Introduction to Information Retrieval: IR Basics and Evaluation

Prof. Srijan Kumar
Logistics

- **Class size:** Due to huge demand, class size has been increased to 85
- **Piazza:** Please join
 - https://piazza.com/class/spring2020/cse6240/ (same link as before)
- **Canvas:** Logistical issues being resolved now
- **Project:**
 - Example datasets and sample projects will be released by Thursday evening
 - Teams due by Jan 20
Today’s Class

• Web is a collection of documents
 – E.g., web pages, social media posts

• Web is a network
 – E.g., the hyperlink network of websites, network of people on social networks

• Web is a set of applications
 – E.g., e-commerce platforms, content sharing, streaming services

Some slides from today’s lecture are inspired from Prof. Hongyuan Zha’s past offerings of this course
Today’s Class: Part 1

- Web is a collection of documents
 1. Process documents for search and retrieval
 2. Quantifying the quality of retrieval
Search and Retrieval are Everywhere

• **Web search engines**: Querying for documents on the web
 – Google, Bing, Yahoo Search

• **E-commerce platforms**: Querying for products on the platform
 – Amazon, eBay

• **In-house enterprise**: Querying for documents internal to the enterprise
 – Universities, Companies
Processing Document Collections

• **Goal:** Index documents to be easily searchable

• **Steps to index documents:**
 1. **Collect** the documents to be indexed
 2. **Tokenize** the text
 3. **Normalize** of the text (linguistic processing)
 4. **Index** the text: Inverted Indexing
Tokenization and linguistic processing determine the terms considered for retrieval.
Processing Document Collections

Tokenization and linguistic processing determine the terms considered for retrieval.
Tokenization

• Tokenization formats the text by chopping it up into pieces, called **tokens**
 – E.g., remove punctuations and split on white spaces
 – Georgia-Tech → Georgia Tech

• However, **tokenization can give unwanted results**
 – San Francisco → “San” “Francisco”
 – Hewlett-Packard → Hewlett Packard
 – Dates: 01/08/2020 → 01 08 2020
 – Phone number: (800) 111-1111 → 800 111 1111
 – Emails: srijan@cs.stanford.edu → srijan cs stanford edu

• Such splits can result in poor retrieval results
Tokenization: What To Do?

• So, what should one do?
• Come up with **regular expression rules**
 – E.g., only split if the next word starts with a lowercase letter
• **Has to be language specific:** English rules not applicable to all other languages
 – E.g., French: *L’ensemble*
 – German: *Computerlinguistik* means ‘computational linguistics’
Tokenization and linguistic processing determine the terms considered for retrieval.
Text Normalization: Why is it Needed?

- The same text can be written in many ways
 - USA vs U.S.A. vs usa vs Usa
- We need some way to create a **unified representation** to match them
- The **same normalization** is required for the query and the documents
Text Normalization: Other Languages

- **Accents**: resume vs résumé
- **Most important criteria**: How are your users likely to write their queries?
- Even in languages where the accents are the norm, users often not type them, or the input device is not convenient
- **German**: Tuebingen vs. Tübingen
 - should be the same
- **Dates**: July 30 vs. 7/30
Text Normalization Step 1: Case Folding

• **Reduce all letters to lower case**
 – exception: upper case (in mid-sentence?)

• Often best to **lower case everything**, since users tend to use lowercase regardless of the correct capitalization

• **However**, many proper nouns are derived from common nouns
 – General Motors, Associated Press

• We can create **advanced solutions** (later): bigrams, n-grams
Text Normalization Step 2: Remove Stop Words

- With a stop-word list, one excludes from the dictionary the most common words
 - They have little semantic content: the, a, and, to
 - They take a lot of space: 30% of postings for top 30

- Fewer stop words:
 - Can use good compression techniques
 - Good query optimization techniques mean one pays little at query time for including stop words
Text Normalization Step 2: Remove Stop Words

• However, stop words can be needed for:
 – Phrase queries: "King of Prussia"
 – (Song) titles etc.: "Let it be", "To be or not to be"
 – Relational queries: "flights to London"
Text Normalization Step 3: Stemming

- **Key idea:** Derive the base form of words, i.e. root form, to standardize their use
 - Reduce terms to their “roots” before indexing

- **Variations of words do not add value for retrieval**
 - **Grammatical** variations: organize, organizes, organizing
 - **Derivational** variations: democracy, democratic, democratization

- **“Stemming” suggest crude suffix chopping**
 - Again, language dependent
 - E.g., organize, organizes, organizing → organiz
Text Normalization Step 3: Stemming

For example, compressed and compression are both accepted as equivalent to compress.
Porter’s Stemmer

• Most commonly used stemmer for English
 – Empirical evidence: as good as other stemmers

• Conventions + five phases of reductions
 – phases applied sequentially
 – each phase consists of a set of commands
 – sample convention: of the rules in a compound command, select the one that applies to the longest suffix
Porter’s Stemmer: Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSES → SS</td>
<td>caresses → caress</td>
</tr>
<tr>
<td>IES → I</td>
<td>ponies → poni</td>
</tr>
<tr>
<td>SS → SS</td>
<td>caress → caress</td>
</tr>
<tr>
<td>S →</td>
<td>cats → cat</td>
</tr>
</tbody>
</table>
Tokenization and linguistic processing determine the terms considered for retrieval.
Scoring and Ranking Documents

• Ranked list of documents:
 – Order the documents most likely to be relevant to the searcher
 – It does not matter how large the retrieved set is

• How can we rank-order the docs in the collection with respect to a query?

• Begin with a perfect world – no spammers
 – Nobody stuffing keywords into a doc to make it match queries
Techniques For Indexing

1. Term-Document Incidence Matrix
2. Inverted Index
3. Positional Index
4. TF-IDF
Technique 1: Term-Document Incidence Matrix

Examples:
- For Boolean query "Brutus AND Caesar AND NOT Calpurnia"
 - $110100 \text{ AND } 110111 \text{ AND } 010000 = 100100$
- Not scalable: Billions of terms and millions of documents
Technique 2: Inverted Index

• An inverted index consists of a dictionary and postings

• For each term T in the dictionary, we store a list of documents containing T

```
Brutus  →  1  2  4  11  31  45  173  174
Caesar  →  1  2  4  5  6  16  57  ...
Calpurnia →  2  31  54  101
```

Dictionary

Postings
Building an Inverted Index I

Tokenize documents

<table>
<thead>
<tr>
<th>term</th>
<th>docID</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
</tr>
<tr>
<td>casear</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>i’</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>so</td>
<td>1</td>
</tr>
<tr>
<td>let</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>1</td>
</tr>
<tr>
<td>with</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>noble</td>
<td>1</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
</tr>
<tr>
<td>told</td>
<td>1</td>
</tr>
<tr>
<td>you</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
</tr>
<tr>
<td>ambitious</td>
<td>2</td>
</tr>
</tbody>
</table>

Sort alphabetically

<table>
<thead>
<tr>
<th>term</th>
<th>docID</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
</tr>
<tr>
<td>casear</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>i’</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>so</td>
<td>1</td>
</tr>
<tr>
<td>let</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>1</td>
</tr>
<tr>
<td>with</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>noble</td>
<td>1</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
</tr>
<tr>
<td>told</td>
<td>1</td>
</tr>
<tr>
<td>you</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
</tr>
</tbody>
</table>

Compress using counts/term frequency

<table>
<thead>
<tr>
<th>term</th>
<th>docID</th>
<th>term freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambitious</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>enacted</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>i’</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>let</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>noble</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>so</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>told</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>you</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Building an Inverted Index II

<table>
<thead>
<tr>
<th>term</th>
<th>docID</th>
<th>freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambitious</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hath</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>i’</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>let</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>noble</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>so</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>told</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>you</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Compress by creating a list of documents that have the term

<table>
<thead>
<tr>
<th>term</th>
<th>coll. freq.</th>
<th>postings lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambitious</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>be</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
<td>→ 1 → 2</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
<td>→ 1</td>
</tr>
<tr>
<td>caesar</td>
<td>3</td>
<td>→ 1 → 2</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
<td>→ 1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
<td>→ 1</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>→ 1</td>
</tr>
<tr>
<td>i’</td>
<td>1</td>
<td>→ 1</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
<td>→ 1</td>
</tr>
<tr>
<td>killed</td>
<td>2</td>
<td>→ 1</td>
</tr>
<tr>
<td>let</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
<td>→ 1</td>
</tr>
<tr>
<td>noble</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>so</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
<td>→ 1 → 2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
<td>→ 2</td>
</tr>
<tr>
<td>told</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>you</td>
<td>1</td>
<td>→ 2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
<td>→ 1 → 2</td>
</tr>
<tr>
<td>with</td>
<td>1</td>
<td>→ 2</td>
</tr>
</tbody>
</table>
Retrieval with Inverted Index

• **Example query:** Brutus AND Calpurnia

• **Steps:**
 – Locate Brutus in the Dictionary
 – Retrieve its postings
 – Locate Calpurnia in the Dictionary
 – Retrieve its postings
 – Intersect the two postings lists

![Diagram showing postings lists and their intersection](image-url)
Algorithm to Intersect/Merge Lists

- Postings in sorted order, complexity $O(x + y)$

```python
INTERSECT(p, q)
1  answer ← ⟨ ⟩
2  while $p \neq$ NIL and $q \neq$ NIL
3    do if docID[p] = docID[q]
4      then ADD(answer, docID[p])
5        p ← next[p]
6        q ← next[q]
7    else if docID[p] < docID[q]
8      then p ← next[p]
9        else q ← next[q]
10   return answer
```
Introduction to Information Retrieval: IR Basics and Evaluation
Part 2

Prof. Srijan Kumar
Logistics

• **Piazza:** Still some students remaining. Please join.
 – https://piazza.com/class/spring2020/cse6240/

• **Canvas:** Available now. Please join for submissions.

• **Project:** Example datasets and sample projects released
 – **Reminder:** Teams due next Monday

• **Hands-on ipython tutorial session:** Tuesday during office hours (3-4 PM, Klaus 3rd Floor Atrium, by the Elevator)

• **Homework:** Details in Wednesday’s class
Recap from Previous Class

- **Web is a collection of documents**
 1. Process documents for search and retrieval
 2. Quantifying the quality of retrieval
Processing Document Collections

Tokenization and linguistic processing determine the terms considered for retrieval.
Techniques For Indexing

1. Term-Document Incidence Matrix
2. Inverted Index
3. TF-IDF
Complex Full Text Queries

- **Long queries pose a problem for the previous techniques**
 - *Not scalable* as it will generate long Boolean queries
 - *Very strict*: all query terms should be present
 - In practice, query terms may be missing in a document

- **Solution: Advanced processing with term weighting**
 - If a document talks about a topic more, then it is a better match
 - A document is relevant if it has many occurrences of the term(s)
 - This leads to the idea of term weighting
Bag of Words Model

• **Represent a document as a collection of words** (after cleaning the document)
 – The order of words is irrelevant
 – The document “John is quicker than Mary” is indistinguishable from the doc “Mary is quicker than John”

• **Rank documents according to the overlap between query words and document words**
Term Frequency Vectors

- Consider **Term Frequency** $tf_{t,d} = \text{the number of occurrences of a term } t \text{ in a document } d$
 - A document is a vector (a column of a matrix)

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>worse</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Term Frequency Vectors

• The use of term frequency vectors poses some problems:
 – **Long docs are favored** because they are more likely to contain query terms
 • Possible fix: normalize by document length
 – **All words are treated as equal**
 • Which one tells you more about a document?
 • 10 occurrences of *Brutus* or 10 occurrences of *the*

• Would like to attenuate the weights of common terms
 – How to define common?

• **Solution: Document Frequency**
Document Frequency

- **Document Frequency** $df_t = \text{the number of documents in the corpus containing the term}

- **How to use document frequency?**

- **Inverse Document Frequency** idf_t
 - A measure of *informativeness of a term: rarity across the whole corpus*
 - **High idf** = the term is unique; **low idf** = common words
 - **Formulation 1:** the raw count of number of documents the term occurs in
 - $idf_t = 1 / df_t$
 - **Formulation 2:** logarithmically scaled inverse fraction
 - $idf_t = \log (N / df_t)$
 - Where N = number of documents in the corpus
Scoring a Query Against a Document

• Scoring a term-document pair (t, d)
 – Tf-idf weight of term t in a document d
 \[
 tf - idf(t, d) = tf_{t,d} \times idf_t
 \]

• Scoring a query-document pair (q, d)
 – Aggregate across all terms in the query
 \[
 Score(q, d) = \sum_{t \in q} tf - idf(t, d)
 \]
Scoring a Query Against a Document: BM25

- In BM25 or Okapi BM25:
 - **Term Frequency** = $\frac{tf_t \cdot (K + 1)}{tf_t + K \cdot (1 - b + b \cdot \frac{|D|}{L})}$
 - **Inverse Document Frequency** = $\log\left(\frac{N - df_t + 0.5}{df_t + 0.5}\right)$

where
- the parameters were set empirically: $b = 0.75$, K lies in $[1.2, 2.0]$
- $|D|$ = length of document
- L = average length of all documents in the corpus
- N = number of documents
Incorporating Web Page Structure

- **Web page structures are complex**
 - Title, Body, Tags, Metadata, Bold vs light

- **Position of terms in different parts has different importance**
 - Presence of a term in title > Presence of the same term in body

- **Solution: Weight positions differently**
 - E.g., $0.6 \times \text{term in title} + 0.1 \times \text{term in body} + 0.3 \times \text{term in tags}$
 - Total weights sum to 1.0
Position Weights

• Where do the weights come from? **Machine Learning**
 – Given
 • A document corpus
 • A suite of queries
 • A set of relevance judgements
 – Learn a set of weights such that relevance judgments matched
 – Can be formulated as a regression problem
Today’s Class: Part 2

• Web is a collection of documents
 1. Process documents for search and retrieval
 2. Quantifying the quality of retrieval
Measures of a Search Engine

- **How fast does it index**
 - Number of documents/hour
- **How fast does it search**
 - Latency as a function of index size
- **How frequent is the index refreshed**
- **Expressiveness of query language**
 - Ability to express complex information needs
 - Speed on complex queries
- **How satisfied are the users**
 - Users will be satisfied if the results are accurate
 - Most tricky to quantify
User Satisfaction in Different Cases

• Web search engines: Users find what they want and return to engine
 – Measure rate of returning users, rate of click

• E-commerce platforms: Users find what they want and make a purchase
 – Measure time to purchase

• In-house enterprise: Users find documents fast
 – Quantify productivity, i.e., how much time do users save

• In all of the above, the results have to be accurate
Quantifying User Satisfaction

• Commonest proxy: relevance of search results
 – But how do you measure relevance?
• We will detail a methodology here, then examine its issues
• Relevant measurement requires 3 elements:
 – A benchmark document collection
 – A benchmark set of queries
 – A binary assessment of either Relevant or Irrelevant for each query-document pair
• In Web search, relevance is more-than-binary, i.e., multi-grade relevance
Evaluating an IR system

• The IR system should satisfy the user’s **information need**, which is translated into a query

• **Relevance is assessed relative to the information need, not the query**
 – **E.g., information need:** I’m looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
 – **Query:** wine red white heart attack effective
 – **You evaluate whether the doc addresses the information need, not whether it has those words**

• However, broad-topic queries tend to represent multiple intentions

• For web search, we need detailed guidelines for relevance judgments
 – perfect, excellent, good, fair, bad
Standard Benchmarking

• **TREC - National Institute of Standards and Testing (NIST)** has run a large IR test bed for many years

• **Evaluation Setup:**
 – **Input:** a document corpus and a query
 – The IR system returns a subset of documents, in rank-order (most important to least important)
 – Human experts rate each returned document as relevant or irrelevant

• **Remember:** the ground-truth data is unbalanced
 – Most documents are irrelevant to the query
Evaluation Metrics

• Several practical evaluation metrics:

 1. Accuracy
 2. Precision
 3. Recall
 4. F-score
 5. Mean Average Precision
 6. Normalized Discounted Cumulative Gain (nDCG)
Metric 1: Accuracy

• **Accuracy** = Fraction of correct answers
 – (Number of retrieved returned documents + Number of irrelevant non-retrieved documents) / Number of all documents
 – Accuracy = (TP + TN) / (TP + TN + FP + FN)

• **Not a useful metric for IR. Why?**
 – Most documents are irrelevant, so keeping TN high can make accuracy high

Don’t return anything, get ~99.99% accuracy!
Metrics 2 and 3: Precision and Recall

• **Precision** = fraction of retrieved docs that are relevant
 \[P(\text{relevant} | \text{retrieved}) \]

• **Recall** = fraction of relevant docs that are retrieved
 \[P(\text{retrieved} | \text{relevant}) \]

- Precision = \(TP / (TP + FP) \)
- Recall = \(TP / (TP + FN) \)

• Good IR systems should have high TP and TN, low FP and FN
Precision-Recall Tradeoff

• You can **increase recall by returning more docs**
• Recall is a non-decreasing function of the number of docs retrieved
 – A system that returns all docs has 100% recall!
• The converse is also usually true: It’s easy to get high precision for very low recall
Metric 4: F-measure

- **F-measure = a combination of Precision and Recall**
 - Weighted Harmonic Mean

 \[
 F = \frac{1}{\frac{\alpha}{P} + \frac{1-\alpha}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}
 \]

 where \(\beta^2 = \frac{1 - \alpha}{\alpha} \)

- When \(\beta = 1 \), \(F \) becomes a simple harmonic mean of \(P \) and \(R \); also called \(F_1 \)

 \[
 \frac{1}{F} = \frac{1}{2} \left(\frac{1}{P} + \frac{1}{R} \right)
 \]
F-measure: An Example

Given a corpus of 100 relevant documents for a query, an IR system returns:

<table>
<thead>
<tr>
<th></th>
<th>relevant</th>
<th>not relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieved</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>not retrieved</td>
<td>82</td>
<td>1,000,000,000</td>
</tr>
</tbody>
</table>

- **Precision** = $\frac{18}{18+2} = 0.9$
- **Recall** = $\frac{18}{18+82} = 0.18$
- **F1** = $\frac{2PR}{P+R} = \frac{2 \times 0.9 \times 0.18}{0.9 + 0.18} = 0.3$
- F1 is a lot lower than avg of P and R = $(0.9+0.18)/2 = 0.54$
- F1 does not factor true negatives (1B in the above case)
Evaluating Ranked Results

• **Search engine returns ranked list of documents**
 – Take first document, interpret as unordered set of size 1, compute unordered evaluation measures for this set.
 – Take top 2 documents, interpret as unordered set of size 2, compute unordered evaluation measures for this set, and so on.

• **Plot individual measures** \rightarrow precision-recall curve
Precision-Recall Curve

Given a ranked list of documents, mark each as relevant or irrelevant, in ranking order. Example:

• 1 – relevant. P = 1/1 = 1.0
• 2 – irrelevant. P = 1/2 = 0.5
• 3 – relevant. P = 2/3 = 0.66
• 4 – relevant. P = 3/4 = 0.75
• 5 – irrelevant. P = 3/5 = 0.6
Evaluation: Issues So Far

- Plots are good, but need quantification
 - **Precision at fixed retrieval level k**
 - Perhaps most appropriate for web search: all people want are good matches on the first one or two results pages

- A precision-recall graph for one query isn’t a very sensible thing to look at every time
 - You need to **average performance over a whole bunch of queries**
Mean Average Precision

- **MAP** = Average precision value for the top documents so far, each time a relevant document is retrieved.

- For a query q_j in set of queries Q, the set of relevant documents are $\{d_1, \ldots, d_m\}$
 - **Macro-averaging**: each query counts equally.

- R_k is list of ranked results until d_k

\[
MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{\left| Q \right|} \frac{1}{m} \sum_{k=1}^{m} \text{Precision}(R_k)
\]
 Discounted Cumulative Gain (DCG)

- **DCG has a finite ordinal grade set**, e.g., \{Perfect, Excellent, Good, Fair\}
- **Each grade is associated with a gain value** \(g_i = g(L_i) \)
 - Perfect = 20, Excellent = 10, Good = 5, Fair = 1, Bad = 0
- **Each position has a discount (importance) factor**: \(c_1 > c_2 > \ldots > c_k > 0 \)
- **DCG for a ranking list of documents** \(\{d_1, \ldots, d_N\} \):

\[
DCG_{g,K} = \sum_{j=1}^{K} c_j g(d_j), \quad K = 1, \ldots, N,
\]

where \(g(d_j) \) is the gain value for the label of \(d_j \)
DCG Example

• 10 ranked documents judged on 0-3 relevance scale:
 – 3, 2, 3, 0, 0, 1, 2, 2, 3, 0

• Discount factors = 1/1, 1/1, 1/1.59, 1/1.7, 1/2.0, 1/2.59, …

• Discounted gain = 3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
 = 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0

• DCG (cumulative sum) = 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

• To compare algorithms, DCG numbers are averaged across a set of queries at specific rank values: DCG-5, DCG-10
Normalized DCG (nDCG)

- DCG values are normalized by comparing the DCG at each rank with the DCG value for the perfect ranking.
 - This makes averaging easier for queries with different numbers of relevant documents.
- **Perfect ranking** = 3, 3, 3, 2, 2, 2, 1, 0, 0, 0
- **Ideal DCG values** = 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10
- **Example DCG values** = 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
- **nDCG value of ranking** = 1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88
Evaluation Process

- Inputs needed: **Test queries** and **Relevance assessments**
- **Test queries:**
 - Best designed by domain experts
- **Relevance assessments:**
 - Human judges, time-consuming, may not be perfect, biased
- **Can we avoid human judgment? Not really**
 - Makes experimental work hard, especially on a large scale
- **In practice: use implicit feedback (clicks, bounce rate)**