2_pre ij . . 1 prep BN
S rap(aia;) —  Spec (d(znl),d(mQ),sr;p(ai,aj)) =

Specid (d(iny), d(ing), s>=F1°

. 1 2
— 011 = 07 4.
rsp(ai,aj)) lo?] [02]

To prove completeness, we need Single Action Correctness.

Definition 5 (Single Action Correctness Property): Given
an HA Acc and an ordered pair of actions (a;, a;) such that
a; =ay or a; € Ay, and a; ¢ A,, and a; # a,, for any
input sequence in, inputs inq and iny with a(ing) = a; and
a(ing) = a;, and value k, if

o 577 = T(54i,in - in ), with sP"® stable,

o 0= Coyu(s"™, iny - ing - in' ) with |o| = 1,
then 0y = Spec (d(iny),d(ins), 517?:;((1,- a)-

Lemma 2 (Completeness of FC): If an HA Acc is single
action correct but not totally correct, it fails FC.

Proof 2: Since Acc is not total correct, by definition 3, there

. N i1/ - . 1
exists sm1 such that 0‘101| # Spec* (iny, ing, STE;’;(TZi,aj)) where
k

sP™ = T(Sinit, ing - mJI) Now, we choose a sequence ing

2_pre . . . .
such that s°- = . Since Acc is single action
Srsp(ai,aj) rsp(ai,a;) S ce 5 g

_pre

. . . 2 _ 1/‘7 . . _
correct, in definition 4, o7 = Spec (ml,mg,smp(ai’a])) =

ij ; 1_pre 1 2
Spec* (iny, ing, s ) — Oj,1 # O1.

r;p(ai,aj)
V. RESULTS
A. G-QED for Various HAs and Processor Cores

We demonstrate the effectiveness and practicality of G-QED
using 44 designs covering a wide variety of HAs and processor
cores, including several industrial designs. While we focus on
interfering HAs, we have also included non-interfering HAs
to demonstrate the generality of G-QED. The HAs represent
diverse application domains such as security, neural nets, and
image processing. The processor cores belong to the RISC-
V family [11] targeting embedded security and automotive
domains. The design sizes are suitable for existing BMC tools.

Table I summarizes the results. All designs were previously
verified using state-of-the-art simulation-based verification.
The industrial designs were additionally verified using state-
of-the-art formal verification. All designs were available in
Verilog RTL. For G-QED runs on Open Source Designs, we
used JasperGold® (V2016.09p002) on an Intel®Xeon® ES5-
2640 v3 with 128GB of DRAM. We used OneSpin 360 DV-
Verify®on an Intel®Xeon®ES-2690 v3@2.6GHz with 50GB
RAM to run G-QED on Industrial Designs.

Observation 1: G-QED enables highly thorough veri-
fication of a wide variety of HAs and processor cores.
G-QED uniquely detected bugs that were missed by conven-
tional verification flows (which includes both simulation and
traditional formal verification), in addition to all bugs detected
using those flows. The bugs uniquely detected by G-QED
represent corner-case scenarios that are often highly difficult to
detect. For example, for the AIE-A design, G-QED detected a
difficult bug which got triggered by a complex sequence of 16
actions causing some inputs of another action to be dropped.
G-QED could detect this bug within 5 hours with a 32-cycle
counterexample. From our industrial experience, such bugs can
be very tricky to detect using simulations.

Observation 2: G-QED enables quick verification of HAs
and processors. G-QED detected bugs quickly with short
counterexamples (in terms of clock cycles), which in turn
enabled quick debug. Since G-QED uses BMC, it finds the
shortest sequence to detect bugs. This is in sharp contrast to
conventional flows where counterexample lengths and error
traces are highly dependent on the precision of properties,
assertions, and test cases. The effort required to set up G-QED
is small resulting in large verification productivity benefits — an
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TABLE I. G-QED RESULTS: HAS AND PROCESSORS

Design Size #Bugs Runtime Bug trace

Name Type #Versions | #FF (#Gates|Bugs detected by G-QED| New bugs detected | [max:avg:min] | [max:avg:min]
and conventional flow by G-QED only minutes clock cycles
Open Source Designs
Stream cipher 1 13k | 86k 1 0 15:15:15 35:35:35
Deflate Interfering HA 1 10k | 60k Not available 1 5:5:5 11:11:11
MEM controllerl 2 20k | 0.1IM 2 0 2:1:1 4:4:4
MEM controller2 13 20k | 0.1M 12 1 5:2:1 9:7:4
FIFO 5 20k | 0.1M 5 3 2:1:1 7:5:4
NVDLA cbuf Non-interfering HA 1 0.1IM| 0.3M 1 0 21:21:21 25:25:25
NVDLA cacc 2 11k | 56k 2 0 14:12:11 108:106:105
AES 4 2k | 31k 4 0 4:1:<1 290:163:94
Industrial Designs
AIE-A Interfering HA 2 4k | 71k Gl—)QEDddtetectg(%)all 4 240:180:60 32:26:20
AIE-D 2 4k | 71k ugs detected by 5 300:150:90 32:30:20
industrial flow.
Corel Processor core 4 3.8k 54k Bug counts are not 0 11<1 7:7:6
Core2 2 2.5k | 45k repfortedﬁg)r rg:a;ons 0 1:1:1 5:5:5
Core3 1 |18k 18k | OF confidentiaity 0 <li<li<l 4:4:4
Core4 4 5k | 65k 0 2:1:1 6:6:6
A total of 44 designs are used for G-QED results

apples-to-apples comparison with industrial verification flows
is presented in Sec. V-B.

Observation 3: G-QED provides a unified verification
solution for interfering HAs, non-interfering HAs, and pro-
cessor cores. G-QED thus advances state-of-the-art compared
to other QED pre-silicon verification techniques such as A-
QED [6] (for non-interfering HAs), and Symbolic QED [12],
S?QED [13], and C-S?QED [14] (for processor cores).

Observation 4: G-QED integrates seamlessly with var-
ious BMC engines. We used G-QED together with Jasper-
Gold® (V2016.09p002) from Cadence and OneSpin 360 DV-
Verify® from Siemens EDA to generate Table 1.

B. Industrial Case Study on Live Designs

For an apples-to-apples comparison of G-QED versus in-
dustrial verification flows, we conducted a case study using
Artificial Intelligence Engine (AJE) HAs. We had access to
several (buggy) versions of two Verilog designs, AIE-A and
AIE-D (Table I), where AIE-D is a derivative of AIE-A with
additional features. Both designs represent interfering HAs that
are also LCAs. At the start of our G-QED study, both HAs
already passed pre-silicon verification sign-off and were in the
final stages of design — hence, we refer to them as live designs.

1) Industrial Verification Flow: Our industrial verification
flow included both Constrained Random Simulation (CRS)
with UVM-based [15] test bench and Formal Verification
(FV) with design-specific properties. CRS was carried out at
the top level, targeting all design functionality. For design-
specific property creation, a framework similar to [16]. was
used to reduce manual effort. A standard industrial verification
process similar to [17] was employed. The sign-off criteria
for verification was 100% structural code coverage and 100%
functional coverage from both CRS and FV combined.

2) G-QED Flow: For each AIE HA, we defined the set of
actions and extracted the associated RSR registers and input-
output interface protocol details with help from design engi-
neers. We then used the methodology explained in Sec. III. No
knowledge of the internal architecture (performance optimiza-
tions, parallelism, internal pipelining) or existing industrial
verification flow was required. With the G-QED FC (Sec. III),
we were able to detect and root-cause 9 new bugs (missed

by the industrial flow) within 3 person weeks, in addition to
detecting bugs detected by the industrial flow (Table II).

TABLE II. SUMMARY OF INDUSTRIAL CASE STUDY

Design | Industrial flow effort | G-QED effort | Bugs detected
(person days) (person days) | by G-QED only

AIE-A | 140 (CRS: 110, FV: 30) 13 4

AIE-D | 230 (CRS: 160, FV: 70) 8 5

Observation 5: G-QED significantly improves bug cov-
erage versus industrial verification flows. G-QED uniquely
detected 9 corner-case and difficult-to-activate bugs in well-
verified industrial designs. Of these 9 bugs, 4 were due to
the specification inaccuracies and 5 were in the RTL imple-
mentations that were only triggered by a complex sequence of
actions. All these bugs were detected in less than 5 hours.

Observation 6: G-QED dramatically improves verifica-
tion productivity. The industrial verification flow required 370
person days for the two HAs. G-QED required only 21 person
days (including setup, running the BMC tool, and root-cause
analysis) — an 18-fold verification productivity boost.

Observation 7: G-QED can be set up very quickly. It
took only 7 and 2 person days for AIE-A and AIE-D to
set up G-QED, respectively. In contrast, industrial verification
flows often require detailed information about a design and its
implementation. For the AIE HAs, it took 250 person days to
set up CRS and FV (test bench and property development).

Observation 8: G-QED enables quick debug. G-QED
produced short counter-examples (32 cycles or fewer) for the
AIE HAs (Table I) resulting in quick debug (less than a day).
cause analysis. G-QED effort in Table II includes this debug
effort. In contrast, it took several days for root cause analysis
of some of the bugs detected by CRS.

Observation 9: G-QED does not require low-level design
details. G-QED largely relies on self-consistency checks,
minimizing the need to understand deep design details. This
saves verification effort significantly.

Observation 10: G-QED enables short design-design ver-
ification loops with quick turnaround for rapidly evolving
designs. Once the bugs detected by G-QED were fixed, we
could reuse G-QED immediately to verify the fixed designs
with little or no additional effort. In contrast, it required up
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to 120 person days for CRS and FV to debug, fix, update test
cases and properties, and rerun verification.

VI. RELATED WORK

Simulation-based methodologies dominate the pre-silicon
verification practice in industry [15], [17], [18]. However,
as demonstrated in Sec. V-B, simulation-based methods are
inadequate for ensuring thorough and quick verification of
HAs. While simulation scales for large designs, there can be
major scaleup opportunities for G-QED using techniques such
as [7] — a topic of future work.

While G-QED employs BMC for self-consistency checking,
it differs from traditional formal verification (Sec. V-B). G-
QED can leverage recent formal verification advances to
further reduce associated manual efforts (e.g., automatic RSR
extraction [19], ILA [5]).

Self-consistency-based checking has its roots in fault-
tolerant computing, including the use of design diversity. For
pre-silicon verification, publications such as [20], [21] are
relevant. Completeness guarantees may be affected by these
techniques (e.g., for a bug always triggered by a particular se-
quence of instructions, irrespective of the number of NOPs and
stalls inserted in the sequence). Another closely approach [22]
requires specific clock cycles when RSRs are read and written,
which can be very challenging for HAs (Sec. II). In contrast,
we proved G-QED to be sound and complete.

TABLE III. G-QED vS. OTHER PRE-SILICON QED TECHNIQUES

Attribute G-QED | A-QED |A-QED?| Symbolic |S2QED [13]
(This [6] [7] QED [12], C-S2QED
paper) [23] [14]

Standalone Yes Noﬁ_zti;fﬁrmg No No
HAs 5oy
Processor Yes No No Yes Yes
cores
Designer in-| Yes NA NA Yes Yes
put for RSRs
Clock cycle| No NA NA Yes Yes
details for
RSR updates
Theoretical Yes Yes Yes Yes ([12] Yes
guarantees implementa-

tion might

miss some

bugs)
Design size |Moderate|Moderate| Large Moderate/ Moderate
Large

Symbolic No No No No Yes
starting states

Recently, there have been several publications on various
flavors of QED pre-silicon verification techniques, namely,
Symbolic QED [12], S?2QED [13], C-S2QED [14], A-QED [6],
and A-QED? [7]. Table III contrasts these techniques versus
G-QED with respect to various attributes.

VII. CONCLUSION

G-QED presents a unified approach to highly thorough pre-
silicon verification of interfering HAs, non-interfering HAs,
and processor cores through self-consistency. With modest
design assumptions, G-QED has been proven to be sound and
complete. Results from a wide variety of designs, including an
industrial case study, demonstrate its effectiveness and prac-
ticality. G-QED creates several promising research directions:
(1) scale-up to very large designs through new decomposition
and abstraction techniques (e.g., [7]). (2) G-QED with sym-
bolic starting states to overcome BMC bounds; (3) G-QED for

verifying third-party IP blocks with little/obfuscated internal
design details; (4) functional safety verification through a
combination of G-QED and formal fault injection techniques;
and, (5) G-QED for deriving side-channel attacks in HAs
(similar to timing side channels for processors [24]).
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