**NIPS**<sup>™</sup>2010



### Overview

**Problem:** We propose a discriminative model for recognizing group activities. Our model jointly captures the group activity, the individual person actions, and the interactions among them.



### **Our contributions:**

- A model for group activities
- Two new types of context: group-person and person-person interaction
- Adaptive structures that automatically decide on whether the interaction of two persons should be considered

# **Contextual Representation of Group Activities**

**Graphical Representation:** 





- group-person interaction: y- $h_i$
- person-person interaction:  $h_i$ - $h_j$
- the graph structure of the hidden layer (person-person interaction) is treated as a latent variable – *adaptive structures*

### **Importance of adaptive structures:**



- prevent the model to enforce two persons to take certain pairs of labels even though they have nothing to do with each other.
- remove "clutter" in the form of people performing irrelevant actions

# **Beyond Actions: Discriminative Models for Contextual Group Activities**





Yang Wang<sup>† ‡</sup> TIAN LAN<sup>†</sup>

graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ :

$$f_w(\mathbf{x}, \mathbf{h}, y; \mathcal{G}) = w^\top \Psi(y, \mathbf{h}, \mathbf{x}; \mathcal{G})$$
  
=  $w_0^\top \phi_0(y, x_0) + \sum_{j \in \mathcal{V}} w_1^\top \phi_1(x_j, h_j) + \sum_{j \in \mathcal{V}} w_2^\top \phi_2(y, h_j) + \sum_{j,k \in \mathcal{E}} w_3^\top \phi_3(y, h_j, h_k)$ 

image-action potential:

$$w_1^{\top}\phi_1(x_j, h_j) = \sum_{b \in \mathcal{H}} w_{1b}^{\top} \,\mathbb{1}(h_j = b) \cdot x_j$$

action-activity potential:

$$w_2^{\top}\phi_2(y,h_j) = \sum_{a\in\mathcal{Y}}\sum_{b\in\mathcal{H}} w_{2ab} \cdot \mathbb{1}(y=a) \cdot \mathbb{1}(h_j=b)$$

action-action potential:

$$w_3^{\top}\phi_3(y,h_j,h_k) = \sum_{a\in\mathcal{Y}}\sum_{b\in\mathcal{H}}\sum_{c\in\mathcal{H}}w_{3abc}\cdot\mathbb{1}(y=a)\cdot\mathbb{1}(h_j=b)\cdot\mathbb{1}(h_k=c)$$

image-activity potential:

$$v_0^{\top}\phi_0(y,x_0) = \sum_{a \in \mathcal{Y}} w_{0a}^{\top} \mathbb{1}(y=a) \cdot x_0$$

# Learning and Inference

**Inference:** We approximately solve the inference problem by iterating the following two steps:

1. Holding  $\mathcal{G}_{y}$  fixed, optimize  $\mathbf{h}_{y}$  (solved by Loopy BP):  $\mathbf{h}_y = \arg\max_{\mathbf{h}'} w^\top \Psi(\mathbf{x}, \mathbf{h}', y; \mathcal{G}_y)$ 

2. Holding  $\mathbf{h}_y$  fixed, optimize  $\mathcal{G}_y$  (solved by integer linear program (ILP)):  $\mathcal{G}_y = \arg\max_{\mathcal{C}'} w^\top \Psi(\mathbf{x}, \mathbf{h}_y, y; \mathcal{G}')$ 

We define a variable z,  $z_{ik} = 1$  indicates that the edge (j, k) is included in the graph, and 0 otherwise. we enforce graph sparsity by setting a threshold d on the maximum degree of any vertex in the graph. Then step 2 can be formulated as an ILP:

$$\max_{z} \sum_{j \in \mathcal{V}} \sum_{k \in \mathcal{V}} z_{jk} \psi_{jk}, \quad \text{s.t.} \quad \sum_{j \in \mathcal{V}} z_{jk} \leq d, \quad \sum_{k \in \mathcal{V}} z_{jk} \leq d, \quad z_{jk} = z_{kj}, \quad z_{jk} \in \{0, 1\}, \quad \forall j, k$$

Learning: latent support vector machine

$$\min_{\substack{w,\xi \ge 0, \mathcal{G}_y \\ \mathcal{G}_{y^n}}} \frac{1}{2} ||w||^2 + C \sum_{\substack{n=1 \\ n=1}}^N \xi_n$$
s.t. 
$$\max_{\mathcal{G}_{y^n}} f_w(\mathbf{x}^n, \mathbf{h}^n, y^n; \mathcal{G}_{y^n}) - \max_{\mathcal{G}_y \\ \mathbf{h}_y} f_w(\mathbf{x}^n, \mathbf{h}_y, y; \mathcal{G}_y) \ge \Delta(y, y^n) - \xi_n, \forall n, \forall y$$

Weilong Yang<sup>†</sup>

Greg  $Mori^{\dagger}$ 

# Model

Scoring function for image feature **x**, action labels **h**, group activity label y and

**Baselines:** Structures of the hidden layer



### **Results** (on Collective Activity Dataset) :

glo

mini  $\varepsilon$ -neighl  $\varepsilon$ -neight  $\varepsilon$ -neight









# Experiments

 $h_2$   $h_4$ 



no connection min-spanning tree  $\varepsilon$ -neighborhood graph

| Method                             | Overall | Mean per-class |
|------------------------------------|---------|----------------|
| obal bag-of-words                  | 70.9    | 68.6           |
| no connection                      | 75.9    | 73.7           |
| imum spanning tree                 | 73.6    | 70.0           |
| borhood graph, $\varepsilon = 100$ | 74.3    | 72.9           |
| borhood graph, $\varepsilon = 200$ | 70.4    | 66.2           |
| borhood graph, $\varepsilon = 300$ | 62.2    | 62.5           |
| Our Approach                       | 79.1    | 77.5           |

Comparison of classification accuracies

Visualization of classification results and learnt structures



Visualization of weights across pairs of action classes