Reinforcement Learning Approaches for Atari Breakout

Vincent Pierre Berges, Reid Pryzant, Priyanka Rao

Motivation

How do different RL approaches compare in a
custom implementation of Atari Breakout?

Model

_ - Game state
BIETCICRACEI (I - Ball and paddle location

Set - Ball angle
* Brick indicators

I\/Iultiple - Ball and paddle locations and velocities
Continuous - Distance of ball relative to walls, bricks,
and paddles

Feature Sets - Interaction features

« 3D vector representation of pixel RGB

Pixel Intensities values
- Used with a 5-layer neural network

Challenges

Featurizing a huge

state space

Delayed rewards
Exploration vs exploitation
Determining relevance of

hyperparameters
Learning from losing vs .{.ﬁ.
from hitting bricks NN

. CORAKL
Highly correlated states LRI
Experience replay vs

P play &)!&

SARSA(A)

%
Training neural network

CS 221 Final Project

Algorithms

Baseline Follows a random policy

Maps (s, a) to Q values of current policy
Combine past rewards, more recent = more important
Maintain an eligibility trace to assign blame to

SARSA(A) parameters
MMy Z (Qx(s,a;w) — (r + Qx(s',d";w)))?

s,a,r,s’,a’

Maps (s,a) to Q-values of optimal policy

Estimate Q(s,a) with linear and neural network function
approximators

Q-Iearning Bootstrap estimate of future value by sampling from

with Rebpla experience
Piay Cache parameters of target function for stable updates
Memory

miny Y (Qope(s,a;w) — (r +maza Qopr(s', a';w)))?

s,a,r,s’

_ Directly learn parameters 0 of a policy 114 (vs €-greedy)
Pollcy « Use a neural network for the policy, but wait to fill in
Gradients gradients until eventual reward is received

H
maxg E kark}

k=0

Results

10000 20000

|

5000
|

2000
|

log cumulative points

1000
|

500
|

5
ad\e(\x
<

Ww®
O
QO\\()\x
Cumulative points over multiple runs of 250 test games (¢ = 0) after 2000 training games (€ =
0.5). 3 points are awarded per broken brick and 1000 points for winning. Experiments were
conducted with y = 0.993, n = (1 / x), [memory| = 5000, update cycle = 750, eligibility trace
threshold = 0.1, trace decay = 0.98. The SARSA agent won 46 games.

Analysis

* Almostall algorithms SCORE: 3 LIVES: 1 BOOSTS: 3
outperformed baseline by

2X

Q learning w/out function
approximation struggled
because large state space
was inadequately explored

Replay memory added no
benefit — for Breakout,
correlations between
adjacent game states
sometimes help agent
performance. Delays
between actions (ex.
returning a ball) correlate
to delays in rewards (ex.
breaking a brick).

« Agents leveraging nonlinear policy & value networks generally
underperformed.

* Neural network did not help despite hyperparameter tuning and
different network structures — too little info captured in feature sets

« Future work: investigate each model (especially the more opaque
ones) to understand their performance in Breakout vs other games

Contact Information

rpryzant@stanford.edu, vpberges@stanford.edu,
prao96@stanford.edu

References

[1] Mnih, Volodymyr, et al. "Asynchronous methods for deep
reinforcement learning." arXiv preprint arXiv:
1602.01783(2016).

[2] Mnih, Volodymyr, et al. "Human-level control through deep
reinforcement learning.” Nature 518.7540 (2015): 529-533.

[3] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement
learning." arXiv preprint arXiv:1312.5602(2013).

[4] Silver, David. “"COMPGI13: Reinforcement Learning”.
University College London online course. London, UK. 2015.
Lecture Series.

