
Analyzing Graph Structure via Linear
Measurements.

Reviewed by Nikhil Desai

Introduction

Graphs are an integral data structure for many parts of computation. They are
highly effective at modeling many varied and flexible domains, and are excellent
for representing the way humans themselves conceive of the world. Nowadays,
there is lots of interest in working with large graphs, including social network
graphs, “knowledge” graphs, and large bipartite graphs (for example, the Netflix
movie matching graph).
Many of the papers we have covered so far in CS167 have worked with graphs.
Karloff et al. (citation) discussed counting triangles with social networks in a
MapReduce environment, while Gupta et al. (citation) proposed a new way of
discovering “triangle-dense” clusters representing potential communities in
There are a few similarities in the types of graphs examined in such papers.

1. First, beyond a doubt, all of them are large. The Facebook graph, for
example, contains on the order of a billion vertices and nearly one trillion
edges. Even the excellent graph primitives we learned in CS161, such as
depth-first and breadth- first search, would require significant time and
space to run on such graphs.

2. Second, they are all highly dynamic. New structures appear in social
network graphs at every moment. In particular, one of the defining features
of such graphs is that new edges and vertices can be constantly added.
The structural changes these induce are of some interest.

3. Third, there is significant interest in the global structure of these graphs,
and in particular how that structure changes over time.

4. Fourth, while we would like an infinite amount of space and time to
solve these questions, we don’t. Compared to the size of the graphs, our
computing power is very limited.

These conditions, roughly, define the so-called “streaming graph problem,” in
which the user must analyze a graph presented in the form of incremental updates,
using limited space and time.

1

What does “limited space and time” mean? To determine this, we need to review
the various techniques available for graph storage. The standard representation
we learned in CS161 was the adjacency matrix, which takes up size Θ(V 2).
In practice, however, the standard is the adjacency list, which takes up space
Θ(V + E), in the worst-case O(V 2). Another uncommon form is the incidence
matrix, which takes up space Θ(V E) = O(V 3). In general, the space available to
us will be smaller than the worst-case storage necessary for such representations
- in particular, it will be something like O(V logk V). With regards to time,
streaming models tend to ask that we not look at any part of the graph more
than once - in other words, we must make a single pass through the graph and
then provide an answer to a given query. Technically, this establishes a “runtime”
bounded above by O(V + E) or O(V 2); in practice, we want to perform exactly
one action involving the actual graph, and thereafter run in time linear in the
size of the underlying sketch.

This may seem like a needlessly constrained model; why should we put arbi-
trary restrictions on our runtime or the auxiliary space used like this? To get
some intuition, consider a common problem - getting information about the
connectivity of a graph. This means not just simple questions like finding the
smallest connected component, but also the more general question - for any
given u, v ∈ G, are u and v connected?

Let’s use connectivity as a central “conceit” for our examination of dynamic
graphs, and see what we can do to fix these problems.

Connectivity

For a general graph, the problem of connectivity is well-understood and easy
to solve. In particular, to find out if u is connected to v, we need only run
a depth-first search from u to expose all the nodes in a graph to which u is
connected. This depth-first search takes time Θ(V +E) (with very small constant
factors), and is the best we can do on a static graph.

Consider what happens when we generalize this problem to dynamic graphs,
however. In particular, make two further generalizations: assume that k edges
or vertices are added, one by one, to the graph, and assume that after every
edge addition we will query for the connectivity of two arbitrary nodes in the
graph. This moves the graph into the realm of the streaming model as well -
observe that we can build up a graph by simply starting with an empty graph,
then adding its V + E edges,. making V + E queries.

With no additional storage allowed, the straightforward algorithm to solve this
problem will have to simply rerun DFS over the graph after every single query,
leading to an effective runtime of O(kV +kE). In the case where k = V +E, this
will degenerate to O(E2) = O(V 4) in the worst case. Clearly, this performance

2

is poor; we would like to know how to do better. It turns out the solution to
this involves something called “sketching,” which we shall see more of below.

Sketching

When solving a problem on a static input, there’s no advantage to holding on
to information after the algorithm is completed; in fact, it would be an obvious
waste to do so. However, when working with dynamic input, especially one
which changes “incrementally,” it becomes advantageous to retain at least some
information about it. Usually, a dynamic dataset is so big that one cannot
simply store it in memory; instead, we must store some smaller representation
of it, which gives us an “approximation” of the data it contains. This, vaguely,
is the notion of sketching.
More specifically, given a dynamic data structure T, a sketch S(T) is a substan-
tially sublinear dynamic data structure that “approximates” the contents of T.
We will break this down further.

• By sublinear, we mean that if |D| denotes the memory necessary to
store data structure D, then |S(T)| = o(|T |). In practice, we will want to
achieve a “win” of roughly a linear factor; thus, if |T | = Θ(n), we will seek
for |S(T)| = Θ(logk n) for some k, and likewise a data structure of size
|T | = O(n2) (such as a general graph) will get space O(n logk n).

• By dynamic, we mean that S(T) should handle updates. To be fair, we
will allow S(T) to choose which types of updates it supports, and refuse
to support any others. More on this below.

• By “approximation,” we mean a few things. As a prelude, observe
that a sketch S(T) cannot perfectly preserve the contents of T , because
|S(T)| must be strictly smaller than |T |, and information theory tells us
perfect compression in this form is impossible. There are two ways we can
deal with this problem. First, we could decide to preserve only certain
types information about T , letting queries relying on other information
fail. Second, we could decide to relax the requirement of accuracy, and
instead let the sketch only approximate the answers to specific questions
about T. In practice, we shall do both.

This may seem a little obscure, so we will give a few examples of sketches.

1. Consider the Bloom filter. As covered in CS 161, the Bloom filter is a way
to approximate the notion of a set, supporting queries such as IsElement
and AddElement (but no others). It has space strictly smaller than that
necessary to store an actual set (in fact, depending on the error parameters,
it can be as small or as large as the user needs!), and because it supports
the AddElement operation, it supports the dynamic updating of the set.
This sounds an awful lot like a sketch!

3

2. Recall the paper from two weeks ago in which we discussed locality-sensitive
hashing. For a set T, define S(T) = {h(x) | x ∈ T}, where h is drawn
from some locality-sensitive family H of hash functions. In this case, S(T)
supports AreNeighbors(x, y) for any x, y ∈ T, and supports any queries
that rely solely upon discerning the “families” of its member.

At this point, sketches may seem like an unnecessarily limited form of computation
- why on earth would we ever want to use them? In practice, however, forcing
these restrictions allows sketches to have immense general-purpose applications.

• If we have a large dataset T, very often we will be unable to hold all of
T in memory at once. Every time we want to obtain information about
T, we will need to rerun an at-best-linear computation over T ; if we have
many such queries, this will quickly become large. Sketches provide a way
to “cache” the information we know about T.

• Many times, we will receive information as a “stream” of updates rather
than as a single monolithic input. In the Facebook social graph, for
example, new members and new friendships occur all the time. We want
our cache to be able to incorporate these updates and record them over
time.

To re-emphasize a few points, recall that sketches will not preserve all infor-
mation about a dataset; they can be thought of as “lossy” compressions. As a
consequence, only certain questions can be asked of sketches, and even those may
not be accurately answered. For many algorithms, though, these restrictions
lead to powerful gains in space and time.

Solving connectivity with sketches

To recap: we want a O(V logk V) data structure that answers questions about
connectivity. In particular: for u, v ∈ G, is there a path from u to v? And what
happens after we add or delete an arbitrary edge (x, y)?

We already tried one naive approach, namely rerunning the depth-first search
algorithm after each addition of an edge, but saw quickly that it was too slow.

We propose a simple “sketch” that will solve the problem, as long as only edges
and vertices are added to the graph. In particular, run Kruskal’s algorithm
over the graph to generate a minimum spanning forest of the graph. Then each
connected component of the graph will be represented by a unique MST, and u
and v will be connected if and only if they are part of the same MST. Since the
maximum number of edges in a minimum spanning forest is V − 1, the total size
of this data structure is O(V). Furthermore, we store the connected components
using the union-find disjoint-set data structure covered in CS 161, which takes

4

up space O(V). The union-find structure supports testing for set membership
and “merging” subsets with high effectiveness, but does not support “splitting”
subsets up.
Obviously, this sketch supports the query Is-Connected(x, y). It also supports
Add-Edge(x, y) - to connect the nodes u and v, we check if they are already in
the same connected component. If they are, we ignore the addition; if they are
not, we connect them and record of u and v draw an edge connecting the two
vertices in the graph.
Here’s a problem, though: what happens if we delete edges?

Key problem

We’ve now finally arrived at the problem the McGregor et al. paper aims to
solve. In particular, we want to find a sketch S(G) of size O(V logk V) for a
graph G that solves the problem of dynamic graph connectivity, supporting the
high-level queries of whether two vertices u, v ∈ G are connected, and adding or
deleting an edge (u, v) from G.

Intuition for the sketch

It turns out that the most effective way to sketch graphs will rely on being able
to sketch some kind of representation of them. Observe that most of the ways
we represent graphs rely on regular data structures - in particular, matrices.
The problem of sketching matrices is well-understood, and our graphs enforce
a constraint that makes sketching them even easier. In particular, objects
such as the adjacency matrix representing a graph have a key constraint:
their elements are binary! This means that we only need the relatively coarse
constraint of looking for nonzero elements in the matrix in order to generate an
efficient sketch of a graph.
Conveniently, the problem of sketching vectors of numbers is well-understood in
many different applications. In particular, the authors of the paper observed
that the problem of `p sampling a vector is easily done,
Jowhari et al: “comb” sketching Input: vector v with some zero and nonzero
elements Output: index i such that v[i] is nonzero with high probability Input
like a snaggle-toothed comb; output returns a “tooth” of the comb Runtime:
about O(log2 n)

Comb sketch

In particular, the following theorem holds from previous work in the field.

5

Theorem (Jowhari et al): For a vector x of length n, there exists a O(log2 n)-
sized sketch S(x) such that: 1. S is linear - that is, there exists some operation
⊕ such that S(x)⊕S(y) = S(x + y) for all y of length n, and 2. We can “easily”
(in roughly constant time) obtain i← S(x) such that xi 6= 0

These sketches are called comb sketches, and there exist

We’ve almost created a sketch for graphs that will satisfy the properties above.
Namely, consider the adjacency matrix A of a graph, and consider what happens
when we comb-sketch each row. Since each row is of length V, the comb sketch
of each row is of size O(log2 V). We call the collection of rows a “comb sketch”
of the matrix, and note that its total size is O(V log2 V).

It turns out that when applied to the “vector of neighbors” av of a vertex v in a
graph G, this second property has a useful graph-theoretic meaning - it allows
us to easily find a neighbor v of a given vertex u in a graph. Our intuition will
thus be as follows: to approximate connectivity in a graph, we must comb-sketch
a matrix representation of the graph.

With some modification, the linearity property of the comb sketch becomes
useful as well. In particular, if we can find a vector that somehow represents
the neighbors of a graph, but also has the property that when the vectors of
two neighboring vertices u and v are added together, the entry corresponding to
their connection cancels out, but their outgoing edges add, we will be able to
simulate the process of edge contraction.

It turns out that this is easy with a slight tweak to the standard adjacency
matrix. Instead of the adjacency matrix, we will construct a larger matrix AG,
defined as follows. Define AG to be an n ×

(
n
2
)
matrix, with row set [n] and

column set
([n]

2
)
. Let AG’s columns thus be indexed by pairs of the form (i, j),

where i is less than j. Then, define AG[i, (j, k)] = 1 if i = j and (vi, vk) ∈ E; −1
if i = k and (vj , vi) ∈ E; 0 otherwise.

We claim that a key lemma holds when the matrix AG is defined in this way. In
particular,

Lemma (3.1 from paper). Let S be a subset of nodes in G, and let ES

denotes the set of edges crossing the cut (S, V §). Then the number of edges
crossing this cut, |ES |, is simply `0(x) where x =

∑
v∈S av.

Proof. Proving this is simple. In particular, note that any edge (u, v) in G can
fall into one of four categories - both vertices u and v are in the set S; u is in S
but v is not; u is not in S but v is; or both u and v lie outside the set S. Observe
also that by definition, a[w, (i, j)] = 0 if w 6= i or w 6= j. Thus, every column
corresponding to (i, j) has exactly two nonzero entries - a 1 in the ith row and a
−1 in the jth row.

1. In the first case, both i and j are in S, so that (i, j) does not cross the cut.

6

Then,

x[(i, j)] =
∑
v∈S

av[(i, j)] = ai[(i, j)] + aj [(i, j)] = (−1) + 1 = 0.

2. In the second case, i is in S but j is not, so that (i, j) crosses the cut.
Then,

x[(i, j)] =
∑
v∈S

av[(i, j)] = ai[(i, j)] = 1.

3. In the third case, j is in S but i is not, so that (i, j) crosses the cut. Then,

x[(i, j)] =
∑
v∈S

av[(i, j)] = aj [(i, j)] = −1.

4. In the fourth case, neither i nor j is in S, and thus (i, j) does not cross
the cut. Then,

x[(i, j)] =
∑
v∈S

av[(i, j)] = 0.

Observe then that x[(i, j)] 6= 0 iff (i, j) crosses the cut (S, V §). Thus, the nonzero
elements of x correspond exactly with edges that connect a node in S with a
node outside S.

Using this lemma, we will be able to simulate edge contraction in a graph.
One requirement of the comb sketches we have been using is that because they
are probabilistic data structures, we cannot “use” them multiple times. To see
why this would be contradictory, consider a sketch S(v) of a vector v containing
nothing but nonzero elements. As long as there are nonzero elements in the
vector, repeat the following algorithm - obtain an index i containing a nonzero
element from the sketch S(v), then update the sketch by setting v[i] to zero. At
the end of this process, the guarantees we made with regards to comb sketching
will require the sketch to return all n original elements of the vector, and thus
allow us to “retrieve” a vector of size Θ(n) from a sketch of size O(log2 n). This
is obviously impossible; in practice, the vector will start failing to return existing
nonzero elements, and thus will no longer fulfill its requirements.
Thus, in practice, we will require queries to sketches to be non-adaptive when
building algorithms that use them. Even more so, we will require that we not
make repeated queries on a given sketch - since each sketch is probabilistic,
making multiple draws from the sketch will affect the probabilities in a way that
will be suboptimal. We thus require that for each “query” we make of a sketch,
we draw a new copy of the sketch from the graph.

Contraction-based connectivity algorithm

In order to solve our problem of connectivity, we will need to find an algorithm
that can partition the graph into connected components in our extremely limited

7

setting - namely, finding an arbitrary neighbor v of a vertex u, and contracting
a subset S ⊆ G. Fortunately, it turns out such an algorithm exists. Namely:

1. For each u ∈ G, pick a adjacent edge (u, v) ∈ G.

2. Using a disjoint-set data structure, register that u and v are in the same
connected component.

3. Contract each of these edge, turning their adjacent nodes into “supernodes.”
4. Repeat 1-3 until no more edges in G remain.

A formal correctness proof is beyond the scope of this paper, but it should be clear
that contracting an edge does not change the nature of the connected components
of a graph. Observe also that each “round” of the algorithm contracts at least
V/2 nodes - thus, the discrepancy in the number of nodes V̂ − cc(G) will at least
halve with each round, and thus after O(log n) rounds, all edges will be removed
and the connected components obtained.

To turn this into a sketch-based algorithm, we must observe that we cannot use
just one sketch for the entire algorithm, as we will end up repeatedly resampling
from it in order to find adjacent edges to our “supernodes.” As observed earlier,
this is unworkable. As a consequence, we end up creating one sketch for each
round of the algorithm. The revised algorithm looks as follows:

• Construct t = O(log V) sketches S1,S2, . . . ,St of M, of size O(n log2 n)
each.

• Initialize a disjoint-set data structure V̂ with each node as a different
connected components.

• For i ∈ [t],

– For each “supernode,” or connected component, given by n ∈ V̂ , draw
an edge bordering v using the sketch

∑
v∈n av.

– Register that the two nodes bordering the edge are in the same
connected component.

– Contract each of the edges drawn using the sketch.

• Simulate contraction of edge (i, j) from sketch Sk by computing Sk+1(ai) +
Sk+1(aj)

Recap

This paper covered the intersection of several interesting and well-understood
problems. In particular, linear sketching algorithms were well-understood (we
used one scheme in our own sketch!); unbounded incremental graph algorithms
had been proposed by Thorup and others; and very simple bounded, but addition-
only, graph algorithms already existed. However, the problem of solving graph

8

sketching in a fully-incremental context with bounded memory had not been
solved, and this turned out to be the most interesting use case. Furthermore,
the “tech transfer” of using the comb sketch in a graph context was extremely
useful, as was the existence of a simple algorithms with a new “angle of attack”
- namely that it used only contraction.

9

	Introduction
	Connectivity
	Sketching
	Solving connectivity with sketches
	Key problem
	Intuition for the sketch
	Comb sketch
	Contraction-based connectivity algorithm
	Recap

