Temporal Graph Representation Learning

Rakshit Trivedi
School of Computational Science and Engineering
rstrivedi@gatech.edu
Today’s Lecture

GraphSAGE

• Dynamic Graphs and its Applications

• Representation Learning with:
 – Discrete-Time Approaches
 – Continuous-Time Approaches
GraphSAGE Idea

- In GCN, we aggregated the neighbors’ messages as the (weighted) average of all neighbors. How can we generalize this?
GraphSAGE Idea

Any differentiable function that maps set of vectors in $N(u)$ to a single vector

$$h_v^k = \sigma \left(A_k \cdot \text{AGG} \left(\{ h_u^{k-1}, \forall u \in N(v) \} \right), B_k h_v^{k-1} \right)$$
Neighborhood Aggregation

- **Simple neighborhood aggregation:**

\[
\mathbf{h}_v^k = \sigma \left(\mathbf{W}_k \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|} + \mathbf{B}_k \mathbf{h}_v^{k-1} \right)
\]

- **GraphSAGE:**

\[
\mathbf{h}_v^k = \sigma \left([\mathbf{W}_k \cdot \text{AGG} \left(\{ \mathbf{h}_u^{k-1}, \forall u \in N(v) \} \right), \mathbf{B}_k \mathbf{h}_v^{k-1}] \right)
\]

Generalized aggregation

Concatenate neighbor embedding and self embedding
Neighbor Aggregation: Variants

- **Mean**: Take a weighted average of neighbors
 \[\text{AGG} = \sum_{u \in N(v)} \frac{h_{u}^{k-1}}{|N(v)|} \]

- **Pool**: Transform neighbor vectors and apply symmetric vector function
 \[\text{AGG} = \gamma \left(\{ Qh_{u}^{k-1}, \forall u \in N(v) \} \right) \]

- **LSTM**: Apply LSTM to reshuffled of neighbors
 \[\text{AGG} = \text{LSTM} \left([h_{u}^{k-1}, \forall u \in \pi(N(v))], \forall u \in \pi(N(v)) \right) \]
Experiments: Dataset

- **Dynamic datasets:**
 - **Citation Network:** Predict paper category
 - Data from 2000-2005
 - 302,424 nodes
 - **Reddit Post Network:** Predict subreddit of post
 - Nodes = posts
 - Edges between posts if common users comment on the post
 - 232,965 posts
 - Train: 20 days of data, test: next 10 days of data
Experiments: Results

<table>
<thead>
<tr>
<th>Name</th>
<th>Citation Unsup. F1</th>
<th>Citation Sup. F1</th>
<th>Reddit Unsup. F1</th>
<th>Reddit Sup. F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.206</td>
<td>0.206</td>
<td>0.043</td>
<td>0.042</td>
</tr>
<tr>
<td>Raw features</td>
<td>0.575</td>
<td>0.575</td>
<td>0.585</td>
<td>0.585</td>
</tr>
<tr>
<td>DeepWalk</td>
<td>0.565</td>
<td>0.565</td>
<td>0.324</td>
<td>0.324</td>
</tr>
<tr>
<td>DeepWalk + features</td>
<td>0.701</td>
<td>0.701</td>
<td>0.691</td>
<td>0.691</td>
</tr>
<tr>
<td>GraphSAGE-GCN</td>
<td>0.742</td>
<td>0.772</td>
<td>0.908</td>
<td>0.930</td>
</tr>
<tr>
<td>GraphSAGE-mean</td>
<td>0.778</td>
<td>0.820</td>
<td>0.897</td>
<td>0.950</td>
</tr>
<tr>
<td>GraphSAGE-LSTM</td>
<td>0.788</td>
<td>0.832</td>
<td>0.907</td>
<td>0.954</td>
</tr>
<tr>
<td>GraphSAGE-pool</td>
<td>0.798</td>
<td>0.839</td>
<td>0.892</td>
<td>0.948</td>
</tr>
</tbody>
</table>

| % gain over feat. | 39% | 46% | 55% | 63% |
Summary: GCN and GraphSAGE

• **Key idea: Generate node embeddings based on local neighborhoods**
 – Nodes aggregate “messages” from their neighbors using neural networks

• **Graph convolutional networks:**
 – **Basic variant:** Average neighborhood information and stack neural networks

• **GraphSAGE:**
 – Generalized neighborhood aggregation
Today’s Lecture

- GraphSAGE
- Dynamic Graphs and its Applications
- Representation Learning with:
 - Discrete-Time Approaches
 - Continuous-Time Approaches
Temporally Evolving Graphs

- Dynamic Graphs are becoming Ubiquitous

Event Knowledge Graph

Temporal Social Network

Temporal Information Network

E-commerce

Social media

Education

Web

IoT

Finance

The GDELT Project

Twitter

Reddit

Srijan Kumar, Georgia Tech, CSE6240 Spring 2020: Web Search and Text Mining
Temporally Evolving Graphs

- Dynamic Graphs are becoming Ubiquitous

(i) How to model dynamics over graphs?

(ii) How leverage such a dynamic graph model to encode evolving graph information into low-dimensional representations?
Application: Social Networks

David:
1 pm, D: Cool paper
2 pm, D: Nice car

Sophie:
1:10 pm, @D: Indeed
1:15 pm, @S @D: Classic
1:30 pm, @S @D: Very useful

Christine:

Bob:

Jacob:
1:20 pm @C @S @D: Really? Will check
1:35 pm @B @S @D: Indeed brilliant
2:03 pm, @D: I want that car
Application: Recommendation Systems

Users → Features → Products

Features

Time

Users

Products
Application: Anomaly Detection

[Image from NetWalk presentation, Yu et. al. KDD 2018]
How Do We Model Dynamics?

1. **Snapshot-Based Observation:**
 - Network Evolution observed as a collection of snapshots of the graph at different time steps
 - Possibly significant changes in graph structure observed between the two-time steps
 - Time information may or may not be explicitly available
 - Demand Discrete-time modeling

2. **Event Based Observation:**
 - Network Evolution observed as time-stamped edges (each edge represent an event)
 - Time information is fine-grained and explicitly available
 - Demand Continuous-time modeling
Today’s Lecture

- GraphSAGE
- Dynamic Graphs and its Applications
- Representation Learning with:
 - Discrete-Time Approaches
 - Continuous-Time Approaches
Snapshot based Evolution of Graphs

- Let $G_t = (V_t, E_t)$ denote the graph at time t
- Let A_t be the corresponding adjacency matrix at time t
- Dynamic graph $G = \{G_1, G_2, ..., G_T\}$ is the series of graph snapshots recorded at T different time steps
Snapshot based Evolution of Graphs

- One Approach: Use a single graph encoder at each time step to extract node features
- Use RNN based model over these node features to model dynamics

What problems could this potentially have?
Snapshot based Evolution of Graphs

- Number of Nodes and edges vary with time step
- Above approach would require complete knowledge of nodes
- Doesn’t perform well in practice
General Model

Alternative Approach: Use graph-specific encoder at each time step
General Model

Alternative Approach: Use graph-specific encoder at each time step

- Adapt the architecture based on changes in graph properties
- Adapt Encoder parameters to model dynamics
- Train using unsupervised or semi-supervised loss as before e.g. cross-entropy loss
Variant I: Dynamic Autoencoder Architecture

DynGEM: Deep Embedding Method for Dynamic Graphs

[Slides for DynGEM adapted from author’s original slides, Goyal et. al. 2018]
DynGEM: Model
DynGEM: Adaptive Architecture

- Addition of nodes in the graph may require additional model parameters
- Get width hidden layers using PropSize heuristic
 \[\text{size}(l_{k+1}) \geq \rho \times \text{size}(l_k) \]
- Deepen the model if PropSize is not satisfied for embedding layer
- Adopt Net2WiderNet and Net2DeeperNet to expand the autoencoder

Embedding Stability

\[S_{rel}(\mathcal{F}; t) = \frac{\|F_{t+1}(V_t) - F_t(V_t)\|_F}{\|F_t(V_t)\|_F} / \frac{\|S_{t+1}(V_t) - S_t(V_t)\|_F}{\|S_t(V_t)\|_F} \]

- Relative change in embedding
- Relative change in graph

\[K_S(\mathcal{F}) = \max_{\tau, \tau'} |S_{rel}(F; \tau) - S_{rel}(F; \tau')| \]
DynGEM: Data Setup

- **Synthetic Data (SYN)**
 - Generated using Stochastic Block Model
 - 1000 nodes, 79,800-79,910 edges

- **High Energy Physics (HEP-TH)**
 - Author collaboration network
 - 1,424-7,980 nodes, 2,556-21,036 edges

- **Autonomous Systems (AS)**
 - Router communication network
 - 7716 nodes, 10,695-26,46 edges

- **Enron (ENRON)**
 - Email network
 - 184 nodes, 63-591 edges
DynGEM: Visualization

(a) DynGEM time step with 5 nodes jumping out of 1000

(b) DynGEM time step with 300 nodes jumping out of 1000
DynGEM: Link Prediction

- Randomly hide 15% of network edges at time t
- Train the model using graph snapshots till time t
- Test the prediction using hidden edges

<table>
<thead>
<tr>
<th>Model</th>
<th>SYN</th>
<th>HEP-TH</th>
<th>AS</th>
<th>ENRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF_{align}</td>
<td>0.027</td>
<td>0.04</td>
<td>0.09</td>
<td>0.021</td>
</tr>
<tr>
<td>GF_{init}</td>
<td>0.024</td>
<td>0.042</td>
<td>0.08</td>
<td>0.017</td>
</tr>
<tr>
<td>SDNE_{align}</td>
<td>0.031</td>
<td>0.17</td>
<td>0.1</td>
<td>0.06</td>
</tr>
<tr>
<td>SDNE</td>
<td>0.034</td>
<td>0.1</td>
<td>0.09</td>
<td>0.081</td>
</tr>
<tr>
<td>DynGEM</td>
<td>0.194</td>
<td>0.26</td>
<td>0.21</td>
<td>0.084</td>
</tr>
</tbody>
</table>

Table: Average MAP of link prediction.
DynGEM: Anomaly Detection

- Detected anomalies in Enron by thresholding norm of change in consecutive embeddings
Variant II:
GCN Weight Evolution

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
EvolveGCN: Model

Node embedding

GCN 1
Layer 2 weights
Layer 1 weights

RNN 2
RNN 1

GCN 2
Layer 2 weights
Layer 1 weights

RNN 2
RNN 1

GCN 3
Layer 2 weights
Layer 1 weights

Time 1
Time 2
Time 3
EvolveGCN: Weight Evolution

- **GCN Reminder:**

\[
H^{(l+1)} = \sigma \left(H^{(l)} W^{(l)}_0 + \tilde{A} H^{(l)} W^{(l)}_1 \right) \\
H_t^{(l+1)} = \text{GCONV}(A_t, H_t^{(l)}, W_t^{(l)}) \\
:= \sigma(\tilde{A}_t H_t^{(l)} W_t^{(l)})
\]
EvolveGCN: Weight Evolution

- **GCN Reminder:**
 \[H^{(l+1)} = \sigma \left(H^{(l)} W_0^{(l)} + \tilde{A} H^{(l)} W_1^{(l)} \right) \]

- **Weight Evolution I:**

 \[H_t^{(l+1)} = \text{GCONV}(A_t, H_t^{(l)}, W_t^{(l)}) \]
 \[:= \sigma(\tilde{A}_t H_t^{(l)} W_t^{(l)}) \]

- **Weight Evolution II:**
 (for attributed graphs)

\[W_t^{(l)} = \text{LSTM}(W_{t-1}^{(l)}) \]

\[W_t^{(l)} = \text{GRU}(H_t^{(l)}, W_{t-1}^{(l)}) \]
EvolveGCN: Weight Evolution

• GCN Reminder:

\[H^{(l+1)} = \sigma \left(H^{(l)} W_0^{(l)} + \tilde{A} H^{(l)} W_1^{(l)} \right) \]

\[H_t^{(l+1)} = \text{GCONV} \left(A_t, H_t^{(l)}, W_t^{(l)} \right) := \sigma \left(\tilde{A}_t H_t^{(l)} W_t^{(l)} \right), \]

• Weight Evolution I:

(only structural properties)

• Weight Evolution II:

(for attributed graphs)
EvolveGCN: Summarization

$$W_t^{(l)} = \text{GRU}(H_t^{(l)}, W_{t-1}^{(l)})$$

What is the challenge?
EvolveGCN: Summarization

\[
W_t^{(l)} = \text{GRU}(H_t^{(l)}, W_{t-1}^{(l)}),
\]

What is the challenge?
(Need to account for changing dimension of \(H\))
EvolveGCN: Summarization

What is the challenge?
(Need to account for changing dimension of H)

Use representative summarization:

\[
\text{function } Z_t = \text{summarize}(X_t, k)
\]
\[
y_t = X_t p / \|p\|
\]
\[
i_t = \text{top-indices}(y_t, k)
\]
\[
Z_t = [X_t \circ \tanh(y_t)]_{i_t}
\]

end function

\[
W_t^{(l)} = \text{GRU}(H_t^{(l)}, W_{t-1}^{(l)})
\]
\[
:= g(\text{summarize}(H_t^{(l)}, \#col(W_{t-1}^{(l)}))^T, W_{t-1}^{(l)})
\]
EvolveGCN: Datasets

<table>
<thead>
<tr>
<th></th>
<th># Nodes</th>
<th># Edges</th>
<th># Time Steps (Train / Val / Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBM</td>
<td>1,000</td>
<td>4,870,863</td>
<td>35 / 5 / 10</td>
</tr>
<tr>
<td>BC-OTC</td>
<td>5,881</td>
<td>35,588</td>
<td>95 / 14 / 28</td>
</tr>
<tr>
<td>BC-Alpha</td>
<td>3,777</td>
<td>24,173</td>
<td>95 / 13 / 28</td>
</tr>
<tr>
<td>UCI</td>
<td>1,899</td>
<td>59,835</td>
<td>62 / 9 / 17</td>
</tr>
<tr>
<td>AS</td>
<td>6,474</td>
<td>13,895</td>
<td>70 / 10 / 20</td>
</tr>
<tr>
<td>Reddit</td>
<td>55,863</td>
<td>858,490</td>
<td>122 / 18 / 34</td>
</tr>
<tr>
<td>Elliptic</td>
<td>203,769</td>
<td>234,355</td>
<td>31 / 5 / 13</td>
</tr>
</tbody>
</table>

- **SBM (Stochastic Block Model) – Popular Model for simulating communities**
- **BC-OTC; BC-Alpha: who-trusts-whom network of Bitcoin users**
- **UCI: Messages sent between users in UC Irvine student community**
EvolveGCN: Datasets

<table>
<thead>
<tr>
<th>Datasets</th>
<th># Nodes</th>
<th># Edges</th>
<th># Time Steps (Train / Val / Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBM</td>
<td>1,000</td>
<td>4,870,863</td>
<td>35 / 5 / 10</td>
</tr>
<tr>
<td>BC-OTC</td>
<td>5,881</td>
<td>35,588</td>
<td>95 / 14 / 28</td>
</tr>
<tr>
<td>BC-Alpha</td>
<td>3,777</td>
<td>24,173</td>
<td>95 / 13 / 28</td>
</tr>
<tr>
<td>UCI</td>
<td>1,899</td>
<td>59,835</td>
<td>62 / 9 / 17</td>
</tr>
<tr>
<td>AS</td>
<td>6,474</td>
<td>13,895</td>
<td>70 / 10 / 20</td>
</tr>
<tr>
<td>Reddit</td>
<td>55,863</td>
<td>858,490</td>
<td>122 / 18 / 34</td>
</tr>
<tr>
<td>Elliptic</td>
<td>203,769</td>
<td>234,355</td>
<td>31 / 5 / 13</td>
</tr>
</tbody>
</table>

- **AS (Autonomous Systems):** Communication network of routers that exchange traffic flows with peers

- **Reddit:** subreddit-to-subreddit hyperlink network, where each hyperlink originates from a post in the source community and links to a post in the target community

- **Elliptic:** bitcoin transactions, wherein each node represents one transaction and the edges indicate payment flows
EvolveGCN: Tasks

- Training performed end-to-end based on task

1. **Link Prediction:**

 For a pair of nodes u and v, concatenate their embedding and apply an MLP to compute link probability.

2. **Edge Classification:**

 For an edge (u, v), similarly concatenate the corresponding node embedding and apply an MLP to compute edge class probability.

3. **Node Classification:**

 For a node u, follow standard practice of using a softmax activation as the last layer of the GCN, thus outputting node class probability.
EvolveGCN: Experiments

Link Prediction

<table>
<thead>
<tr>
<th></th>
<th>mean average precision</th>
<th>mean reciprocal rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SBM</td>
<td>BC-OTC</td>
</tr>
<tr>
<td>GCN</td>
<td>0.1987</td>
<td>0.0003</td>
</tr>
<tr>
<td>GCN-GRU</td>
<td>0.1898</td>
<td>0.0001</td>
</tr>
<tr>
<td>DynGEM</td>
<td>0.1680</td>
<td>0.0134</td>
</tr>
<tr>
<td>dyngraph2vecAE</td>
<td>0.0983</td>
<td>0.0090</td>
</tr>
<tr>
<td>dyngraph2vecAERNN</td>
<td>0.1593</td>
<td>0.0220</td>
</tr>
<tr>
<td>EvolveGCN-H</td>
<td>0.1947</td>
<td>0.0026</td>
</tr>
<tr>
<td>EvolveGCN-O</td>
<td>0.1989</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

Edge Classification

Node Classification
Summary So Far

• GCN → GraphSAGE

• Next step: Dynamic graphs (time dimension)
 — Applications: Social Media, Citation Network Analysis, Financial Transactions, Anomaly Detection and many more

• Discrete Time Models for Snapshot Based Observation:
 — Adaptive Architecture using Autoencoders
 — Adaptive Parameters using GCN and RNN

(Does not make use of time information explicitly and cannot handle fine-grained complex temporal dynamics)
Today’s Lecture

- GraphSAGE
- Dynamic Graphs and its Applications
 - Representation Learning with:
 - Discrete-Time Approaches
 - Continuous-Time Approaches
Event based Evolution of Graphs
Event based Evolution of Graphs

\[G_t = (V_t, E_t) \] denote graph \(G \) at time \(t \)

Event Observation – Dynamics are realized in the form of dyadic events observed between nodes on graph \(G \) over a temporal window \([t_0, T]\) and ordered by time.

- \(e = (u, v, t, f) : \) Event at time \(t \), where \(u, v \) are the two nodes involved in an event. \(t \) represents time of the event. \(f \) can represent features associated with the event or any other model-specific quantity.
- Complete set of \(P \) observed events ordered by time in window \([0, T]\) as \(O = \{(u, v, t, f)_p\}_{p=1}^P \). Here, \(t_p \in \mathbb{R}^+ \), \(0 \leq t_p \leq T \).

Dynamic Graph Observations
- Stream of events
- New nodes are always observed as part of events
- Displays Network Growth (Addition of Nodes and Edges)
Preliminaries: Graph Attention

- Graphs can be arbitrarily large and so can be the neighborhood of a node in such a graph.

- Not all nodes in a neighborhood are equally important for computing a node representation.

- **Attention** can be used to assign *importance* to each type of neighborhood node.
 - An attention mechanism allows for dealing with *variable sized neighborhoods*, focusing on the most relevant parts of the input to make decisions (capture information based on neighbor’s importance and relevance).

- Highly popular in sequence-based tasks.

- When applied to single sequence, it is called *self-attention*.
Preliminaries: Graph Attention Example

Key Idea: Compute the hidden representations of each node in the graph, by attending over its neighbors, using a self-attention strategy.

Attended Aggregation:

\[z^u = \sum_{j \in N_u} q_{uj} z_j \]

Example to compute \(q \):

\[q_{ui} = \frac{\exp(m_{ui})}{\sum_{i' \in N_u} \exp(m_{ui'})} \]

where, \(m_{ui} \) can be function of representations of nodes that form the edge \((u, i)\).
Preliminaries: Temporal Point Process

Let \((t_i)_{i \in \mathbb{N}^*}\) a sequence of non-negative random variables such that \(\forall i \in \mathbb{N}^*, \ t_i < t_{i+1}\). We call \((t_i)_{i \in \mathbb{N}^*}\) a temporal point process on \(\mathbb{R}_+\).

The variable \(t_i\) can represent the times of happening of events such as making posts, re-shares, likes, or comments.

Let \((t_i)_{i \in \mathbb{N}^*}\) be a point process. The right-continues process \(N(t) = \sum_{i \in \mathbb{N}^*} \mathbf{1}_{t_i \leq t}\) is the counting process associated with \((t_i)_{i \in \mathbb{N}^*}\).

Given \(\mathcal{H}_t\) is the history of all events up to time \(t\) the distribution of all events is given by the joint density

\[
f(t_1, t_2, \ldots) = \prod_i f(t_i | t_1, \ldots, t_{i-1}) = \prod_i f(t_i | \mathcal{H}_{t_i}) = \prod_i f^*(t_i)
\]
Preliminaries: Temporal Point Process

The *conditional intensity function* or *hazard function* is a convenient and intuitive way of specifying how the present depends on the past:

\[
\lambda^*(t) = \lim_{\Delta t \to 0} \frac{\mathbb{E}[N(t + \Delta t) - N(t)|\mathcal{H}_t]}{\Delta t}
\]

It represents the expected instantaneous rate of future events at time \(t \). The functional form of the intensity \(\lambda^*(t) \) is often designed to capture the phenomena of interests.

\[
\lambda^*(t) = \mu
\]

- **a) Poisson process**

 \[
 \lambda^*(t) = \mu + \alpha \sum_{t_i < t} \exp(-|t - t_i|) = \mu + \alpha \kappa_{\omega}(t) \ast dN(t)
 \]

- **b) Hawkes process**

 \[
 \lambda^*(t) = \left(1 - N(t)\right) g(t)
 \]

- **c) Survival process**

Srijan Kumar, Georgia Tech, CSE6240 Spring 2020: Web Search and Text Mining
Preliminaries: Temporal Point Process

- Specific form of Point Processes often suffer from model misspecification

- **Alternative:** Conditional Intensity function is parameterized by a Neural Network (often an RNN)

- **Examples:**
 - Recurrent Marked Temporal Point Process [Du et. al., 2016]
 \[
 \lambda^*(t) = \exp \left(v^T \cdot h_j + w^T(t - t_j) + b^T \right)
 \]
 - Neural Hawkes Process [Mei et. al., 2017]
 \[
 \lambda_k(t) = f_k(w_k^T h(t))
 \]

 where,
 \[
 h(t) = o_i \odot (2\sigma(2c(t)) - 1) \text{ for } t \in [t_{i-1}, t_i]
 \]

 where, \(\odot\) is an element-wise multiplication
Event Based Modeling of Complex Temporal Dynamics

DyRep: Representation Learning over Dynamic Graphs
Event Based Model

- [Chazelle et. al., 2012] The ability to express a dynamical process at different scales is an important feature of any influence system.
- Many dynamic graphs exhibit at least two processes that can be observed:
 - **Topological Evolution** (creates persistent edges; topology changes):

 ![Diagram of Topological Evolution]

 - Initial Network
 - Jacob joins Network at 09:55 AM by befriending Bob
 - Jacob befriends Ann at 10:30 PM

- **Network Interactions** (fixed topology; interacting nodes may be connected or non-connected):

 ![Diagram of Network Interactions]

 - Sophie interacts with Olivia at 09:00 AM
 - Sophie interacts with Bob at 10:00 AM
 - Jacob interacts with Ann at 08:00 PM
Evolution Through Mediation

Representation Learning as **Latent Mediation Process**
Dynamic of graph \iff change of node's rep. \iff Dynamic on graph

(c)

Communication evolves Node Representations

Evolving Representations drive Communication

Mutual Evolution through Embedding

(a)

(new node)

(new edge)

$u_1(t_1), u_1(t_2)$

$u_2(t_1), u_2(t_1)$

$u_3(t_1), u_3(t_1)$

$u_4(t_q), u_4(t_q)$

$u_5(t_q), u_5(t_q)$

Communication evolves Node Representations

Association evolves Node Representation

Evolving Representations drive Association

Srijan Kumar, Georgia Tech, CSE6240 Spring 2020: Web Search and Text Mining
Social Network Example
DyRep Model

- \bar{t}: time point just before the current time point t
- Occurrence of event p corresponding to dynamics k:
 \[
 \lambda_{k}^{u,v}(t) = f_{k}(g_{k}^{u,v}(\bar{t}))
 \]
 (1)

 where,
 \[
 f_{k}(x) = \psi_{k} \ast \log(1 + \exp(x/\psi_{k}))
 \]
 (2)

- Intensity function is parameterized by deep representation network:
 \[
 g_{k}^{u,v}(\bar{t}) = \omega_{k}^{T} \cdot [z_{u}^{u}(\bar{t}); z_{v}^{v}(\bar{t})]
 \]
 (3)

- Node representations $z_{u}^{u}(\bar{t})$ and $z_{v}^{v}(\bar{t})$ are computed using recurrent architecture

- $e = (u, v, t, k)$
 - $k=0$: topology
 - $k=1$: interaction
DyRep Model

- **Node Representation Update Function**

\[
\mathbf{z}^v(t_p) = \sigma(\underbrace{\mathbf{W}^u_{\text{struct}} \mathbf{h}^u_{\text{struct}}(\bar{t}_p)}_{\text{Localized Embedding Propagation}} + \underbrace{\mathbf{W}^e_{\text{rec}} \mathbf{z}^v(t_p)}_{\text{Self-Propagation}} + \underbrace{\mathbf{W}^t(t_p - \bar{t}_p)}_{\text{Exogenous Drive}}), \quad (4)
\]

- **Exogenous Drive**: Smooth drift of nodes features over time
- **Self-Propagation**: Node evolves in an embedded space w.r.t to its previous positions (induces recurrence)
- **Localized Embedding Propagation**: Temporary or Permanent Pathway for information propagation between nodes (Illustrated later)

- **Computing** \(\mathbf{h}^u_{\text{struct}}\) **using max-pooling aggregation**:

\[
\mathbf{h}^u_{\text{struct}}(\bar{t}) = \max \left\{ \sigma \underbrace{\mathbf{q}_{ui}(t)}_{\text{Temporal Attention Coefficient}} \cdot \mathbf{h}^i(\bar{t}) \right\}, \forall i \in \underbrace{\mathcal{N}_u(\bar{t})}_{\text{Neighborhood of } u \text{ at time } t} \quad (5)
\]

where, \(\mathbf{h}^i(\bar{t}) = \mathbf{W}^h \mathbf{z}^i(\bar{t}) + \mathbf{b}^h\) (Simple MLP)
Localized Embedding Propagation

- Node u: update with information from h^v_{struct} (green flow); Node v: update with information from h^u_{struct} (red flow)
- Interaction events lead to temporary pathway (e.g. meeting at a conference)
- Topological events lead to permanent pathway (e.g. becoming friends).
Temporal Point Process Attention

Difference in number of blue arrows signify difference in importance of each neighbor to node u ($\mathcal{N}_u = \{1, 2, 3\}$) and node v ($\mathcal{N}_v = 5, 6, 7$) respectively.

Temporal Point Process Self-Attention:

$$h_{\text{struct}}^u(\bar{t}) = \max\{\sigma(q_{ui}(\bar{t}) \ast h^i(\bar{t}))\}$$

$$h^i(\bar{t}) = W^h z^i(\bar{t}) + b^h$$

where $i \in N_u(\bar{t})$ is the node in neighborhood of node u.

$$q_{ui}(\bar{t}) = \frac{\exp(S_{ui}(\bar{t}))}{\sum_{i' \in N_u(\bar{t})} \exp(S_{ui'}(\bar{t}))}$$
Training Procedure

Objective: For a set \mathcal{O} of P observed events, minimize the intensity based (negative) log likelihood:

$$L = -\sum_{p=1}^{P} \log (\lambda_p(t)) + \int_{0}^{T} \Lambda(\tau) d\tau$$

- $\lambda_p(t) = \lambda_{k_p}^{u_p,v_p}(t)$: Intensity of event at time t (non-breakable sequence due to long intertwined history dependence) — Train over global sequence applying Backpropagation Through Time (BPTT) in sliding window fashion

- $\Lambda(\tau) = \sum_{u=1}^{n} \sum_{v=1}^{n} \sum_{k \in \{0,1\}} \lambda_{k,u,v}^{u,v}(\tau)$: total survival probability for events that do not happen (intractable) — Algorithm II - Estimate survival term using Monte Carlo trick
Experiments: Setup

- **Datasets**
 - MIT Social Evolution Dataset: Communication (Proximity, Calls, SMS); Association (Close Friendships)
 - Github dataset: Communication (Star/Watch); Association (Follow)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Nodes</th>
<th>#Initial Associations</th>
<th>#Final Associations</th>
<th>#Communications</th>
<th>Clustering Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Evolution</td>
<td>83</td>
<td>376</td>
<td>791</td>
<td>2016339</td>
<td>0.548</td>
</tr>
<tr>
<td>Github</td>
<td>12328</td>
<td>70640</td>
<td>166565</td>
<td>604649</td>
<td>0.087</td>
</tr>
</tbody>
</table>

- **Train-Test Split: Time based**

- **Evaluation Scheme**
 - Divide Test data into multiple time slots and report for each slot
 - Sliding window protocol for baselines
 - **Metric:** MAR (Mean Absolute Rank) & HITS@10 for Dynamic Link Prediction
 - **Metric:** MAE (Mean Absolute Error) for Time Prediction
Experiments: Tasks

- **Temporal Link Prediction**
 - **Task:** Which is the most likely node u that would undergo an event of type k with a given node v at time t?

 \[
 f_{k}^{u,v}(t) = \lambda_{k}^{u,v}(t) \cdot \exp \left(\int_{\tilde{t}}^{t} \lambda(s)ds \right)
 \]
 Use the conditional density to find the most likely node

- **Event Time Prediction**
 - **Task:** Given two nodes u and v at previous time \tilde{t} in an event of dynamics k, when is the next time point t for this event to occur again?

 \[
 \text{Next time point: } t = \int_{\tilde{t}}^{\infty} \tilde{t} \cdot f_{k}^{u,v}(\tilde{t})d\tilde{t}
 \]
Experiment I: Dynamic Link Prediction

Communication Events (Top: MAR and Bottom: HITS@10)

Social Dataset

Github Dataset
Experiment I: Dynamic Link Prediction

Association Events (Top: MAR and Bottom: HITS@10)

Social Dataset

Github Dataset
Experiment II: Event Time Prediction

- Mean Absolute Error (Top: Communication and Bottom: Association)

![Graphs showing MAE for different methods across time slots.]
Today’s Lecture

- GraphSAGE
- Dynamic Graphs and its Applications
 - Representation Learning with:
 – Discrete-Time Approaches
 – Continuous-Time Approaches