Reinforcement Learning for Atari Breakout

Vincent-Pierre Berges

vpberges@stanford.edu

Priyanka Rao
prao96@stanford.edu

Reid Pryzant

rpryzant@stanford.edu

Stanford University
CS 221 Project Paper

ABSTRACT

The challenges of applying reinforcement learning to mod-
ern Al applications are interesting, particularly in unknown
environments in which there are delayed rewards. Classic
arcade games have garnered considerable interest recently
as a test bed for these kinds of algorithms. In this paper,
we develop a system that is capable of teaching a computer
agent how to play a custom implementation of the popular
classic arcade game Breakout with variants of Q-learning
and SARSA. We detail our implementation, testing, fea-
ture generation, and hyperparameter search, and eventually
achieve significantly above-baseline control with SARSA.
Furthermore, we investigate state-of-the-art learning tech-
niques such as replay memory and policy gradients, finding
that these techniques fail to outperform “simpler” methods.
Finally, we evaluate our models through repeated gameplay,
aggregate performance statistics, and parameter visualiza-
tion.

1. INTRODUCTION

Reinforcement learning (RL) is currently one of the most
active areas in Artificial Intelligence research. It is the tech-
nique by which an agent learns how to achieve rewards r
through interactions with its environment. Many real-word
applications such as robotics and autonomous cars are par-
ticularly well-suited for a RL approach as the environment
is unknown and the consequences of actions are uncertain.
Through trial-and-error and experience over time, an RL
agent learns a mapping of states s to optimal actions a and
develops a policy to achieve long-term rewards.

However, several challenges face the agent as it tries to
learn this policy. The environment often provides delayed
rewards for actions, making it difficult for the agent to learn
which actions correspond to which rewards. Furthermore
each action the agent takes can impact whats optimal later
on, sometimes unpredictably. Even if the agent does learn
a policy that allows it to achieve rewards, there is still the
question of whether the policy is an optimal one. Thus,

the agent must make a trade-off between exploring possibly
sub-optimal actions with the hope that it may find a more
optimal strategy and exploiting its existing policy.

In this project, we sought to understand how different
RL algorithms, particularly SARSA, SARSA()), and Q-
learning, and Policy Gradients, tackle these challenges and
compare in terms of performance for Atari Breakout. By
constraining the vast problem space to Breakout, we lower
the computational complexity of the learning problem while
still retaining the key qualitative aspects - an unknown envi-
ronment and delayed rewards - that characterize most real-
world applications. We defined the agent as the paddle and
the goal as achieving a high game score. We also limited
the action space to left and right movements of the paddle
in order to further lower the computational complexity of
the problem. By implementing and training the agent on
various off-policy algorithms, we sought to determine the
algorithms that generalize best and lead most frequently to
high game scores.

2. RELATED WORK

Several research groups have explored the application of
reinforcement learning to arcade games such as Flappy Bird,
Tetris, Pacman, and Breakout. Undoubtedly, the most rele-
vant to our project and well-known is the paper released by
by Google DeepMind in 2015, in which an agent was taught
to play Atari games purely based on sensory video input
[7]. While previous applications of reinforcement learning
to arcade games heavily relied on hand-crafted feature sets,
DeepMind chose to leverage convolutional neural networks
to extract relevant features from the game’s video input [4].
The key contribution of the DeepMind project to the field
of reinforcement learning was the novel concept of a deep
Q-network, which combines Q-learning in with neural net-
works and experience replay to decorrelate states and up-
date the action-value function. After being trained with a
deep Q-network, the DeepMind agent was able to outper-
form humans on nearly 85% Breakout games [4]. However,
despite achieving superhuman performance on several other
Atari games, deep Q-networks severely under-performed on
games such as Space Invaders that required extended long-
term strategic planning [7].

Another well-known application of reinforcement learn-
ing is TD-Gammon. In 1995, an agent learned to play
this highly stochastic game without any knowledge of the
game rules [13]. Prior to TD-Gammon, other researchers
had taught agents to play backgammon with knowledge of
the game rules and one of either a neural network or the TD

algorithm, but not both [12]. TD-Gammon used a unique
encoding to represent the state of the backgammon board
and combined both TD-learning and a multilayer neural net-
work to estimate the value function. However, this approach
did not generalize well to other games, perhaps because the
randomness embedded in the rules of backgammon auto-
matically leads to sufficient exploration of the state space
[12]. In other arcade games, finding the balance between
exploration and exploitation proved much more difficult.

Our selection of Breakout as our problem was inspired
from the work done by DeepMind and TD-Gammon. Both
DeepMind and TD-Gammon combined a non-linear function
approximator with an RL algorithm to train an agent. We
wanted to try different combinations of RL algorithms and
non-linear function approximators and understand which
combinations work best for Breakout and why. In this pa-
per, we present an in-depth investigation of the performance
of different RL algorithms for Breakout, which has not pre-
viously been done. Unlike DeepMind, however, we chose not
to represent our state space as a vector of 210 x 160 x 128
pixels. We implemented the game of Breakout ourselves, so
we had direct access to all of the game variables. We de-
cided to leverage this programmatic access to craft feature
sets instead of using convolutional neural networks.

3. IMPLEMENTATION

Prior to implementing different RL algorithms, we first

implemented the game of Breakout from scratch using Pygame,

a popular Python library for coding video games. We based
our code for the game implementation off the Bricka mod-
ule in Pygame, but modified it significantly (90.7% of our
Breakout code was original). We deviated from the original
Atari game in several ways. We limited the maximum ball
speed, allowed only one life per game, did not award points
for the first broken brick, and injected some randomness
into return angles. The initial ball direction was random,
and balls bouncing off the left side of the paddle speed up in
the left direction (visa versa for right). Furthermore, we in-
troduced an event loop so that we could operate the paddle
progammatically with RL algorithms.

Our overall implementation for the project was in Python
and was carefully structured into modularized files:

e game_engine.py. This file contains a superclass, Break-
out, which had the implementation of the Breakout
game and an abstract method to repeatedly receive
input used to execute game turns. Subclasses in this
file include:

— HumanControlledBreakout. This is a game ob-
ject which takes input from the keyboard in its
run() method.

— BotControlledBreakout. This is a game object
which contains an Agent as an instance variable.
On each turn it presents the current state and
reward to the agent. The agent updates the Q-
values or weights, takes the decision for the next
action using the Q-values, updates the past expe-
rience. The game then decides whether to explore
(using a e-greedy acting policy) or follow this op-
timal movement.

— BaselineBreakout. This is a game object which
took actions randomly and served as our baseline.

— OracleControlledBreakout. This is a game ob-
ject which breaks the rules of the game to win
every time. It follows the direction of the ball.

e feature_extractors.py. This file contains a base class,
from which other subclasses that define feature sets
can inherit from. All our simple and continuous fea-
ture sets are defined in this file.

e agents.py. This file contains the base class Agent,
which several agents inherit from. All agents are in
this file, such as the agent that plays with the SARSA
algorithm, the Q-learning with replay memory algo-
rithm, etc. Agents are initialized and called in main.py
with specific hyper-parameter values and a feature ex-
tractor.

e eligibility_tracer.py. This file contains the logic
for SARSA eligibility traces.

e replay memory.py. This file allows any agent to make
use of replay memory through a ReplayMemory class
and methods to store a SARS tuple or sample from
experience.

e constants.py. This file contained all the constants
and hyperparameters, to simplify training the agents
with different values.

e utils.py. This file contained several utility functions,
some taken from the 221 homework code base.

We used git for version control and also created several
test scripts to store models and capture and graph scores
achieved over time for different agents.

4. STATES, REWARDS, AND FEATURES
4.1 The State

At each game frame, the game engine provides informa-
tion of the state. This state is then used to compute the
features the agent will use. The state includes :

Key Information

game_state | Is the game ongoing / lost / won or just started
ball The x and y coordinates of the ball

ball_vel The x and y components of the ball’s velocity
paddle The x position of the paddle

bricks Array of the coordinates of the remaining bricks
time The number of frames since the game started
score The current score of the game

lives The number of lives left%

4.2 Discrete Features

We used a variety of feature extractors ¢;(s, a) to featurize
states. In our first version, the features used were discrete.
For instance, there are 4 possible “game_state” values in
a state : STATE_BALL_IN_PADDLE, STATE_PLAYING,
STATE_WON, STATE_GAME_OVER. Each of these values
is a feature with the value 1 if it corresponds to the actual
game state and 0 otherwise.

Similarly, for our first feature set we discretized the ball’s
and paddle’s coordinates as well as the magnitude of the
ball speed and it’s angle with the vertical axis using one-hot
encoding. The level of discretization was adjustable through
the step size of the grid.

4.3 Continuous features

We quickly switched to continuous feature sets in order
to use function approximation methods. In our first con-
tinuous feature implementation (v1, ¢1(s,a)), we included
all the possible information from the state about the paddle
and the ball. It was apparent, though, that these features
did not perform well. This may have been due to the lack
of interaction terms or due to providing too much informa-
tion. It is possible that the agents were not able to identify
relevant features.

We implemented six continuous feature sets, but after
training the agents, we realized that the feature sets that
worked best were the simplest. For example, in feature set
v2, there are only two indicator variables: one for relative
position, and one for horizontal movement direction.

The third version of the continuous features v3 was very
similar to the previous two but the position of the ball rel-
ative to the paddle was fed through a tanh to produce a
continuous number between -1 and 1 (-1 when the ball is far
left of the paddle, 0 when the ball is above the paddle and
1 when the ball is far right of the paddle).

Other examples of features we tried to include iteration
terms, distance ball to paddle, distance ball to wall etc...

The fourth version v4 was the same as v2 but we included
discretization of the absolute position of the ball and inter-
action terms between ball & paddle position.

In the fifth version v5, we included most of the information
from the state in continuous form. Some things we included
were the distance from the ball to the bricks, different walls,
and the paddle.

Finally, v6 was built on top of v2 and v4 but also included
an indicator of whether the ball was moving up or down, as
well as interaction terms between that variable and other
positional variables.

4.4 Rewards

As the agent plays the game, the game engine provides re-
wards when bricks are hit. We tried multiple approaches and
started with the simplest - rewards that were simply the dif-
ference of score between two frames. The issue with this im-
plementation was that most of the reward points come from
breaking bricks but there is a large temporal gap between
performing an action worth rewarding (the ball bouncing on
the paddle) and the moment the ball breaks a brick. For this
reason, we decided not to reward the agent when it breaks
the first brick and instead reward it when it successfully
bounces the ball on the paddle.

In order to help the agent learn quickly, we also provided
intermediate rewards by rewarding a small amount of points
when the x position of the paddle is close to the x position
of the ball. The closer the two positions are at any point
in time, the larger the reward. When the game ends, the
reward is negative and there is a penalty proportional to the
distance between the ball and paddle.

S. METHODS

5.1 Reinforcement Learning Algorithms

We decided to take a model-free, off-policy RL approach
because any breakout-playing agent lacks explicit access to
the game’s reward and transition functions. The agent is

tasked with maximizing its expected utility by taking ac-
tions but has no clue as to the implications of these ac-
tions and lacks any representation of the environment it in-
habits. We chose model-free because our environment is
known (we implemented the game so we know all its rules),
but is too large to model directly. Furthermore, recent re-
search indicates that model-based methods under-perform
on the Breakout task [2]. As such, we directed our efforts
to three model-free methods: Q-learning, SARSA()), and
Policy Gradients (PG). We used function approximation for
all three algorithms: linear and neural network for the first,
linear only for the second, and neural network only for the
third.

5.2 SARSA and SARSA(»)

5.2.1 SARSA

SARSA is an on-policy bootstrapping algorithm that learns
a mapping between state-action pairs and the Q-values of
the control/evaluation policy . In our case, we used an e-
greedy policy for m: with probability e the action is chosen
randomly, and with probability 1 — e the action is chosen to
satisfy a = arg maz.Qx(s,a). €, then, provides some degree
of control over the exploitation/exploration tradeoff.

On each (s,a,r,s’,a’) tuple, Q«(s,a) moves towards an
estimate of the true value of being in state s and taking ac-
tion a. This value is the sum of discounted rewards the agent
can expect to receive, i.e. the 1-step return qgl). Whereas
monte carlo (MC) methods take the expectation of this re-
turn over many episodes of gameplay, SARSA bootstraps on
its current representation of QX to obtain its estimate.

The algorithm attempts to minimize the following objec-
tive in a function approximation setting:

MiNw E

(s,a,r,sa’)

- ¥

(s,a,r,s’,a’)

(Qr(s,aiw) = (r +79Qx(s',a'sw))
(Qw(s, a;w) — qﬁ”))
It does so with the following SGD update:

w1 = wy — (Qr(s,a) — Q,El))ﬁb(& a)

5.2.2 SARSA())

Consider the following n-step returns at some time step ¢:

(1)

¢ =11+ YQr (8141, at1) (SARSA)
@? = rer1 + rerz + 77 Qn (142, aria)

qt(k) =Tty1 +Yre42 + -0+ ’YkilTHk + 'YkQ(St+k7 Gt4k)

Qt(oo) =11+ e+ 4+ e (MC)

SARSA()) is a method of letting us combine these n-step
returns to reach a middle ground between SARSA and MC.
This provides some degree of control over the bias/variance
tradeoff. To this end we define a new type of return ¢,

that averages over multiple n-step returns. ¢” gives closer
trajectories more weight:

th =(1-)) Z)\nflqt('n)
n=1

A is a knob that lets us control how far-sighted the algorithm
is. If X =1, ¢ = ¢, it is the MC estimate. Likewise, if
A=0, ¢ = qt(l), it is the SARSA estimate.

There is a practical problem with SARSA()X). We want to
be able to do updates in real-time, and ¢ requires that we
run out entire episodes of gameplay much like MC. The solu-
tion is to make use of a backward view of the same algorithm.
Each past experience is given a weight, and those weights are
used for updates. This record is called an eligibility trace.
More concretely, the algorithm maintains a set of eligibil-
ity traces 7, one for each function approximator parame-
ter. Each trace has a weight which determines the extent
to which its parameter is eligible for credit for the current
reward r;. Each value of 7 is updated per time step by a
factor of A\. This results in an exponential decay of the im-
pact of rewards over time (just like in the forward view of
things). In our implementation, we used a replacing trace,
which sets a default trace of 1, drops a trace if it falls below
some threshold «, and otherwise decays the trace by a value
of c = A

YATe[s] i YAT[s] < @ As # se
if YATe[s] > a A s # st
1 if s=s

Note that in our implementation, we dropped v and let A
be the sole controller of trace decay.

5.3 Q-Learning with Experience Replay
5.3.1 Q-Learning

Q-learning is a model-free, off-policy approach in which
the estimated utility of being in a state and taking an action
is updated towards a bootstrap estimate of the true return.
The primary difference between Q-learning and SARSA is
the former’s off-policy nature. At each time step, the next
action is selected using the acting policy 7 (in our case, e-
greedy). Q-values, however, are updated towards an alterna-
tive action suggested by an optimal policy. More specifically,
Q-learning attempts to minimize the following objective un-
der function approximation:

minw 3 (Qopt(s.aw) = (1 +7 mazy Qupe(s'.))

(s,a,m,s")

It does so with the following SGD update step:

W41 = Wt — (Qopt(5>a) —(r+y maa:a/Qopt(s/, a/))>¢(5, a)

5.3.2 Experience Replay

As formulated, there are several problems with Q-learning:

e (Q-learning is a special case of off-policy learning: both
the target and behavior policies are allowed to improve
over time. This injects instability into each update
because we are moving Q towards a shifting target.

e Gradient descent is not sample efficient. We throw
away each experience tuple after a single update.

e Adjacent experience tuples are highly correlated, lead-
ing to serious multicolinearity in our training data.

We can correct for these problems by introducing a pair
of modifications to Q-learning: replay memory [1] and fized
Q targets [7]. A replay memory is a cache of agent ex-
perience ((s,a,r,s’) tuples) acquired by the acting policy.
During learning, the algorithm samples from this experi-
ence to make its parameter updates. Our replay memory is
a limited-memory system. When the memory has reached
capacity, past experiences are replaced randomly. Fixed Q
targets refers to the process of periodically freezing the pa-
rameters of our QQop¢ function approximator, and using this
static set of weights to compute targets. These fixed targets
have been shown to yield in more stable updates [8].

5.4 Policy Gradients

Recall that SARSA()) and Q-learning seek to update the
action-value function @) using a policy generated directly
from @ (i.e. e-greedy). Policy gradient methods, on the
other hand, seek to directly parameterize the policy itself:
w9 = p(a|s; 0). In practice, policy gradients have been shown
to converge quickly. Recent work suggests these methods
might be the current state-of-the-art in the 2d game-playing
domain [9]. As Karpathy said, “Q-learning is so 2013” [5].

The implied PG objective is the average reward per time-
step:

J(0) =Y _d™(s) Y m(s,a)re

s

where 77 is the reward from being in state s and taking
action a, and d™(s) is the Laplace-smoothed asymptotic
distribution of the Markov chain generated by my. What
this means is the following: run out many games g =1---k
and count the number of times you were in state s with
cg(8); then normalize through to get probabilities; finally,
smooth by layering on a count of A to every possible s:

TH 1 Cg(S) +)‘
) = i S @ A

The process of finding the gradient of the policy (Vo J(6)
) and perform stochastic gradient descent is a totally tubu-
lar field of research. Direct estimates of J(#) would require
that we run a huge number of games, which would be com-
putationally expensive. There are several methods for cal-
culating looser approximations of that gradient. We chose
to implement that of likelihood ratios. This method is the
most conceptually simple, and has been shown to converge
nicely in several domains [10] [14].

With this method, the policy gradient is defined as

Vo (0) = Vo (S d"(s) Y ol a)r:)

~ Er, [Vglog 7o (s, a)qt(s)]

Where ¢¢(s) is an unbiased sample of the eventual return
at state s. Computing this leads to the following high-level
algorithm:

1. Use 0 to generate a log distribution over actions (log
p(als;0)). In our case, we used a deep neural network.

2. Sample and execute an action from this distribution.
Record the log probabilities, state, action, as well as
any other factors (e.g. hidden unit activations) needed
to backpropagate at this step.

3. Repeat steps 1 & 2 until the environment expels an
eventual reward r (until the agent has won, lost, bro-
ken a brick, or returned a ball).

4. At this point, fill in the reward received for all the
g+(s)’s while traversing backwards through cached his-
tory.

5. When a batch’s worth of eventual rewards have been
filled in, fill in gradients and backpropagate by turning
counts into log probabilities.

A cursory analysis may find this algorithm flawed. An
agent could make many competent actions that should be
encouraged before loosing a game (thus filling in a negative
gradient for that point in time, discouraging those actions).
In practice, however, positive rewards succeed a net majority
of adept actions so on average, competency is encouraged.

5.5 Function Approximation

5.5.1 Linear Approximation

Models are parameterized with one value for each feature.
The output of value approximation is a linear combination
of features and weights:

Q(s, a;0) = 07¢(s,a)

We attached this function approximator to SARSA(A)
and Q-learning.

5.5.2 Deep Feed-Forward Neural Network

DNNs are the basic form of feed-forward neural network.
They are composed of a series of fully connected layers where
each layer takes on the form

= f(@x +b)
Where

e x € R" is a vector of inputs (e.g. from a previous
layer).

0 € R**™ is a matrix of parameters.

e b c RY is a vector of biases.

e y € RY is an output vector.

f(-) is some nonlinear activation function, e.g. tanh,
ReLU or the sigmoid function.

The output of value approximation is set to that of the
last layer of the network. We attached this function approx-
imator to Q-learning, and used it as a policy network to
generate distributions in our policy gradients implementa-
tion.

6. RESULTS & DISCUSSION

6.1 Agent Performance

Note that for all experiments, “performance” is measured
by average points per game (ppg) over many games. Fur-
thermore, for statistical power, we replicated our experi-
ments and computed mean ppg (Lppg)-

We first investigated the effect of modulating the param-
eters of our experience replay and SARSA()) implementa-
tions with the hope that this would yield insight into algo-
rithm behavior. From Figure 1, it is apparent that increas-
ing memory size and sample size slightly improves perfor-
mance, albeit by largely insignificant margins. The biggest
jump is between groups with a memory size of 100 and all
others. 100 steps corresponds to approximately 3.5 seconds
of gameplay. This suggests that the algorithm is still boot-
strapping on the most recent inputs but in shuffled order
and explains why this setting underperformed. A size-100
memory bypasses one of the primary advantages of experi-
ence replay we seek: data efficiency and reusability. These
findings align with that of Karpathy [5], who found that
larger memories and sample sizes are generally better than
smaller.

An additional analysis we performed on our replay mem-
ory was principal components analysis (PCA) over 100-item
batches of feature vectors sampled from a 10000-capacity
memory and sequential gameplay. Averaging over 5,000
episodes, we found that the first principal component ex-
plained 53% of the variance of the standard, sequential Q-
learning data but only 24% of the replay data. This indicates
that our replay memory samples were indeed less correlated
than those in sequential approaches.

Experience Replay: Average Points Per Game

30

- memory size
= 100

@ 1k
m 5k
a 10l

k

28

26

Points

Replay Sample Size

Figure 1. Effect of replay memory size and experience sample size
on Q-learning performance. These data are from 24 replicates of
1000 test games following 2000 training games. The 864,000
diagnostic games were split between four concurrently running
threads and took 23 hours to complete.

We conducted another set of experiments by varying two
parameters of SARSA(\): trace decay rate (\) and trace
eligibility threshold («). We tested 12 combinations of these
two parameters over 24 2000-train-game, 1000-test-game repli-
cates. Interestingly, no ppps measurements were statistically
different (ANOVA test, p = 0.82 > 0.05). However, the
results did not indicate homogeneity of variance (Bartlett
test, p = 2.2¢'% < 0.05). These data make sense consider-
ing the long delay between action and reward in the break-
out setting: even with large A, the eligibility trace may not

stretch back far enough to pick up on multiple rewards. Re-
gardless of the trace update mechanism, agents still behave
in a myopic manner; only the most recent reward governs
the direction and magnitude of the gradient. Furthermore,
it makes sense that all the performance distributions had
unique shapes, because trace values are modulated differ-
ently with each parameter setting. Since trace values don’t
change consistently, their values vary at varying amounts.
Thus, gradients and downstream computations like Q-values
and actions have varied variance as well.

Feature Set and Learning Rate Performance

0.001
Q inv_sqrt
inv
0.001
RQ inv_sqrt
inv
£
<
x 0.001
)
© S inv_sqrt
=2 ’
< inv
=
=
3]
K%} 0.001
S()\) inv_sqrt
inv
0.001
NN inv_sqrt

inv

©
>

vi
v2
v3
v4
v5

log(mean ppg)

e

feature set 7 8 9 10 11

Figure 2. Performance of Q-learning (Q), Replay Q-learning (R Q),
Neural Network Q-learning (NN), SARSA (S), and SARSA()\) on
each feature set and learning rate function. Performance is
measured by log(pppg) over 8 replicates of 2000 training games
(e = 0.3), followed by 1000 test games (e = 0) for each experimental
group. These 2.1 million diagnostic games were run concurrently
across 4 threads and took 34 hours to complete.

Our next group of experiments was concerned with hyper-
parameters, specifically feature sets and learning rates. As
discussed in section 4, we implemented a variety of continu-
ous and discrete feature sets with varying degrees of variable
expansion and interaction. Furthermore, we implemented
several learning rate functions:

e Constant learning rates which have been shown to
work well in practice [6].

o 1/y/# iterations, which was described in lecture.

e 1/#titerations, which has nice theoretical properties
like GLIE (greedy in the limit with infinite exploration)
(1]

From Figure 2, it appears that among all the non-neural
network learners, our v2 and v3 feature sets significantly out-
performed all others. This makes sense, because those fea-
ture sets provided highly distilled information to the agent,

e.g. “is the ball to the right or left of the paddle?”. Since
each feature is highly informative and largely discrete, linear
combinations of their associated weights correspond to sim-
ple, yet powerful, game-playing rules. See Section 6.2 for a
discussion of weights for these feature sets. Neural networks
performed the best on v5 and v6. This makes sense, because
the neural network we implemented expected a continuous
input space. v5 and v6 were the only continuous feature sets
with significant interaction terms and contained the largest
amount of information from the game state.

Between the v2 and v3 (and excluding neural networks),
the v2 outperformed v3 in 8 of the 12 experimental groups.
Recall that v2 has binary indicator variables on the balls rel-
ative position (left / right) and direction of movement (right
/ left). v3 swaps v2’s positional flag for a smooth tanh func-
tion, which encodes both left/right (with sign) and distance
(with absolute value). We hypothesize that this extra in-
formation encourages planning when the ball is far away,
thereby increasing agent performance. It appears, however,
that this real-valued input does little to change agent behav-
ior. In retrospect, this flat-lining performance makes sense
because we didn’t include basis expansions of v3’s tanh fea-
ture. For example, consider two situations where the agent
has a linear function approximator. v3 sends a strong tanh
signal for distant left at this moment. For v2, the binary flag
for left is raised. Both cases trigger the same agent behavior
because a single weight is activated.

The notable exception is SARSA()), where v3 outper-
formed v2 across all learning rates. This may be due to
SARSA())’s farsightedness: the algorithm can indirectly
make use of the higher resolution positional information
through the historical rewards buried in its eligibility traces.

Examining Figure 2 on a per-row basis, we see that a
learning rate of 1/# outperformed its counterparts in every
case (SARSA()) seems close in log-space but 1/# outper-
formed 0.001 by a margin of 2192 ppg).

Agent Performance: Average Points Per Game

-
o i
S I
<
g g
8
1
o | I
3 I
I
g 1 —_—
© ' o
S - I 2
2 o
8
3
. == o
£ = | <3
S)
0 - i
o ———]
T T T T T T T T
Baseline SARSA SARSA(A) Q LinearQ Replay Q NN Q PG

Learning Algorithm

Figure 3. Performance of each algorithm, as measured by average
points per game over 64 replicates of 2000 test games (e = 0) after
4000 training games (e = 0.3). These 3,584,000 diagnostic games
were split between four concurrently running threads and took 37
hours to complete.

For our next set of experiments, we took the highest-
performing feature set/learning rate combinations for each
learning algorithm and compared their performance on a
global basis (Figure 3). We included a random baseline and

policy gradients agent in this analysis. It is clear the SARSA
performed the best, followed by Q-learning and replay Q,
then SARSA()), policy gradients, neural network Q, and
finally discrete Q-learning, which was the only agent that
failed to outperform the baseline.

It is immediately evident that pppg distributions follow
two patterns: tightly packed and diffuse. The reason for
this discrepancy in variance is because those agents with
wider distributions won games, but winning games is a rare
occurrence. Recall that 1000 points are awarded for win-
ning a game. SARSA, the top performer, won the most
games during test time (123), so its uppg distribution had
the largest variance.

SARSA outperformed all other algorithms by a wide mar-
gin. This may be due to the close relationship between
the value function and bootstrap updates. It is likely that
SARSA()) under-performed because of the same reasons as
discussed in the A-varying experiments: due to the nature
of the problem setting, SARSA()) behaves myopically and
is essentially a diluted version of SARSA.

It is not surprising that discrete Q-learning failed to out-
perform the baseline; the state spaces of the breakout game
are huge. What is more interesting is that linear and replay
Q-learning performed very similarly, with linear Q-learning
slightly edging out its counterpart. Though these data go
against the general results of RL approaches applied to Atari
games [8], they make intuitive sense for the Breakout game
specifically. Competent gameplay results from sequences
of good actions, and the task of generating such sequences
may benefit from sequential game steps, even though they
are correlated. Surprisingly, the neural network Q-learning
agent did not fair as well as SARSA. Though it outper-
formed the baseline, it did so by a relatively small margin.
This is likely because of insufficient signal in the feature
space or multi-colinearity among inputs (this is a more seri-
ous problem for backpropagation than simple linear regres-
sion [3]).

It should be mentioned that policy gradients, though rec-
ognized as the current “state-of-the-art” for many reinforce-
ment learning tasks [9], failed to deliver when applied to
our Breakout game. Though policy gradient agents won a
total of 22 games in our test runs, they generally underper-
formed. This may be due to similar reasons as the neural
network Q agent, because we used a neural network to rep-
resent p(als; 6).

Our final investigation (Figure 4) involved elucidating the
speed at which each learning algorithm “converges” to the
center of each pppg distribution observed in Figure 3. All
curves exhibit increasing variance with time because the
variance of previous estimates compounds as agents adjust
their parameters.. In (A) we see the effect of static Q-targets
on replay memory. The learning curve for this algorithm is
rough, spiking whenever the system switches to a new set
of high performance static weights. Q-learning appears to
“converge” the fastest, perhaps because it is learning the
values of its acting policy. This kind of target policy/acting
policy synergy may have made the error surface shallower
for our breakout implementation. SARSA and SARSA())
appear to behave similarly, likely because they chase the
same objective function with identically formulated update
steps.

Learning Speeds

Performance (percent of eventual test points)

Games

Figure 4. Analysis of the speed at which (A) replay Q-learning, (B)
linear Q-learning, (C) SARSA, and (D) SARSA(X) learn. These
trajectories were obtained by training 10 replicates of each
algorithm over 2000 games (¢ = 0.3). Every 50 games we spawned a
thread and copied the current parameters into a concurrent series of
200 test games where e = 0. The y-axis depicts test performance of
each test series as a percentage of the “goal” performance (mean
observed performance from the experiment in Figure 1, indicated
with dashed lines). Standard error of each estimate is shown in gray.
The x-axis of each plot depicts training game index.

6.2 Model Evaluation

When looking into the weights of the models we made,
we can understand how the agent learned how to play the
game. We will use the example of SARSA using ¢2, because
this feature set is high-performance and easily interpretable.
The weights after 2000 training games are as follows. The
numbers are not always the same but the differences between
values are close to each other in all the SARSA models:

| Position [Ball Movt. [Action [Q-value ‘

Left Left Left 0.01680
Left Left Right | 0.00976
Left Left 0.00665
Left Right Right | -0.03902
Left Right Left -0.03903
Left Right -0.04807
Right Left Left -0.01773
Right Left Right | -0.01774
Right Left -0.02507
Right Right Right | -0.05014
Right Right Left -0.05425
Right Right -0.05981

Position is the relative position of the ball relative to the
paddle, Ball movt. is the current direction the ball is going
towards and Action is the action that is taken.

We notice that when the ball is moving away from the
paddle (position and movement are both same direction),
the optimal action is to follow the ball and by a huge mar-
gin. On the other hand, when the ball is moving towards
the paddle, the agent is a little more confused: the values
for left and right actions are very close together but it seems
it is better not to try to go under the ball in this case but
rather to follow the movement of the ball.

Using this reduced set of features was insightful for de-
bugging and understanding how the agent learns from the
game.

7. CONCLUSION

In this paper, we implemented a variety of reinforcement
learning algorithms and evaluated their performance on a
custom implementation of Breakout, a classic Atari 2600
game. We found that while experience replay and eligibility
trace mechanisms offer tantalizing theoretical benefits, they
generally decrease performance on average. Furthermore,
we demonstrated that highly informative features aid the
ability of the agent to learn from these algorithms.

Neural networks were not as effective as simple linear func-
tion approximators. Future efforts could investigate addi-
tional feature sets and neural network topologies.

In the end, All of our algorithms except for discrete Q-
learning outperformed the random baseline. Simple learn-
ing algorithms like SARSA paired with parsimonious feature
sets did the best, outperforming their more complex cousins.
As Da Vinci said, “simplicity is the ultimate sophistication”.

8. REFERENCES

[1] Adam, Sander, Lucian Busoniu, and Robert Babuska.
“Experience replay for real-time reinforcement learning
control.” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42.2
(2012): 201-212.

Defazio, Aaron, and Thore Graepel. “A comparison of

learning algorithms on the arcade learning

environment.” arXiv preprint arXiv:1410.8620 (2014).

[3] De Veaux, Richard D., and Lyle H. Ungar.
“Multicollinearity: A tale of two nonparametric
regressions.” Selecting Models from Data. Springer New
York, 1994. 393-402.

[4] ”Human-level Control through Deep Reinforcement
Learning.” DeepMind. N.p., n.d. Web. 12 Dec. 2016.

[5] Karpathy, Andrej, “Deep Reinforcement Learning:
Pong From Pixels”. karpathy.github.io. N.p., 2016.
Web. 7 Dec. 2016.

[6] Kuan, C-M., and Kurt Hornik. “Convergence of
learning algorithms with constant learning rates.” IEEFE
Transactions on Neural Networks 2.5 (1991): 484-489.

[7] Mnih, Volodymyr, et al. “Playing atari with deep
reinforcement learning.” arXiv preprint
arXiv:1312.5602 (2013).

[8] Mnih, Volodymyr, et al. “Human-level control through
deep reinforcement learning.” Nature 518.7540 (2015):
529-533.

[9] Mnih, Volodymyr, et al. “Asynchronous methods for
deep reinforcement learning.” arXiv preprint
arXiv:1602.01783 (2016).

[10] Peters, Jan, and Stefan Schaal. “Reinforcement
learning of motor skills with policy gradients.” Neural
networks 21.4 (2008): 682-697. APA

[11] Silver, David. “Reinforcement Learning Course:
COMPMO050/COMPGI13”. 2015. Lecture.

[12] Sutton, Richard S., and Andrew G. Barto.
“Reinforcement Learning: An Introduction”.
Cambridge, MA: MIT, 1998. Print.

[2

[13] Tesauro, Gerald. " TD-Gammon: A Self-Teaching
Backgammon Program.” Applications of Neural
Networks (1995): 267-85. Web.

[14] Williams, Ronald J. “Simple statistical
gradient-following algorithms for connectionist
reinforcement learning.” Machine learning 8.3-4 (1992):
229-256.

