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Given multi-domain training text, learn a language model 
that performs well on unknown test distributions
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With standard training, a 
model performs worse 
with more data from 
outside the target domain. 

To achieve low loss on an unknown test distribution, we 
optimize the loss on the worst-case test distribution. 

Tool: Distributionally Robust Optimization
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Unseen domain (Trip Advisor): Topic DRO improves 
perplexity on Trip Advisor by 4 perplexity points, 
compared to standard training (!∗ = 0.1).

Experiments

My girlfriend had an awful accident 
that hurt her leg & ankle which 
resulted in a fire and rescue ride.
The address [PERSON] has listed is 
their old address. 

Huge servings, so plenty for leftovers.
Every single person we spoke to on 
staff was absolutely incredible.

Set-up: Train a 
Transformer on mixture 
of Yelp (!∗) and One 
Billion Words (1 − !∗).
Minority training 
domain (Yelp): Topic 
DRO improves Yelp 
perplexity, estimating 
the optimal Yelp vs. 
news trade-off. Pure 
Yelp results (32) are

DRO: Ben-Tal+ 2013, Rockafelalr and Uryasev 2000, Duchi and Namkoong 2018
Topics in DRO: Hu+ 2018
Domain Adaptation: Shimodaira 2000, Pryzant+ 2017, Hoffman+ 2012
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Idea 1: Topic-Based Uncertainty Sets
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Idea 2: Baselined Loss
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Accounts for topic difficulty
Optimizes the distribution 
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Problem: Naïve, sentence-based uncertainty sets are too 
conservative. No domain information. 

Solution: Define the uncertainty set by latent topics.
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uncertainty set: 
mixtures of latent topics

Result: Topics improve Yelp perplexity
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Problem: DRO on NLL loss overemphasizes hard topics

Solution: Define a loss baselined by topic difficulty

We estimate topic difficulty:

Result: Baselining improves Yelp perplexity
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impossible for our setting due to unknown test domain.


