
Space leaks exploration
in Haskell

Seminar Report

Submitted in partial fulfilment of the requirements for the degree of

Bachelor of Technology (Honours)(∗)

Masters of Technology(+)

Students:
Sumith Kulal(∗)

Rupanshu Ganvir(∗)

Suresh Sudhakaran(+)

Guide:
Prof. Amitabha Sanyal

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai 400076, India

Abstract

A space leak occurs when a computer program uses more memory than
necessary. Advanced language features such as lazy evaluation or closures
lead to more complex memory layout, making it harder to predict what
memory looks like, potentially leading to space leaks. Haskell is vulnerable
to space leaks and we make this our topic of study. In this report, we
present an extensive literature survey on space leaks in Haskell. We stress
on classification of space leaks into different classes and try to reason about
them individually. We present a large pool of example space leaks, their
complete analysis and fixes. We also touch upon relevant blog posts present
on the internet. Corresponding papers that discuss possible fixes have also
been presented. Towards the end of this report we present a few ideas for
future work that we picked up as we progressed along the survey. This is a
first of the kind survey done on space leaks.

i

Acknowledgement

We wish to express our sincere gratitude and indebtedness to our guide,
Prof. Amitabha Sanyal for his constant support and guidance throughout
the project. His enthusiasm for functional programming has rubbed off on
us. All of us feel that Haskell will be an important part of our
programming life from here on. We are also thankful to Edward Z Yang,
Neil Mitchell and Prof. Colin Runciman for taking time out of their busy
schedule and answering all the questions we had. We are also thankful to
Prasanna Kumar for being present in some meetings and giving us his
inputs.

Sumith, Rupanshu, Suresh
CSE, IIT Bombay

ii

Contents

Abstract i

1 Introduction 1
1.1 Motivating simple examples 1
1.2 Strictness - Forcing evaluation 2
1.3 Space leaks in other programming languages 3
1.4 Detecting space leaks . 4
1.5 How troublesome are space leaks? 4
1.6 Organization of the Report 5

2 Preliminaries 6
2.1 Strictness in Haskell . 6

2.1.1 Seq . 6
2.1.2 Bang Patterns . 7

2.2 Profiling . 7

3 Examples of Space Leaks 9
3.1 Example - foldl . 9
3.2 Example - indexInto . 12
3.3 Example - surprise . 15
3.4 Example - tick . 16
3.5 Example - foldr . 21

4 Space Leaks over the internet 23
4.1 Ezyang’s post summary . 23
4.2 Neil Mitchell’s blog posts . 26

5 Towards fixing Space leaks 27
5.1 Fixing Space Leaks using Garbage Collection 27
5.2 The Stack Space Hack . 30

6 Conclusion 32
6.1 Theoretical work . 32
6.2 Tool for detecting and fixing space leaks 32

iii

6.3 Stack space hack++ . 33
6.4 Tool for memory analysis . 33

Bibliography i

iv

Chapter 1

Introduction

”Beware of little expenses. A small leak will sink a great ship.”

- Benjamin Franklin

A space leak occurs when there exists a point in the computer program
where it uses more memory than necessary. Hence, a space leak causes the
program to use more space than one would expect. Our primary language
of study would be Haskell. Many researchers have pointed out that space
leaks are a common problem in functional languages with lazy evaluation[1]
[2][3]. Note that a space leak is different from a memory leak. In contrast
to memory leaks, where the leaked memory is never released, the memory
consumed by a space leak is released, but later than expected.

1.1 Motivating simple examples

Here, we present two real-life examples to throw some light on the two ba-
sic classes of space leaks that we are going to discuss further in the report.
We shall present example programs in Haskell for these classes in the latter
chapters of the report.

Say Mr. X is very strong in English vocabulary except for words starting
with the alphabet X. Unable to comprehend complete pieces of text, Mr.
X buys a dictionary for himself and uses it to feel more comfortable. In
this situation, Mr. X doesnt need the rest of the dictionary but needs only
pages that are relevant (pages with alphabet X). Hence, the whole dictio-
nary occupies more space on his bookshelf than the few pages pertaining to
the alphabet X which serves the purpose as well. Note here that if Mr. X
had cleverly known what his garbage was and had collected it earlier then
it would have saved him some space. This kind of space leak falls into the
first category which we refer to as strictness class of examples throughout

1

the report.

Say Ms. Y is health conscious and bought a lot of fruits to make herself
a mixed fruit salad. Given that Ms. Y eventually makes the salad, the time
between her buying the fruits and making the salad, the fruits occupy space
on her kitchen shelf. Note here that if Ms. Y strict on her diet and realized
that she will eventually make the salad, she could have evaluated this salad
early and hence this would have saved her space. This kind of space leak
falls into the second category which we refer to as liveness class of examples
throughout the report.

1.2 Strictness - Forcing evaluation

Consider the strictness class of space leaks, a space leak occurs when the
program contains an expression which grows regularly but the evaluated
value or the final result would not grow in space. Making some variables
strict and forcing evaluation earlier than the normal evaluation would elim-
inate such space leaks.

In this section, we intend to introduce a few terminologies used in eval-
uation and describe how to force evaluation.

A functional program can be considered as an expression, whose execu-
tion is the same as evaluating that expression. At any stage, the program
will contain an expression that can be evaluated at that stage. Such expres-
sions are called reducible expressions, or redex. The execution of a program
consists of repeatedly selecting a redex and reducing it. For instance:

(+ (* 6 4) (- 8 2)) has two redexes, (* 6 4) and (- 8 2).

Let us first define how an expression is evaluated:
- An expression is in normal form if it cannot be evaluated further.
- An expression is in WHNF (weak head normal form) if the outermost part
does not require further evaluation.

As an example, (1 + 2) : [] is in WHNF since the outermost part is (:),
but it is not in normal form since the (+) can be evaluated to produce 3.
It is pretty clear that normal form is a stronger definition and all values in
normal form are by definition also in WHNF.

func x = do

print x

Printing x will evaluate x to normal form, so the function output will
evaluate x to normal form just before printing it. To force evaluation to

2

WHNF, Haskell provides strictness annotations with the commonly used
bang patterns extension. Bang patterns is an extension that will evaluate
specific arguments to weak head normal form regardless of the pattern match
performed.

func !x = do

...

print x

Adding an exclamation mark as a strictness annotation will force evalu-
ation of x sooner. Now, x is evaluated to WHNF as soon as the argument
is passed and then the function output will evaluate x to normal form just
before printing it.

Given that introducing strictness avoids space leak, one might feel as
making all values strict. But this falls into the age-old debate of whether
one needs lazy evaluation at all. Lazy evaluation is a tradeoff with space
leaks being a disadvantage, but there are also many advantages. We do
not find the need to enumerate the advantages of lazy evaluation. Hence,
avoiding lazy evaluation is not a solution to this problem. We need to fix
the space leak issue the lazy paradigm itself.

1.3 Space leaks in other programming languages

Garbage-collected languages other than Haskell are also susceptible to space
leaks. Many languages support closures. One popular language that makes
extensive use of closures is JavaScript. Below we present a Javascript ex-
ample of space leak [4].

request.onreadystatechange = function(){

...

context.decodeAudioData(request.response, function(audio){

document.getElementById("status").onclick = function(){

alert("MP3 is " + audio.duration + " seconds long");

}

});

};

...

This function is a part of a program that uses XMLHttpRequest API to
load an MP3 file, then uses the Web Audio API to decode the file. Using
the decoded audio value, you can add an action that tells the user the MP3s
duration whenever a status button is clicked.

3

The “status” button has an onclick event that runs the following code:

alert("MP3 is " + audio.duration + " seconds long");

This code references the audio object, which stores the audio data which
takes at least as much memory as the original MP3. The only thing ever
accessed, however, is the duration field, which is a number and occupies
space as much as an integer. The result is a space leak. This leak is very
similar to the strictness based space leak as the code just uses the expression
audio.duration but retains the whole audio in memory. If evaluation was
forced earlier, then this could have been avoided. For example:

var duration = audio.duration;

document.getElementById("status").onclick = function(){

alert("MP3 is " + duration + " seconds long");

};

Now the duration is computed before the onclick event is registered, and the
audio element is no longer referenced, allowing it to be garbage-collected.

1.4 Detecting space leaks

The GHC compiler provides a number of built-in profiling tools that help
in detecting the source of space leaks. A more detailed section on profiling
shall be covered in the later chapters.

Detecting space leaking fragments of code in a large program is extremely
challenging. One thing to contrast on is memory leaks and space leaks. In
space leaks, considerable space is referenced but is eventually freed on ter-
mination. A program with a space leak will often reach its peak memory
use in the middle of the execution, compared with memory leaks that never
decrease. A standard technique for diagnosing memory leaks is to look at
the memory after the program has finished. However, this technique is not
applicable to space leaks.

As of now, the literature lacks a dynamic/static analysis approach for
the same.

1.5 How troublesome are space leaks?

Advanced language features such as lazy evaluation or closures lead to more
complex memory layout, making it harder to predict what memory looks
like, potentially leading to space leaks. There have been changes to compi-
lation techniques and modifications to the garbage collector and profilers to
pinpoint space leaks when they do occur.

4

Space leaks are often detected relatively late in the development pro-
cess, and often only in response to user complaints of high memory usage.
If space leaks could be detected earlier say for example as soon as they were
introduced then they would be easier to fix and would never reach end users.

Despite all the improvements, space leaks remain a thorn in the side
of lazy evaluation, producing a significant disadvantage. Pinpointing space
leaks is a skill that takes practice and perseverance. Better tools could
significantly simplify the process. Space leaks are indeed worrisome in pro-
duction but not fatal at the word go.

1.6 Organization of the Report

The rest of the report is organized as follows: In Chapter 2, we introduce
general concepts which are introduced as preliminaries. In Chapter 3, we
present a large pool of examples and discuss their detailed profiling. In
Chapter 4, we present a series of blog posts present on the internet pertaining
to space leaks. In Chapter 5, we present few papers that discuss solutions
to detect and possibly fix a space leak. Finally we conclude the report in
Chapter 6 by presenting a few ideas for future work.

5

Chapter 2

Preliminaries

In this chapter we shall present some preliminaries that will aid in the un-
derstanding of subsequent chapters.

2.1 Strictness in Haskell

Haskell uses lazy evaluation. This means that the computation is deferred
until it becomes absolutely necessary. We call this the evaluation by-need
paradigm. Laziness takes away some control from the programmer over the
order of evaluation. It can also introduce some drawbacks in performance.
Delayed evaluation results in storing a large number of thunks consuming a
lot of memory.

Some of these problems could be prevented if we determine the strict ar-
guments and evaluate them right when the function is called.[5] Since these
arguments are strict, they would have been evaluated at some point or the
other, and doing it sooner reduces the memory usage.

GHC when run with −O flag, performs such optimizations. It also pro-
vides seq and Bang patterns to the programmer to explicitly specify the
arguments of a function that are strict.

2.1.1 Seq

The seq function is a means of introducing strictness in Haskell.[6] seq takes
two arguments of any type, evaluates the first and returns the second. It is
essentially strict in the first argument.

It does so by introducing a dependency between the first and second ar-
guments. However this dependency is quite superficial and essentially only

6

forces the evaluation of the first argument.

For instance: if x is of type Integer, then following program snippet

seq2 x y = if (x == 0) then y else y

returns the value of y regardless of the value of x. The comparison of
x with 0 is done just to force the evaluation of x in the lazy model. Seq is
defined along the same lines, only the first argument can be of any datatype.
The definition of seq should necessarily satisfy the following two properties:

seq ⊥ b = ⊥ (2.1)

seq a b = b (2.2)

where ⊥ refers to an infinite/unsuccessful computation.

2.1.2 Bang Patterns

We can declare a function to be strict on an argument by placing a ! before
the argument. So when we match an expression e with a pattern !p, we first
evaluate e to weak head normal form (WHNF).

f !x y = x + y

The above function is strict in the first argument but not on the sec-
ond. Bang patterns are basically syntactic sugar for the seq function.
When using bang patterns, the program should be compiled with the flag
-XBangPatterns.

2.2 Profiling

Profiling refers to collecting information about a program’s behavior as it
executes. It is useful in understanding the resources used by the program
and identifying parts of the program that should be optimized to improve
overall performance.

GHC provides a profiling system to help monitor the time and space
usage of a Haskell program. The points in the program where statistics
are generated and collected are called cost centres. Every cost centre has
a cost (in terms of time and space required for evaluation) assigned to it.
By default all top level functions are considered cost centres when we use
the -fprof-auto flag during compilation. We can specify cost centres in the
program. To manually add another cost centre to a program we use

{-# SCC "name" #-} <expression>

7

SCC stands for Set Cost Center. If the program is not compiled with
the -prof flag, then the SCC annotations are ignored.
While running a program with profiling, GHC attributes any time or mem-
ory allocation done at any point to the cost centre at that point. We can find
the number of entries corresponding to the cost centre and the percentage
of time spent and space allocated in that cost centre.

To profile a program,

1. Compile the program with the -prof and (optionally) -rtsopts options.

2. When running the program, specify the -p (for general profiling infor-
mation) and -hc (for heap profile which can be converted to graph)
flags within +RTS -RTS.

3. Use hp2ps utility to generate graph for the heap profile.

There are other useful options besides -hc to generated different types
of profiles. [7]

-hy: Generates profile based on the type of data on the heap.
-hm: Generates profile based on the module containing code which gen-

erates the data.
-hd: Generates profile based on the closure description of the data on

the heap.
We typically profile a program when we find some anamoly in the ex-

pected vs actual usage of resources, typically by poor performance. We can
then generate the profile for our program and try to understand if a space
leak is present, and if so, where. Heap profiles of programs that are leaky
due to thunks show a steady increase in the amount of memory (the building
of a large number of thunks) and then a fall as the thunks get evaluated.
So the nature of the graph could be used as a heuristic to predict whether
there is a space leak in the program.

8

Chapter 3

Examples of Space Leaks

In this chapter we shall present some examples that will aid in the under-
standing of space leaks in general.

3.1 Example - foldl

Foldl is the left fold of a list. Here is its definition in Haskell.

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f a [] = a

foldl f a (x:xs) = foldl f (f a x) xs

The second argument is a potential source of space leak.[8] Consider the
following steps in the evaluation of foldl (+) 0 [1..10]

foldl (+) 0 [1..10]

= foldl (+) 0 (1:[2..10])

= foldl (+) (0 + 1) [2..10]

= foldl (+) (0 + 1) (2:[3..10])

= foldl (+) ((0 + 1) + 2) [3..10]

...

= foldl (+) ((((((((((0 + 1) + 2) + 3) + 4) + 5) + 6) + 7) + 8)

+ 9) + 10) []

-- Peak usage here

= ((((((((((0 + 1) + 2) + 3) + 4) + 5) + 6) + 7) + 8) + 9) + 10)

= (((((((((1 + 2) + 3) + 4) + 5) + 6) + 7) + 8) + 9) + 10)

...

= (45 + 10)

= 55

9

Figure 3.1: Heap profile for foldl (+) 0 [1..4000000]

The accumulating parameter is a thunk which is consuming more and
more space as the computation goes on. For sufficiently large sized lists, we
encounter a stack overflow. Had we evaluated all the + (keeping the foldl
strict in the second argument), the space usage would have been a lot less.
Infact the Data.List package contains a strict version of foldl, foldl’. This
is how the computation would have proceeded with foldl’.

foldl’ (+) 0 [1..10]

= foldl’ (+) 0 (1:[2..10])

= foldl’ (+) (0 + 1) [2..10]

= foldl’ (+) 1 (2:[3..10])

= foldl’ (+) (1 + 2) [3..10]

...

= foldl’ (+) (45 + 10) []

= foldl’ (+) 55 []

= 55

10

Figure 3.2: Heap profile for foldl’ (+) 0 [1..4000000]

Notice the difference in scales on the y-axis in the two figures. Also
notice the flatness for 3.2 as compared to 3.1.

11

3.2 Example - indexInto

This example is taken from ND Mitchell’s blogpost[9].

Consider the following implementation of function indexinto:

indexInto :: Eq a => Int -> a -> [a] -> Maybe Int

indexInto _ _ [] = Nothing

indexInto i x (y:ys) | x == y = Just i

| otherwise = indexInto (i+1) x ys

indexInto when called as indexInto 0 x ls returns the index at which x

occurs in ls.
Intuitively, this should consume constant space, but this implementation

actually ends up using space linear in order to the index of the occurence of
x into the list. This is due to the chain of accumulating +1’s.

indexInto 0 7 [1..10]

= indexInto (0 + 1) 7 [2..10]

= indexInto ((0 + 1) + 1) 7 [3..10]

...

= indexInto ((((((0 + 1) + 1) + 1) + 1) + 1) + 1) 7 [7..10]

-- peak usage

= ((((((0 + 1) + 1) + 1) + 1) + 1) + 1)

-- second argument == head of list

...

= 6

This behaviour is undesirable. The chain of +1’s has length equal to the
depth of occurence of the element inside the list. This is the source of the
space leak.

12

Figure 3.3: Heap profile for indexInto

We would like for these +1’s to be evaluated before application of another
function. Hence, to fix this one should use constructs that would force
evaluation of evaluate the additions. Banging the i in the implementation
is the perfect solution:

indexInto :: Eq a => Int -> a -> [a] -> Maybe Int

indexInto _ _ [] = Nothing

indexInto !i x (y:ys) | x == y = Just i

| otherwise = indexInto (i+1) x ys

The trace of evaluation would now be:

indexInto 0 7 [1..10]

= indexInto (0 + 1) 7 [2..10]

= indexInto 2 7 [2..10]

= indexInto (2+1) 7 [3..10]

-- O(1) space usage

...

= indexInto 6 7 [7..10]

= 6

13

Figure 3.4: Heap profile after Fix

14

3.3 Example - surprise

[10] Here we present a classic example of a program in which the space leak
can be fixed by modifying the garbage collector but a fix using strictness
doesn’t seem to exist.

surprise :: String -> String

surprise s = let b = break (== ’\n’) s

in (fst b) + "\nsurprise\n" + (snd b)

break is an internal function of Haskell with functionality similar to:

break :: (a -> Bool) -> [a] -> ([a], [a])

break f [] = ([], [])

break f x:xs = | x == xs = ([], xs)

| otherwise = let b = break f xs in (x:(fst b), (snd b))

The function surprise inserts a new line with ”surprise” right after the
first line in the string. We expect this to require constant space, but it ends
up consuming space linear in order of size of the first line of the string. The
example evaluation perhaps make this clear.

surprise "P not \nequal to NP"

= (fst b1) + "\nsurprise\n" + (snd b1)

where b1 = break (!= ’\n’) "P not \nequal to NP"

= ’P’ + ((fst b1) + "\nsurprise\n" + (snd b1))

where b1 = (’P’:(fst b2), snd b2)

b2 = break (!= ’\n’) " not \nequal to NP"

= ’P’ + ’ ’ + ((fst b3) + "\nsurprise\n" + (snd b1))

where b1 = (’P’:(fst b2), snd b2)

b2 = (’ ’:(fst b3), snd b3)

b3 = break (!= ’\n’) "not \nequal to NP"

...

= "P not \nsurprise\nequal to NP"

The trouble over here seems to be that b1(in snd b1) will not be evalu-
ated until the string has been broken into first line and the rest.

One may try to find an alternative space leak free definition of break.
However, it has been provedcite Hughes here that every definition of break
has a space leak if a sequential evaluator is used. A sequential evaluator is
one which continues to evaluate an expression and expressions demanded by
it untill is is completely evaluated [10].

We won’t discuss other solutions for this problem over here. Rather,
they have been described in detail in later sections.

Note: This space leak is not reproducible in current version of GHC. The
garbage collector solution proposed by Wadler[10] has been implemented in
current versions of GHC and hence the mentioned space is leak is no longer
reproducible.

15

3.4 Example - tick

[11]

main = print (f ([1..40000000]) (0 :: Int, 1 :: Int))

f [] c = c

f (x:xs) c = f xs (tick x c)

tick x (c0, c1) = if (even x) then (c0, c1 + 1)

else (c0 + 1, c1)

Like in the example of foldl, the evaluation will proceed in two stages.
Firstly a sequence of tick closures will be formed as we take elements from
the list one by one. These tick closures are consuming more space than their
evaluated counterparts would. To demostrate:

f [1,2,3,4] (0,1)

= f [2,3,4] (tick 1 (0,1))

= f [3,4] (tick 2 (tick 1 (0,1)))

= f [4] (tick 3 (tick 2 (tick 1 (0,1))))

= f [] (tick 4 (tick 3 (tick 2 (tick 1 (0,1)))))

= (tick 4 (tick 3 (tick 2 (tick 1 (0,1)))))

Now the ticks will be evaluated to the (+) closures. These closures are
also kept as thunks. It is only after the ticks have been completely evaluated
to (+) we can see a clear decrease in the amount of space required.

= (tick 4 (tick 3 (tick 2 ((0 + 1),1))))

= (tick 4 (tick 3 ((0 + 1),(1 + 1))))

= (tick 4 (((0 + 1) + 1),(1 + 1)))

= (((0 + 1) + 1),((1 + 1) + 1))

= ((1 + 1),(2 + 1))

= (2,3)

We can generate a profile for this program. We manually add cost centres
to help identify where the leak is present.

main = do

print (show (f [1..4000000] (0 :: Int, 1 :: Int)))

f [] c = {-# SCC allticks #-} c

f (x:xs) c = {-# SCC before2cl #-} f xs (tick x c)

tick x (c0, c1) = {-# SCC beforetick #-}

if (even x) then (c0, c1 + 1)

else (c0 + 1, c1)

16

Now we compile the program with profiling options and run it. (We
initially encounter a stack overflow, so we increase the size of the stack
using the -K option.) We obtain the profiling information shown in Figure
3.5.

Figure 3.5: Profiling information for tick example

The number of entries and the time columns show that the major space
allocation is occuring in the beforetick cost centre. This corresponds to
the large tick closure expression that is formed. The graph generated using
the -rtsopts -h option shows the space consumption in the heap (Figure 3.6).

17

Figure 3.6: Heap profile for tick example

We can strictify c, the second argument of f to prevent the tick closure
from building. But this will still leave us with the long series of (+), and
while the memory consumption decreases, it is still high.(Figure 3.7).

f [] !c = c

f (x:xs) !c = f xs (tick x c)

--Bang Pattern to make f strict in c

tick x (c0, c1) = if (even x) then (c0, c1 + 1)

else (c0 + 1, c1)

18

Figure 3.7: Heap profile for tick : strict f

Notice the difference in the scales between Figure 3.6 and Figure 3.7.
The space consumption here is due to the (+) operations that are left un-
evaluated. Forcing their evaluation requires us to strictify c0 and c1 inside
tick.

f [] !c = c

f (x:xs) !c = f xs (tick x c)

--Bang Pattern to make f strict in c

tick x (!c0, !c1) = if (even x) then (c0, c1 + 1)

else (c0 + 1, c1)

--Bang Pattern to make tick strict in c0 and c1

The profile corresponding to this code is shown in Figure 3.8. The mem-
ory usage is mostly constant throughout the runtime. The scale is now in
kilobytes rather than megabytes, a clear sign that the space leak has been
fixed. (We are getting information about the usage from cost centres which
were neglected before when the space leak was present due to the difference
in values.)

19

Figure 3.8: Heap profile for tick : strict f and strict tick

20

3.5 Example - foldr

The previous example may have suggested that strictifying arguments may
be the quick fix to all space leak problems. But that is not the case. Consider
a list say [1..10000]. The representation of this list in the current format
takes only 3 nodes (.. as an infix function and 1 and 10000 as its two
arguments). If we were to expand the list to all 10000 elements, the space
consumed would be much larger. It is laziness that prevents this excessive
and unnecessary space usage, by only evaluating arguments on the basis of
need. Infinite data structures of the form

let x = 1:x -- Generates an infinite list of ones.

can not work in the absence of laziness. If we are to work within the lazi-
ness model, the solution to some of these leaks would lie in identifying and
strictifying only those arguments which we are certain would be evaluated.
Unnecessary evaluations may force us into infinite loops while unnecessary
delays in evaluation will build up closures that will waste space.

Foldr represents the right fold of the list. Here is its code in Haskell

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

In foldr, we open up the list element until we reach the empty list,
building a chain of thunks (of f) as we go. Consider for instance, how foldr
(+) 0 [1..10] will be evaluated.

foldr (+) 0 [1..10]

= 1 + (foldr (+) 0 [2..10])

= 1 + (2 + (foldr (+) 0 [3..10]))

= 1 + (2 + (3 + (foldr (+) 0 [4..10])))

...

= 1 + (2 + (3 + (4 + (5 + (6 + (7 + (8 + (9 + (10 +

foldr (+) 0 []))))))))) --Peak usage here

= 1 + (2 + (3 + (4 + (5 + (6 + (7 + (8 + (9 + (10 + 0)))))))))

= 1 + (2 + (3 + (4 + (5 + (6 + (7 + (8 + (9 + 10))))))))

...

= 1 + 54

= 55

As + is strict in both the arguments, none of the (+)’s can be reduced
at any point until the list has been expanded out completely, no redex is
generated until we reach the base case for foldr. Because of this strictifying
any argument here is not going to help.

21

Figure 3.9: Heap profile for foldr
Blackhole represents a thunk currently being evaluated

22

Chapter 4

Space Leaks over the internet

Space leaks has ignited curiousity in many. A few people have pondered
over this problem and written blog posts about the same. In this section
we summarize two important series of blog posts written by Edward Z Yang
and Neil Mitchell respectively.

4.1 Ezyang’s post summary

Here we will be talking particularly about the blog post “Anatomy of a
thunk leak” by ezyang[11].

main = evaluate (f [1..4000000] (0 :: Int))

f [] c = c

f (x:xs) c = f xs (c + 1)

Its evident that the c+1, causes accumulation of closures and hence leads to
space leak. What is surprising is that compiling with optimiztions is enough
to fix the leak(thanks to GHC). This is due to the fact that the compiler
decides to rather use GHC.Prim.Int# - a primitive version of Int data type
which doesn’t form any closures.

The following is the core code generated with no optimizations.

f_aue [Occ=LoopBreaker] :: [Integer] -> Int -> Int

[LclId, Arity=2, Str=DmdType]

f_aue =

\ (ds_dMW :: [Integer]) (c_atb :: Int) ->

case ds_dMW of _ [Occ=Dead] {

[] -> c_atb;

: x_atc xs_atd ->

f_aue

xs_atd

(+ @ Int

23

GHC.Num.$fNumInt

c_atb

(fromInteger @ Int GHC.Num.$fNumInt (__integer 1)))

};

And here is the optimized leak free code using the primitive integer -
GHC.Prim.Int#

Main.$wf =

\ (w_s2PM :: [Integer]) (ww_s2PQ :: GHC.Prim.Int#) ->

case w_s2PM of _ [Occ=Dead] {

[] -> ww_s2PQ;

: x_auC xs_auD -> Main.$wf xs_auD (GHC.Prim.+# ww_s2PQ 1)

}

Next, we consider a slightly more complicated example

import Control.Exception.Base

main = do

evaluate (f [1..4000000] (0 :: Int, 1 :: Int))

f [] c = c

f (x:xs) c = f xs (tick x c)

tick x (c0, c1) | even x = (c0, c1 + 1)

| otherwise = (c0 + 1, c1)

This piece of code leaks even with optimizations. Unlike the previous
case, the problem is twofold over here. Here, say GHS.Prim.Int# is used
with one level of optimization. Even then the leak persists. This is because
the tuple constructor is still lazily evaluated. In the core code with no
optimizations, we observe that tick is inlined.

f_a1ba [Occ=LoopBreaker] ::

[Integer] -> (Int, Int) -> (Int, Int)

[LclId, Arity=2, Str=DmdType]

f_a1ba =

\ (ds_d1gJ :: [Integer]) (c_axV :: (Int, Int)) ->

case ds_d1gJ of _ [Occ=Dead] {

[] -> c_axV;

: x_axW xs_axX ->

f_a1ba xs_axX

(case c_axV of _ [Occ=Dead] { (c0_ay0, c1_ay1) ->

case even @ Integer GHC.Real.$fIntegralInteger x_axW

of _ [Occ=Dead] {

False -> (+ @ Int

24

GHC.Num.$fNumInt

c0_ay0

(fromInteger @ Int GHC.Num.$fNumInt (__integer 1)),

c1_ay1);

True -> (c0_ay0, + @ Int

GHC.Num.$fNumInt

c1_ay1

(fromInteger @ Int GHC.Num.$fNumInt (__integer 1)))

}

})

};

Please note that the bang pattern(strictness) just enforces evaluation to
WHNF and not any further. Bang pattern shouldn’t be assumed to lead to
complete evaluation.

For dicsussion on effects of strictness on the code, please refer to the
tick program in the Example section.

25

4.2 Neil Mitchell’s blog posts

Quoting Neil Mitchell - “Every large Haskell program almost inevitably
contains space leaks”. Over a series of blog posts he has reported a lot of
space leaks in huge codebases, how he found them and how he fixed them.
Most of them involve monads and IO actions. Here is one of the interesting
examples just for the sake of it.

foldr (\(a,b) (c,d) -> (a+c,b+d)) (0,0) conflictList

The above line of code just sums up the first and second elements of
conflictList separately as returns the cumulatives as a tuple.

Keeping in mind the semantics of foldr in Haskell, its easy to convince
yourself that foldr is rather a bad choice and almost always leads to space
leaks. Moreover, the leaks with foldr aren’t fixable with strictness. So, the
first step towards fixing the leak would be to replace with foldl.

However, in this case, even foldl leads to space leaks. Not only that,
foldl′, the strict version of foldl forces evaluation of only the tuple construc-
tor. So, even this implementation is not free of the accumulating addition
closures. We need something that would go under the hood and force the
additions inside the tuple constructors.

Solution 1:

foldl’ (\(a,b) (c,d) ->

let ac = a + c; bd = b + d

in ac ‘seq‘ bd ‘seq‘ (ac,bd))

(0,0) conflictList

Solution 2:

let strict2 f !x !y = f x y

in foldr (\(a,b) (c,d) ->

strict2 (,) (a+b) (b+d))

(0,0) conflictList

26

Chapter 5

Towards fixing Space leaks

A few attempts have been towards eliminating the problem of space leaks.
Some are successful and have been incorporated into the GHC compiler
itself. Some are hacky but have been very useful in identifying space leaks
in practice. A full static analysis approach is still missing.

5.1 Fixing Space Leaks using Garbage Collection

[10]
Let us remind ourselves of the surprise example 3.3.

surprise :: String -> String

surprise s = let b = break (== ’\n’) s

in (fst b) + "\nsurprise\n" + (snd b)

The problem over here is specifically in the expression:

(fst b) + "\nsurprise\n" + (snd b)

While evaluating, (fst b) is evaluated first. Even though the first ele-
ment of b isn’t required by evaluation of (snd b) at all, it is still held on(is
live) via (snd b). While we could have actually let go with the first element
of the tuple, we are still holding on to it. This is the source of the leak. We
also mentioned before that it has been proved that every definition of break
leads to a space leak provided a sequential evaluator is being used.

Making an abstraction out of the problem we consider only expressions
of the form:

E (fst b) (snd b)

where b = E’

Even after (fst b) is completely evaluated(and while is being evalu-
ated), the closures reachable from first element of tuple will be treated as

27

live since (snd b) points via b to these closures.

As a generalization, consider this expression:

E (sel_n1 b) (sel_n2 b) ... (sel_nn b)

where b = E’

Here, it is supposed that E’ returns an n-tuple and that sel_ni returns
the ith element of an n-tuple.

Now, it may seem natural to replace all terms of
(sel_ni (v1, v2, ..., vn)) to vi. If somehow, we managed to do this
during the execution of the program, we may be able to plug the leak. This
is where the garbage collector comes into play.

The idea formulated as a whole is to program the garbage collector to
identify such expressions and replace them suitably with equavalent expres-
sions which plug the leak. The garbage collector when kicked in during
peak memory usage(or at periodic intervals) identifies all such expressions,
replaces them suitably. A lot of memory which wasn’t free earlier is now
free and can be garbage collected.

Over here we would like to draw the attention of the reader to the fact
that this reduction is not just limited to the specific example dicussed above.
One could possibly identify a list of such expressions and their reductions.
head and tail are some of them. One needs to be careful over here that
the new expression which replaces the original expression shouldn’t change
the semantics of the expression.

In the context of the surprise example, consider following stage of eval-
uation:

= ’P’ + ’ ’ + ((fst b3) + "\nsurprise\n" + (snd b1))

where b1 = (’P’:(fst b2), snd b2)

b2 = (’ ’:(fst b3), snd b3)

b3 = break (!= ’\n’) "not \nequal to NP"

If the garbage collector is kicked in at this point of time, all expressions
of form (fst (a , b)) and (snd (a , b)) are reduced. Thus, (snd b1)

is replaced by (snd b2) which is inturn is replaced by (snd b3):

= ’P’ + ’ ’ + ((fst b3) + "\nsurprise\n" + (snd b3))

where b3 = break (!= ’\n’) "not \nequal to NP"

By this means, surprise runs in constant amount of space. Please note
a subtle point over here. (fst b) or (snd b) are replaced only if b has
already been evaluated to a pair i.e. it is present in weak head normal form.
The evaluator itself never triggers the evaluation of any expression since this
would change the semantics of the expression. Similarly, in case of head ls

28

or tail ls, the reduction is applied by colector only if ls has been evaluated
aleady into x:xs. Also observe, that with this method, the evaluation is no
longer sequential. This method is in no manner a contradiction to Hughes’
[1] proof.

We mentioned before that the surprise space leak is no longer repro-
ducible. This suggests that the current garbage collector employed in GHC
already applies such reductions. We looked the issue up, and this indeed
turned out to be the case.

Hughes, along with his proof gives a method for fixing such leaks, which
we would like to mention here. The method suggests modifying the source
code to indicate wherever parralization and synchronization could be used,
in order to save the space leaks. Applied to our example, this would in
essence mean writing break in fashion similar to this:

break ls = let (xs, ys) = (SYNCHLIST ls)

in (PAR before ’\n’ ls, PAR after ’\n’ ls)

The SYNCHLIST operator bounds variables xs and ys to be bound to
the list xs. The two variables are synchronized such that the next ele-
ment of xs is not evaluated until it is demanded by before ’\n’ ls and
after ’\n’ ls. The PAR makes the two expressions to be evaluated in
parallel. Without PAR, the SYNCHLIST could lead to deadlocks.

Other than the fact that this expresssion is lot more uglier than before,
careless use of synchronization and parrallelism could lead to deadly bugs.
At the same time, with synchronization into the picture now, the complexity
of the method is no longer necessarily the same.

As a conclusion, Wadler’s method is lot better than the on suggested by
Hughes.

29

5.2 The Stack Space Hack

[12]
In this section, we present an easy and simple hack for detecting the

location of space leaks in a codebase. The main idea here is that leaky
programs consume a lot of stack space. It does seem to be the case in our
previous examples. The default stack size of was insufficient to run the
programs, we increased the stack size using -K flag at runtime. So with
a restricted stack space the program would overflow and on examining the
stack trace, we would find the function that causes the overflow.

The steps to be followed are:

1. Compile the program for profiling

ghc -rtsopts -prof -auto-all xyz.hs

2. Run the executable with limiting the stack space

./xyz +RTS -K100M

3. Find the stack size for which the program just runs successfully - say
67M .

4. Reduce the stack space by a small amount and run with -xc flag. This
will print out the stack traces for each of the exception.

5. Identify the one saying stack overflow. Use this trace to figure out
the location of the space leak.

6. Attempt to fix the leak and rerun with same procedure. If the leak
is indeed fixed, then the program should work even with very small
stack size.

We demonstrate this using the following program.

import Data.List

main = do print (f [1..1000000])

f [] = 0

f x = 1 + g x

g [] = 0

g x = h (tail x)

h [] = 1

h x = foldl (+) 0 x

30

This program runs well with 56M but runs out of stack space with 55M .
Given below is the corresponding stack overflow trace:

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack trace:

Main.h,

called from Main.g,

called from Main.f,

called from Main.main,

called from Main.CAF

Stack space overflow: current size 33568 bytes.

From the stack trace, we suspect that h has a space leak. Indeed foldl

is the culprit over here. Using foldl’ fixes the leak. The program now runs
even with 1K stack space.

We call this a hack since, it is not a complete solution and does have a
lot of drawbacks.

1. Stack trace produced by -xc ignores adjacent elements that are du-
plicates. However, they do contain information relevant to the leak
which is lost.

2. There are no entries for functions from imported libraries, which makes
the detection of leaks difficult.

3. The -xc flag prints stack information on all expressions. Furthermore
different layers of the program can catch and rethrow exceptions. GHC
does not provide a means to filter out different types of exceptions in
the stack trace.

4. Not every function requiring linear stack has a space leak. So the
presence of the stack overflow may represent a space leak or it may be
an evaluation that just happens to require a lot of space.

5. The final function in the stack trace need not always be the culprit. It
is possible that some function lower in the trace used up a lot of space
before the final function.

31

Chapter 6

Conclusion

In this report we presented a basic survey of space leaks. An ideal tool for
de In conclusion we would like to present a few ideas for future work.

6.1 Theoretical work

Some work has been done in formalizing a space leak [13]. One can ex-
plore on defining this problem at a more theoretical level. If the theoretical
foundations of this is well laid out, then one can try to answer interesting
questions. For example, since space leaks is strongly related to strictness
and liveness, one can try to formally prove (or disprove) the claim that given
a perfect strictness and a perfect liveness analyser, all kinds of space leaks
can be eliminated.

6.2 Tool for detecting and fixing space leaks

Our primary aim during the start of the project was to build a tool that
would help a programmer detect space leaks in code. We could also mature
such a tool to point towards the right fixes for such space leaks. This tool
could be complete static analysis tool or a part static part dynamic analy-
sis tool. For a static analysis tool, annotating/instrumenting the code with
necessary local information and then manually or automatically inferring
global information needs to be done [14].

We can start off by considering a restricted set of Haskell, and using such
annotations and instrumentations to identify program points that lead to
the creation and destruction of thunks. This would help us, in some sense
to obtain an idea of whether the number of thunks explode remain constant
when a (self or mutually) recursive function executes. More thought needs
to be put in this direction for developing a tool.

32

6.3 Stack space hack++

As we have seen the stack space hack proposed by Neil Mitchell, a few
improvements can be done to improve that procedure. It could be automated
at various points. One could automatically generate the stack overflow trace
by finding out the maximum stack space where it flows. Once such a trace is
generated, one can analyse the trace and point to exact location of the space
leak automatically. One could also point towards the fix for the space leak.
This kind of approach will lie in part dynamic part static analysis approach
and this tool could be of great use [12].

6.4 Tool for memory analysis

Haskell could really help with a tool that lets you explore the memory (stack
and heap) at any intermediate point of the program. An analogous to this
would be the heap profiler present in Chrome for Javascript. The Chrome
heap profiler allows a snapshot of the memory to be taken and explored.
The profiler displays a tree of the memory, showing which values point at
each other [4].

Pinpointing space leaks is a skill that takes practice and perseverance.
Better tools could significantly simplify the process.

33

Bibliography

[1] John Hughes. “The design and implementation of programming lan-
guages”. In: 1983.

[2] William Stoye. “The implementation of functional languages using
custom hardware”. In: 1985.

[3] Simon Peyton-Jones and David Lester. “Implementing Functional Lan-
guages”. In: 1991.

[4] Neil Mitchel. “Leaking Space”. In: 2013.

[5] Performance/Strictness. http://wiki.haskell.org/Performance/
Strictness. Accessed: 2017-05-01.

[6] Seq. http://wiki.haskell.org/Seq. Accessed: 2017-05-01.

[7] Profiling. http://downloads.haskell.org/~ghc/7.6.3/docs/

html/users_guide/profiling.html. Accessed: 2017-05-01.

[8] Folds. http://wiki.haskell.org/Foldr_Foldl_Foldl’. Accessed:
2017-05-01.

[9] Neil Mitchel. More space leaks: Alex/Happy edition. 2016. url: http:
/ / neilmitchell . blogspot . in / 2016 / 07 / more - space - leaks -

alexhappy-edition.html.

[10] Philip Wadler. “Fixing some space leaks with a garbage collector”. In:
1987.

[11] Edward Yang. Anatomy of a Thunk Leak. 2011. url: http://blog.
ezyang.com/2011/05/anatomy-of-a-thunk-leak/.

[12] Neil Mitchell. Neil Mitchell’s Haskell Blog. url: http://http://

neilmitchell.blogspot.in/.

[13] Adam Bakewell. “An Operational Theory of Relative Space Efficiency”.
In: 2002.

[14] Devdeep Ray and Pratik Fagade. Explorations in Haskell space leaks.

i

http://wiki.haskell.org/Performance/Strictness
http://wiki.haskell.org/Performance/Strictness
http://wiki.haskell.org/Seq
http://downloads.haskell.org/~ghc/7.6.3/docs/html/users_guide/profiling.html
http://downloads.haskell.org/~ghc/7.6.3/docs/html/users_guide/profiling.html
http://wiki.haskell.org/Foldr_Foldl_Foldl'
http://neilmitchell.blogspot.in/2016/07/more-space-leaks-alexhappy-edition.html
http://neilmitchell.blogspot.in/2016/07/more-space-leaks-alexhappy-edition.html
http://neilmitchell.blogspot.in/2016/07/more-space-leaks-alexhappy-edition.html
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
http://http://neilmitchell.blogspot.in/
http://http://neilmitchell.blogspot.in/

	Abstract
	Introduction
	Motivating simple examples
	Strictness - Forcing evaluation
	Space leaks in other programming languages
	Detecting space leaks
	How troublesome are space leaks?
	Organization of the Report

	Preliminaries
	Strictness in Haskell
	Seq
	Bang Patterns

	Profiling

	Examples of Space Leaks
	Example - foldl
	Example - indexInto
	Example - surprise
	Example - tick
	Example - foldr

	Space Leaks over the internet
	Ezyang's post summary
	Neil Mitchell's blog posts

	Towards fixing Space leaks
	Fixing Space Leaks using Garbage Collection
	The Stack Space Hack

	Conclusion
	Theoretical work
	Tool for detecting and fixing space leaks
	Stack space hack++
	Tool for memory analysis

	Bibliography

