
Baseline • Follows a random policy

SARSA(λ)

• Maps (s, a) to Q values of current policy
• Combine past rewards, more recent = more important
• Maintain an eligibility trace to assign blame to

parameters

Q-learning
with Replay

Memory

• Maps (s,a) to Q-values of optimal policy
• Estimate Q(s,a) with linear and neural network function

approximators
• Bootstrap estimate of future value by sampling from

experience
• Cache parameters of target function for stable updates

Policy
Gradients

• Directly learn parameters θ of a policy πθ (vs ε-greedy)
• Use a neural network for the policy, but wait to fill in

gradients until eventual reward is received

Reinforcement	Learning	Approaches	for	Atari	Breakout
Vincent Pierre Berges, Reid Pryzant, Priyanka Rao

CS 221 Final Project

How do different RL approaches compare in a
custom implementation of Atari Breakout?

Motivation

Model

Algorithms Analysis

Contact Information

References

Challenges Results
rpryzant@stanford.edu, vpberges@stanford.edu,

prao96@stanford.edu

• Game state
• Ball and paddle location
• Ball angle
• Brick indicators

Discrete Feature
Set

• Ball and paddle locations and velocities
• Distance of ball relative to walls, bricks,

and paddles
• Interaction features

Multiple
Continuous

Feature Sets

• 3D vector representation of pixel RGB
values

• Used with a 5-layer neural network
Pixel Intensities

• Featurizing a huge
state space

• Delayed rewards
• Exploration vs exploitation
• Determining relevance of

hyperparameters
• Learning from losing vs

from hitting bricks
• Highly correlated states
• Experience replay vs

SARSA(λ)
• Training neural network

Cumulative points over multiple runs of 250 test games (ε = 0) after 2000 training games (ε =
0.5). 3 points are awarded per broken brick and 1000 points for winning. Experiments were
conducted with γ = 0.993, η = (1 / x), |memory| = 5000, update cycle = 750, eligibility trace

threshold = 0.1, trace decay = 0.98. The SARSA agent won 46 games.

[1] Mnih, Volodymyr, et al. "Asynchronous methods for deep
reinforcement learning." arXiv preprint arXiv:

1602.01783 (2016).
[2] Mnih, Volodymyr, et al. "Human-level control through deep

reinforcement learning." Nature 518.7540 (2015): 529-533.
[3] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement

learning." arXiv preprint arXiv:1312.5602 (2013).
[4] Silver, David. “COMPGI13: Reinforcement Learning”.

University College London online course. London, UK. 2015.
Lecture Series.

• Almost all algorithms
outperformed baseline by
2x

• Q learning w/out function
approximation struggled
because large state space
was inadequately explored

• Replay memory added no
benefit – for Breakout,
correlations between
adjacent game states
sometimes help agent
performance. Delays
between actions (ex.
returning a ball) correlate
to delays in rewards (ex.
breaking a brick).

• Agents leveraging nonlinear policy & value networks generally
underperformed.

• Neural network did not help despite hyperparameter tuning and
different network structures – too little info captured in feature sets

• Future work: investigate each model (especially the more opaque
ones) to understand their performance in Breakout vs other games

