
Baseline • Follows a random policy

SARSA(λ)

• Maps (s, a) to Q values of current policy
• Combine past rewards, more recent = more important
• Maintain an eligibility trace to assign blame to 

parameters

Q-learning 
with Replay 

Memory

• Maps (s,a) to Q-values of optimal policy
• Estimate Q(s,a) with linear and neural network function 

approximators
• Bootstrap estimate of future value by sampling from 

experience
• Cache parameters of target function for stable updates

Policy 
Gradients

• Directly learn parameters θ of a policy πθ (vs ε-greedy)
• Use a neural network for the policy, but wait to fill in 

gradients until eventual reward is received
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• Game state
• Ball and paddle location
• Ball angle
• Brick indicators

Discrete Feature 
Set

• Ball and paddle locations and velocities
• Distance of ball relative to walls, bricks, 

and paddles
• Interaction features

Multiple 
Continuous 

Feature Sets

• 3D vector representation of pixel RGB 
values

• Used with a 5-layer neural network
Pixel Intensities

• Featurizing a huge 
state space

• Delayed rewards
• Exploration vs exploitation
• Determining relevance of 

hyperparameters
• Learning from losing vs 

from hitting bricks
• Highly correlated states
• Experience replay vs 

SARSA(λ)
• Training neural network

Cumulative points over multiple runs of  250 test games (ε = 0) after 2000 training games (ε = 
0.5). 3 points are awarded per broken brick and 1000 points for winning. Experiments were 
conducted with γ = 0.993, η = (1 / x), |memory| = 5000, update cycle = 750, eligibility trace 

threshold = 0.1, trace decay = 0.98. The SARSA agent won 46 games.
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• Almost all algorithms 
outperformed baseline by 
2x

• Q learning w/out function 
approximation struggled 
because large state space 
was inadequately explored

• Replay memory added no 
benefit – for Breakout, 
correlations between 
adjacent game states 
sometimes help agent 
performance. Delays 
between actions (ex. 
returning a ball) correlate  
to delays in rewards (ex. 
breaking a brick). 

• Agents leveraging nonlinear policy & value networks generally 
underperformed. 

• Neural network did not help despite hyperparameter tuning and 
different network structures – too little info captured in feature sets

• Future work: investigate each model (especially the more opaque 
ones) to understand their performance in Breakout vs other games


