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Abstract
Unlike the traditional study of error correcting codes that analyzes substitution

and erasure errors, error correcting codes for insertion and deletion errors are poorly
understood. This thesis summarizes existing work on error correcting codes against
insertions and/or deletions, and presents new work on such codes for different ways
such insertions/deletions may be caused, such as adversarial (worst-case), random,
oblivious, and online insertions/deletions. In doing so, we consider both algorithmic
and existential results in these deletion models. With the exception of our first set of
results, we focus on deletions only, which we believe captures much of the complexity
of this problem.

We first consider the case of adversarial (worst-case) insertion and deletion errors.
We present results for efficiently coding against insertion and deletion errors. We do
this in three parameter settings, where efficient decoding against deletions only was
already known. (i) Binary codes with rate approaching 1; (ii) Codes with constant rate
for error fraction approaching 1 over fixed alphabet size; and (iii) Constant rate codes
over an alphabet of size k for error fraction approaching 1− 2/(k +

√
k).

Continuing with our algorithmic results, we turn to random deletions. In the binary
deletion channel (BDC), bits are deleted independently with a fixed probability p. The
existence of codes against the BDC of rate (1− p)/9, and thus bounded away from 0
for any p < 1, was already known. We give an explicit construction with polynomial
time encoding and deletion correction algorithms with rate c0(1 − p) for an absolute
constant c0 > 0.

In terms of existential results, one major question in coding against adversarial
deletions is determining the zero-rate threshold of adversarial deletions, p(adv)

0 , which
we define as the supremum of all p for which there exists a code family with rate
bounded away from 0 capable of correcting pn adversarial deletions. Perhaps surpris-
ingly, p(adv)

0 is not known, and the best bounds are
√

2− 1 ≤ p
(adv)
0 ≤ 1

2
.

To better understand adversarial deletions, we turn to models that are in between
the adversarial and random models in power, namely oblivious deletions and online
deletions. We can analogously define the zero-rate thresholds, p(obliv)

0 and p(on)
0 , for

oblivious and online deletions, respectively. In oblivious deletions, an adversary has
access to the codebook and message, but chooses bit positions to delete obliviously
of the codeword. We prove the existence of binary codes of positive rate that can
correct an arbitrary pattern of p fraction of deletions, for any p < 1. In other words,
p

(obliv)
0 = 1.

For online deletions, where the channel decides whether to delete bit xi based
only on knowledge of bits x1x2 . . . xi, define the corresponding zero-rate threshold
p

(on)
0 to be the supremum of p for which there exist deterministic codes against an

online channel causing pn deletions with low average probability of error. That is,
the probability that a randomly chosen codeword is decoded incorrectly is small. We
prove p(adv)

0 = 1
2

if and only if p(on)
0 = 1

2
. In particular, to construct codes approaching

the threshold of 1/2 for adversarial deletions, it suffices to do so for online deletions.
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Chapter 1

Introduction

Error correcting codes are objects designed for communication across unreliable or noisy channels.
Error correcting codes have many applications including electronic communication, data storage,
complexity theory. A fundamental question in the study of error correcting codes asks to determine
the trade-off between the redundancy (formally, the rate) and error tolerance in various models of
communication.

Traditionally, error correcting codes have been designed to tolerate substitution errors and sym-
bol erasures (where the locations of the erased symbols is known) [22, 39]. However, recently
much more work has been done to explore error correcting codes against synchronization errors,
such as insertions and deletions. Insertions and deletions look similar to substitutions and erasures:
deletions are erasures that corrupt synchronization information, and substitutions can be imitated
by a deletion followed by an insertion. However, while our understanding of coding against sub-
stitution and erasures is near complete, there are large gaps in our understanding of coding against
a combination of both insertions and deletions.

In this thesis, we present a detailed investigation of the deletion coding problem. In particular,
we present constructive and impossibility results for coding against deletions in four models of er-
rors: adversarial, random, oblivious, and online. In some cases, we include discussion on decoding
against insertions and deletions.

1.1 Error correcting codes

In computing, one often needs to communicate a message (i.e. a string) across a channel. However,
the channel may be noisy, so if we sent that message directly across the channel, it may be received
incorrectly at the other end (see Figure 1.1). To deal with this, we can, using an error-correcting
code, encode our message into a longer message, known as a codeword, that contains some redun-
dancy, so that even in the presence of errors we can recover our original message. For example, for
example, if our message is a binary string, we might encode as a longer binary string. Figure 1.2
illustrates such an error-correcting code. To encode our message, we duplicate our binary message
three times. That way, even in the presence of a single bit-flip error, we can still recover or decode
the original message by breaking the received message into three parts and choosing the majority.

While the practical motivations naturally lead us to think about error correcting codes in terms
of their encoding and decoding algorithms, it is often convenient to think about our problem in
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terms of the encoded words themselves.
Definition 1.1.1. A codebook C of block length (or simply length) n over an alphabet Σ is a subset
of Σn. The elements of C are called codewords.

In the literature, C is sometimes referred to simply as the code. However, the distinction be-
tween code and codebook becomes relevant when we reintroduce the algorithmic aspect, where
codes are defined not only by their codebook but also their encoding and decoding functions. In
such cases, we define a code by the codebook, C, a message setM, an encoding function Enc, and
a decoding function Dec : Σ∗ →M. Sometimes, the encoding function Enc :M× {0, 1}s → C
uses random bits that are private to the encoder (see, for example, Chapter 5). Typically, all
codewords in a given code have the same length. In our example, our code is a binary (i.e.
Σ = {0, 1}) code C = {000000, 010101, 101010, 111111}. We could, using a message set
M = {00, 01, 10, 11}, define an encoder by Enc(m) = mmm and decoder Dec(x1 . . . x6) =
Majority(x1, x3, x5) Majority(x2, x4, x6). In physical applications, codes can be binary, or over
large alphabets, but we restrict our definitions and discussion in this introduction to binary codes
for simplicity.

One can imagine in this problem setting there is a natural trade-off between the redundancy
and robustness of our encoding schemes: if we introduce zero redundancy and send our messages
as they are, then we cannot correct any errors, and as we introduce more redundancy we should be
able to correct more errors. These notions of redundancy and robustness can be formalized as rate
and error fraction, respectively.
Definition 1.1.2. The rate R of a code C ⊆ Σn with message set M and encoding function
Enc :M×{0, 1}r → C isR = log |M|

n log |Σ| .

For deterministic codes, when there is no randomness in the encoder, we have R = log |C|
n log |Σ| .

For binary codes, we haveR = log |M|
n

.
Definition 1.1.3. We say a code C with block length n corrects error fraction p if, for each code-
word c ∈ C, when up to pn errors are applied to c, it is still possible to recover each original
codeword.

Loosely speaking, the rate of a code is the fraction of the bits of a codeword that are “not
redundant.” In our example, the message is 1

3
the length of the transmitted string, so the rate is 1

3
.

This can also be verified with the formula log |C|/n = log 4
6

= 1
3
. We also have 1

6
of the transmitted

bits are corrupted, so the error fraction tolerated is 1
6
.

We make several remarks about the informality of Definition 1.1.3. Indeed, our thesis seeks to
understand these nuances.

1. In our definition of error fraction, we did not specify what an “error” is. In our example,
the error is a bit-flip, also known as a substitution. As we hope to show, the nature of error
drastically affects the way we construct and analyze error correcting codes. Throughout this
thesis, the nature of error will be implied by the context. This thesis focuses on the setting
where errors are insertions and/or deletions.

2. The definition of error fraction does not specify the manner in which the errors are applied.
In this thesis, we address when errors are either adversarial, online, oblivious, or random.
This affects the construction and analysis of codes. When errors are random, we may use
the term error rate, instead of error fraction, to denote the probability that an error occurs at
a given symbol in the code.
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m = 01 Alice Channel Bob m = 1101 11

Figure 1.1: Noisy channel

m = 01
Alice
(Enc) Channel Bob

(Dec) m = 01010101 010111

Figure 1.2: Error-correcting code

3. When we say “recover” we either mean recover with probability 1 (in the case of adversarial
errors), or recover with probability that approaches 1 asymptotically as a function of n (in
the case of oblivious, online, and random errors).

Ideally, our codes have rate bounded away from 0 and tolerate an error fraction that is bounded
away from 0 as the length n tends to infinity. In this way, we often seek families of error correcting
codes C1, C2, . . . with block lengths n1 < n2 < · · · going to infinity, and limk→∞R(Ck) > 0.
We may informally refer to such a family of codes as a code with rate bounded away from 0 or a
constant rate code.

For deterministic codes, rate is defined purely in terms of the codebook, and in this way, many
error correcting code problems are purely mathematical or combinatorial (as opposed to algorith-
mic) problems. With this in mind, we can broadly separate the study of error-correcting codes into
the following three types of questions.

1. (Existential) GivenR, p ∈ (0, 1), do there exist codes with rateR and error fraction p?

2. (Constructive) Can we efficiently construct codes with rateR and error fraction p?

3. (Algorithmic) Can we efficiently encode and decode codes with rateR and error fraction p?

1.2 Types of errors
Shannon pioneered the study of error-correcting codes with his seminal 1948 paper [39]. Since
then, tremendous progress has been made in designing error-correcting codes robust to substitution
and erasure errors. On the other hand, the closely related insertions and deletion errors, first studied
by Levenshtein in the 60s [32], are poorly understood. This thesis focuses on the setting of deletion

Error type Before After
Substitution 000 001

Erasure 000 00?
Deletion 000 00
Insertion 000 0010

Figure 1.3: Types of errors in error-correcting codes
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and insertion errors.
The differences between these different types of errors is illustrated in Figure 1.3. In partic-

ular, erasures provide us the location of the erased bit, while deletion errors do not indicate the
location of the deleted bit. Additionally, note that one substitution can be imitated by an insertion
followed by a deletion. However, despite the apparent similarities between these types of errors,
our understanding of substitutions and erasures is far beyond our understanding of insertions and
deletions. Substitutions and erasures preserve the synchronization information (i.e. the position of
each bit within the word) while insertions and deletions do not. Much of the major progress for
substitutions and erasures decoding has been possible because the synchronization preservation
has allowed us to leverage algebraic techniques like Reed-Solomon codes. By contrast, decod-
ing against insertions and deletions is a fundamentally combinatorial problem, and without this
valuable synchronization information, many of these classical techniques are either inapplicable
or messy to apply. To quote from Mitzenmacher’s survey [35]: “[C]hannels with synchronization
errors, including both insertions and deletions as well as more general timing errors, are simply not
adequately understood by current theory. Given the near-complete knowledge we have [for] chan-
nels with erasures and errors . . . our lack of understanding about channels with synchronization
errors is truly remarkable.”

From a practical standpoint, synchronization errors like deletions may become increasingly
relevant as they become a greater bottleneck in engineering applications [35]. Understanding
synchronization also may be relevant for biological applications such as analyzing DNA, where
tandem duplications form about 3% of the human genome [1, 29]. They may also be relevant in
queuing theory, in particular timing channels, where information is encoded in the transmission
times of messages [27].

1.3 Noise models

We address the following noise models in this thesis.

1.3.1 Adversarial deletions
• A code C decodes against t (p fraction of) adversarial deletions (or worst-case deletions) if,

for every two distinct codewords c and c′, it is not possible to apply up to t (pn) deletions to
each of c and c′ to obtain the same string.

• We shall see in Lemma 2.3.1 that C decoding against t adversarial deletions is equivalent to
LCS(c, c′) ≤ n − t for all distinct c, c′ ∈ C, where LCS denotes the length of the longest
common subsequence.

1.3.2 Random deletions
• The Binary Deletion Channel with deletion probability p (BDCp) takes as input a string
c = c1 . . . cn, and deletes each bit ci independently with probability p. The non-deleted bits
form a string s of length at most n, which is the output of the channel.

• A codebook C with encoder Enc : {0, 1}Rn → C and decoder Dec : {0, 1}∗ → {0, 1}Rn ∪

4



{⊥} decodes against BDCp if, for all messages m ∈ {0, 1}Rn,

Pr[Dec(BDCp(Enc(m))) 6= m] = o(1) (1.1)

where the probability is over the randomness of BDCp, and the o(1) is a term that goes to 0
with n.

• The decoder that makes the most sense against BDC would be the maximum likelihood
decoder. This is the decoder Dec such that Dec(s) is the message m that maximizes the
probability that BDCp(Enc(m)) = s. However, as the maximum likelihood decoder is dif-
ficult to analyze, the current best existential and algorithmic results [12, 17, 35] use slightly
less optimal decoding methods in exchange for ease of analysis.

1.3.3 Oblivious deletions
• In the oblivious model of deletions, the channel knows the codebook and the message, but

not the codeword, and chooses a pattern of up to pn locations within the codeword to delete.
• A code (C,Enc,Dec) is correctable against p fraction of oblivious deletions under a worst-

case error criterion if for every deletion pattern τ and message m, we have

Pr
r

[Dec(τ(Enc(m, r))) 6= m] = o(1), (1.2)

where the probability is over the random bits r that are private to the encoder.
• A deterministic code (C,Enc,Dec) is correctable against p fraction of oblivious deletions

under an average-case error criterion if the decoding failure probability of a uniformly
random codeword is small. That is, for every deletion pattern τ , we have

Pr
m∼U(M)

[Dec(τ(Enc(m))) 6= m] = o(1), (1.3)

where the probability is over the uniformly random message.

1.3.4 Online deletions
• For online deletions, the channel decides whether to delete bit xi based only on knowledge

of bits x1x2 . . . xi,
• Formally, an online deletion channel OnAdv consists of n functions {OnAdvi : i ∈ [n]}

such that OnAdvi : X i → Y , where X = {0, 1} and Y = {〈0〉, 〈1〉, 〈〉} is a set of strings
and 〈〉 denotes the empty string, satisfies OnAdv(x1, . . . , xi) ∈ {〈xi〉, 〈〉}. The resulting
string received by the output is the concatenation of the outputs of OnAdv1, . . . ,OnAdvn.

• A code (C,Enc,Dec) is correctable against p fraction of online deletions under a worst-case
error criterion if, for every online adversary OnAdv and every message m, we have

Pr
r

[Dec(OnAdv(Enc(m, r))) 6= m] = o(1), (1.4)

where the probability is over the random bits r that are private to the encoder.
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• A deterministic code (C,Enc,Dec) is correctable against p fraction of online deletions un-
der an average-error criterion if the decoding failure probability of a uniformly at random
codeword is small. That is, for every online adversary OnAdv, we have

Pr
m∼U(M)

[Dec(OnAdv(Enc(m))) 6= m] = o(1), (1.5)

where the probability is over the uniformly random message.

1.3.5 Comments
For oblivious and online deletions, we assume the adversary is deterministic: if a randomized
adversary could cause decoding failure with (worst-case or average) probability ε for some fixed
ε > 0, then sampling over the random bits of the adversary implies a deterministic adversary that
causes decoding failure with probability ε. Thus, to code against randomized online adversaries, it
suffices to code against deterministic adversaries.

Note that the oblivious and online models are in between the adversarial and random models
in terms of the adversary’s knowledge. In the adversarial model, the adversary has full knowledge
of the codeword. In the random model, the channel only knows the current bit in deciding whether
to delete it. In the oblivious model, the channel knows the codebook and the message, but not the
codeword. In the online model, at bit i, the channel knows the first i bits of the codeword. For
concreteness, we restrict the majority of this thesis to discussing deletions, which captures most
(and sometimes all) of the complexity associated with coding against synchronization errors. In
this thesis, we survey existing results on the adversarial, random, oblivious, and online models of
deletions, addressing the existential, constructive, and algorithmic questions related to each error
model.

1.4 Outline of thesis
Chapter 2 establishes some preliminary definitions and notation to be used throughout the thesis.
In the following chapters, we in turn address four different error models of insertions and deletions
while presenting new results for each. Each chapters begins with an introduction, followed by
new results and a survey of relevant literature. The remainder of each chapter states and proves
the new result(s). In Chapter 3 and Chapter 4, we establish algorithmic results for adversarial and
random deletions, respectively. In Chapter 5, we establish a positive existential result for coding
against oblivious deletions, and in Chapter 6, we establish a negative result for coding against
online deletions.

A common question in coding theory is determining the capacity of a channel, i.e. the max-
imum rate of a family of constant rate codes for a given error fraction and model of errors. For
random erasures or random substitutions, we have complete characterizations of the capacities
[14, 39], and for adversarial erasures and substitutions we have good characterizations. However,
for deletions, our knowledge is far less complete. In particular, for some deletion models, such
as adversarial deletions, we cannot even determine when the capacity becomes 0, let alone find
reasonable bounds on the capacity.

To address this question formally, we introduce the zero-rate threshold. Let p(adv)
0 , the zero-rate

threshold of adversarial deletions, be the supremum of all p for which there exists a code family
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with rate bounded away from 0 capable of correcting pn adversarial deletions. No nontrivial code
can correct n/2 adversarial deletions, where n is the block length of the code, as the adversary can
ensure either 0n/2 or 1n/2 is received, regardless of the codeword. This shows that p(adv)

0 ≤ 1
2
. A

recent construction of deletion-correcting codes [4] shows that p(adv)
0 ≥

√
2−1. These are the best

known bounds for p(adv)
0 .

While we do not to improve these bounds for p(adv)
0 , we do improve on the best known algo-

rithmic results. In Chapter 3, we present efficiently decodable codes against adversarial insertions
and deletions, where efficient coding against deletions only was previously known. We find both
families of efficient codes with rate approaching 1 tolerating constant fraction of insertions and
deletions, and families of efficient constant rate codes tolerating a fraction of insertions and dele-
tions approaching 1.

We can analogously define a zero-rate threshold for other models of deletions. For random
deletions, there are positive rate codes against the binary deletion channel with deletion probability
p for any p < 1, so the zero-rate threshold p(rand)

0 is 1. For p approaching 1, the capacity of the
BDCp is known to decay as α(1 − p) for some α ∈ [1/9, 0.4143] [12, 36]. However, the capacity
lower bound of (1−p)/9 is only an existential result, and in Chapter 4, we construct efficient codes
against the BDCp with rate α(1− p) for a constant α.

In order to better understand the zero-rate threshold for adversarial deletions, p(adv)
0 , we turn

to oblivious and online deletions. Let the zero-rate threshold for oblivious deletions, p(obliv)
0 , be

the supremum of all p such that there exist families of codes with rate bounded away from 0 that
can correct against p fraction of oblivious deletions. Define the corresponding zero-rate threshold
p

(on)
0 to be the supremum of p for which there exist deterministic codes against pn online deletions

under an average error criterion.
In Chapter 5, we prove, perhaps surprisingly, that p(obliv)

0 = 1. In Chapter 6, we prove p(adv)
0 = 1

2

if and only if p(on)
0 = 1

2
. In particular, to construct codes approaching the threshold of 1/2 for

adversarial deletions, it suffices to construct deterministic codes for online deletions. We were not
able to prove a similar result relating p(adv)

0 and p(on,s)
0 , the zero-rate threshold for online deletions

that allows both deterministic and stochastic codes.
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Chapter 2

Preliminaries

2.1 Definitions

General Notation. For a boolean statement P , let 1[P ] be 1 if P is true and 0 otherwise.
Throughout this thesis, log x refers to the base-2 logarithm.
We use interval notation [a, b] = {a, a + 1, . . . , b} to denote intervals of integers, and we use

[a] = [1, a] = {1, 2, . . . , a}.
For a set S and an integer a, let

(
S
a

)
denote the family of subsets of S of size a.

Let U(S) denote the uniform distribution on S. Let Binomial(n, p) denote the Binomial distri-
bution.

Let Fq denote the finite field of size q.
Words (Strings). A word (or string) is a sequence of symbols from some alphabet Σ. Let Σn

denote words of length n and let Σ∗ = ∪∞n=0Σn. For clarity, particularly in Chapter 4, we may
denote explicit words using angle brackets, like 〈01011〉. We denote string concatenation of two
words w and w′ with ww′. We denote wk = ww · · ·w where there are k concatenated copies of
w. We also denote a concatenation of a sequence of words as w1w2 · · ·wk =

∏k
i=1wi. We denote

words from binary alphabets with lowercase letters c, s, w and words from non-binary alphabets
with capital letters X, Y, Z.

A subsequence of a word w is a word obtained by removing some (possibly none) of the
symbols in w.

A subword or interval of a word w is a contiguous subsequence of characters from w. We iden-
tify intervals of words with intervals of integers corresponding to the indices of the subsequence.
For example, the interval {1, 2, . . . , |w|} = [1, |w|] is identified with the entire word w.

Let w′ v w denote “w′ is a subsequence of w”.
Define a run of a word w to be a maximal single-symbol subword. That is, a subword w′ in w

consisting of a single symbol such that any longer subword containing w′ has at least two different
symbols. Note the runs of a word partition the word. For example, 〈110001〉 has 3 runs: one run
of 0s and two runs of 1s.

For a string w, let |w| denote the length of the string. Let ∆i/d(w1, w2) denote the inser-
tion/deletion distance between w1 and w2, i.e. the minimum number of insertions and deletions
needed to transform w1 into w2. For two words w1, w2 ∈ C, let LCS(w1, w2) be the length of the
longest common subsequence of w1 and w2. Define LCS(C) = maxw1,w2∈C,w1 6=w2 LCS(w1, w2).
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A useful fact is that ∆(w1, w2) = |w1| + |w2| − 2 LCS(w1, w2). For intuition as to why, note that
we can apply |w1|−LCS(w1, w2) deletions to w1 and |w2|−LCS(w1, w2) deletions to w2 to obtain
the same string. This fact is closely related to Lemma 2.3.1 below.

Deletion Patterns. A deletion pattern is a function τ that removes a fixed subset of symbols
from words of a fixed length. Let D(n,m) denote the set of deletion patterns τ that operate on
length n words and apply exactly m deletions. For example τ : x1x2x3 7→ x1x3 is a member of
D(3, 1). Let D(n) = ∪nm=0D(n,m).

We identify each deletion pattern τ ∈ D(n,m) with a size m subset of [n] corresponding to
the deleted bits. We often use sets to describe deletion patterns when the length of the codeword
is understood. For example [n] refers to the single element of D(n, n). Accordingly, let ⊆ be a
partial order on deletion patterns corresponding to set inclusion, and let |τ | denote the number of
bits deleted by τ . As such, we have τ ⊆ τ ′ implies |τ | ≤ |τ ′|.

For a word w and τ ∈ D(|w|), let τ(w) and w \ τ both denote the result of applying τ to w.
We use the second notation when we identify sets with deletion patterns, as in the above paragraph
where the set elements correspond to the deleted positions.

Graphs. In a (directed or undirected) graph G, let V (G) and E(G) denote the vertex set and
edge set of G respectively. For a subset W ⊆ V (G) of the vertices, let G|W denote the subgraph
induced by W . For a vertex v ∈ V (G), let degG(v) denote the degree of v in G when G is
undirected, and let indegG(v), outdegG(v) denote the indegree and outdegree of v, respectively, in
G when G is directed. We drop the subscript of G in deg, indeg and outdeg notations when the
graph G is understood.

Notation Conventions. Random variables are denoted by A,B,X, Y, Z. Codes are always
denoted by the letter C, with possible decorations like Cin. Graphs are denoted by G. Deletion
patterns are denoted by Greek letters σ, τ . In Chapter 4, σ also denotes outer codeword sym-
bols. We denote sets by S,J ,L and intervals by I . We denote strings by c, g, r, s, w. We use
a, b, i, j, k, `, q, r, s, t, x, y as variables or constants. We use α, β, γ, δ, ε, η as constants. We typi-
cally denote finite field sizes by q.

2.2 Concentration bounds.
We use the following forms of Chernoff bound.
Lemma 2.2.1 (Chernoff). Let A1, . . . , An be independent random variables taking values in [0, 1].
Let A =

∑n
i=1 Ai and δ ∈ [0, 1]. Then

Pr[A ≤ (1− δ)E[A]] ≤ exp
(
−δ2 E[A]/2

)
. (2.1)

Furthermore,

Pr[A ≥ (1 + δ)E[A]] ≤
(

eδ

(1 + δ)(1+δ)

)E[A]

(2.2)

We also have the following corollary, whose proof is in Appendix A.
Lemma 2.2.2. Let 0 < α < β. Let A1, . . . , An be independent random variables taking values in
[0, β] such that, for all i, E[Ai] ≤ α. For γ ∈ [α, 2α], we have

Pr

[
n∑
i=1

Ai ≥ nγ

]
≤ exp

(
−(γ − α)2n

3αβ

)
. (2.3)
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We also use the submartingale form of Azuma’s Inequality.
Lemma 2.2.3 (Azuma). Let M be a constant. Let X1, X2, . . . be a submartingale. That is, they
satisfy

E[Xn+1|X1, . . . , Xn] ≥ Xn. (2.4)

Suppose that |Xi −Xi−1| ≤M for all i. Then for all positive reals t, we have

Pr[Xk −X1 ≤ −t] ≤ exp

(
−t2

2M2(k − 1)

)
. (2.5)

2.3 Codes

General Notation. A code C of block length n over an alphabet Σ is a subset C ⊆ Σn. The rate
R of C is defined to be log |C|

n log |Σ| . The encoding function of a code is a map Enc : [|C|]→ Σn whose
image equals C (with messages identified with [|C|] in some canonical way), and the decoding
function of a code is a map Dec : Σ∗ → C. Alphabet sizes |Σ| are denoted by k when relevant.

A code is encodable (decodable) in time f(n) if, for all elements of [|C|] (Σ∗), the map Enc
(Dec) can be computed in time f(n). A code is constructible in time f(n) if descriptions ofC,Dec,
and Enc can be produced in time f(n).

Code Concatenation. Just as in [4, 20, 38], our constructions use the idea of code concatena-
tion: If Cout ⊆ Σn

out is an “outer code” with encoding function Encout, and Cin ⊆ Σm
in is an “inner

code” with encoding function Encin : Σout → Σm
in , then the concatenated code Cout ◦ Cin ⊆ Σnm

in is
a code whose encoding function first applied Encout to the message, and then applied Encin to each
symbol of the resulting outer codeword.

Throughout this thesis, we let n denote the block length of a code, unless we deal with a
concatenated code, in which case n denotes the block length of the outer code, m or L denotes the
block length of the inner code, and N denotes the block length of the entire code.

In a concatenated code with outer code length n and inner code length L, we can identify a
deletion pattern on the entire codeword τ ∈ D(nL) as the “concatenation” of n deletion patterns
τ1 _ · · · _ τn, one for each inner codeword. To be precise, for all τ ∈ D(nL), there exists
τi ∈ D(L) such that τ = ∪ni=1{j + (i− 1)L : j ∈ τi}, and we denote this by τ = τ1 _ · · ·_ τn.
Using this notation, we refer to τi as an inner code deletion pattern.

Reed Solomon Codes. Reed Solomon codes are useful codes that reply on strong properties of
polynomials. A (canonical) Reed Solomon code over Fq has block length n = q and has message
set consisting of all degree-less-than-k polynomials over Fq, for some fixed k. A polynomial
f ∈ Fq[X] is encoded by its evaluation at every point in Fq: if we enumerate the elements of Fq
as α1, . . . , αq, we have Enc : f 7→ f(α1)f(α2) . . . f(αq). By properties of polynomials, an (n, k)
Reed Solomon code can correct up to (n − k)/2 errors and erasures. This decoding can be done
efficiently, e.g. by the Welch-Berlekamp algorithm in O(n3).

List Decoding. List decoding is a powerful technique in coding theory. A normal (unique) de-
coding algorithm is required to return the exact codeword, but a list decoding algorithm is allowed
to return a list of codewords containing the correct codeword.

Reed Solomon codes can be efficiently list decoded. Sudan’s list decoding algorithm takes an
(n, k) Reed Solomon code under up to n −

√
2nk errors with list size at most ` =

√
2n/k. In
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other words, given the parameters n, t, k and n pairs (αi, yi) ∈ F2
q , the algorithm finds all degree-

at-most-k polynomials f ∈ F[X] such that |{i|f(αi) = yi}| ≥ t. The algorithm guarantees that
the number of such polynomials is at most ` and runs in time O(n2).

Adversarial insertions, deletions, and insertions and deletions. The following lemma, orig-
inally due to Levenshtein [32], shows that, existentially, coding against adversarial deletions, ad-
versarial insertions, and adversarial insertions and deletions are equally difficult. We present the
lemma with proof for completeness.
Lemma 2.3.1. Let C ⊆ [k]n, and let t < n be a positive integer. The following are equivalent.

1. LCS(C) ≤ n− t− 1.
2. C can correct up to t adversarial insertions
3. C can correct up to t adversarial deletions
4. C can correct up to t adversarial insertions and deletions.

Proof. The implications 4 =⇒ 2 and 4 =⇒ 3 are trivial. We prove 1 =⇒ 4 and 3 =⇒ 1.
The proof of 2 =⇒ 1 is the same idea as the proof of 3 =⇒ 1.

Suppose 4 is false. That is, there exist distinct c, c′ ∈ C such that we can apply t insertions and
deletions to each of c and c′ to obtain the same string s. Color each bit of the strings c and c′ blue,
and apply i insertions and t − i deletions to c and c′ such that each inserted bit is colored black,
to obtain two identical but possibly differently colored copies of s, which we refer to as s and s′.
Note that s and s′ each have n − t + i blue bits and length n − t + 2i. Thus, s and s′ are both
colored blue in at least 2(n− t+ i)− (n− t+ 2i) = n− t of the n− t+ 2i positions. These blue
bits form a common subsequence of c and c′ of length at least n− t. This proves 1 =⇒ 4.

Now suppose 1 is false. That is, there exists distinct c, c′ ∈ C such that LCS(c, c′) ≥ n − t.
Thus, thus is some common subsequence s of c and c′ such that |s| = n− t. Hence, an adversary,
upon seeing that the code is c, can apply t deletions to c to obtain s, in which case the decoder
cannot tell whether the received word is c or c′. We conclude C cannot correct up to t deletions.
This proves 3 =⇒ 1. The proof of 2 =⇒ 1 is similar.
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Chapter 3

Adversarial insertions and deletions

3.1 Introduction
In adversarial deletions, the adversary is allowed to delete up to pn bits with full knowledge of a
codeword and codebook. A code C is decodable against pn adversarial deletions if and only if, for
any two distinct codewords c and c′ in C, it is impossible to apply pn (possibly different) deletions
to c and c′ and obtain the same result. By Lemma 2.3.1, this is equivalent to the condition that the
longest common subsequence between any two codewords of C has less than (1 − p)n bits. This
condition also ensures that C is capable of correcting any combination of adversarial insertions
and deletions totaling pn in number.

In this chapter, we first overview existing results against coding against adversarial deletions
and insertions in §3.2. In §3.3, we then summarize our new results from [16] on efficiently coding
against adversarial insertions and deletions in high rate and high noise regimes. We then present
our constructions. We present our high rate construction in §3.4. Our two high noise constructions
follow a general framework given in §3.5. We present our specific results in §3.6 and §3.7.

3.2 Prior work

We first review the best known results on adversarial deletions. When p ≥ 1/2, the adversary can
delete n/2 bits that includes either all the 0’s or all the 1’s in the codeword, resulting in just two
possible received sequences. Therefore, it is impossible to correct an adversarial deletion fraction
of 1/2 with rate bounded away from 0, and the zero-rate threshold p(adv)

0 is at most 1/2. Rather
remarkably, we do not know if this trivial limit can be approached: are there codes C ⊆ {0, 1}n
of size 2Ωε(n) decodable against (1/2− ε)n deletions for any ε > 0? Or is there some p∗ bounded
away from 1/2 such that any code C ⊆ {0, 1}n that is decodable against p∗n deletions must have
size at most 2o(n) (in which case, we have p(adv)

0 ≤ p∗)? This was explicitly raised as a key open
problem in [33]. Upper bounds on the asymptotic rate function in terms of the deletion fraction
were obtained in [28], improving in some respects Levenshtein’s bounds [33]. New upper bounds
on code size for a fixed number of deletions that improve over [32] were obtained in [8]. A more
combinatorially specific reframing of the question might ask, how does the maximum number of
deletions that a code C can correct vary as |C| increases? Bukh and Ma [3] provide partial results,
establishing that when |C| = O(log n/ log log n), the maximum correctable fraction is at most
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n/2− 1
poly |C|n

1−1/|C|.
Turning to constructions of deletion codes, Schulman and Zuckerman [38] construct constant-

rate binary codes that are efficiently decodable from a small constant fraction of worst-case inser-
tions and deletions and can also handle a small fraction of transpositions. Kash et al. [25] proved
that randomly chosen codes of small enough rate R > 0 can correctly decode against pn adversar-
ial deletions when p ≤ 0.17. Even non-constructively, this remained the best achievability result
(in terms of correctable deletion fraction) until recently. Bukh, Guruswami, and Håstad [4] im-
proved this and showed that there are binary codes of rate bounded away from 0 decodable against
pn adversarial deletions for any p <

√
2− 1. In other words, they showed the zero-rate threshold,

p
(adv)
0 , is at least

√
2 − 1. They extend this result to codes over constant-sized alphabets, showing

that, over alphabets of size k, there are codes with rate bounded away from 0 decodable against
pn adversarial deletions for p < 1 − 2

k+
√
k
. Furthermore, they gave an efficient construction of

such codes along with an efficient deletion correcting algorithm. In the binary case, closing the
gap between

√
2− 1 and 1

2
for p(adv)

0 remains a tantalizing open problem.
The above constructions optimize the error fraction p for binary codes at a cost of the rate.

We can also ask: can we improve the correctable error fraction for codes over larger alphabets?
Additionally, can we optimize the rate of our binary codes? Note that over large alphabets, in
particular those which can grow with the code length, one can add the coordinate position as a
header to the codeword symbol, and reduce the deletion model to the simpler erasure model, at
the expense of a negligible decrease in rate (due to the addition of the header). Thus, in general,
coding for synchronization errors over larger alphabets should be easier than over constant or
binary alphabets. Over large alphabets, Guruswami and Wang [20] proved that there exist codes
over size poly(1/ε) alphabets and with rate Ω(ε2) that can be decoded from a 1 − ε fraction of
worst-case deletions. They also construct binary codes with rate 1− Õ(

√
ε) that can be efficiently

decoded from a constant fraction ε of worst case deletions for sufficiently small ε.
We construct binary codes with rate 1 − Õ(

√
ε) that can be efficiently decoded from a con-

stant fraction ε of worst case insertions and deletions for sufficiently small ε, and codes over size
poly(1/ε) alphabets with rate Ω(ε2) that can be decoded from a 1 − ε fraction of worst case dele-
tions. Haeupler and Shahrasbi [21] recently improved on these results, constructing, for δ ∈ (0, 1)
and ε > 0, binary codes with rate 1− δ − ε and δ > 0.

3.3 Results summary

Our work primarily builds off recent results by Guruswami, Bukh, Håstad, and Wang [4, 20], which
address the construction and efficient decoding of codes for constant fractions of deletions. These
works establish three results, providing families of codes with each of the following parameters.

1. Families with rate approaching 1 decoding a constant fraction of deletions

2. Families with constant rate decoding a fraction of deletions approaching 1

3. Families over a fixed alphabet of size k with constant rate and decoding a fraction of deletions
approaching 1− 2

k+
√
k

(In particular, one gets binary codes for correcting a deletion fraction
approaching

√
2− 1.)

Over an alphabet of size k, it is impossible to have a constant rate code that corrects a 1 − 1
k

fraction of deletions. The last result establishes that the maximum correctable fraction of deletions
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of a constant rate code is 1−Θ( 1
k
).

Combinatorially, decoding a given number of worst-case insertions and deletions is identical
to decoding the same number of worst-case deletions. This is formally stated in Lemma 2.3.1.
By 2.3.1, the codes provided in the three constructions must also be capable of decoding both
insertions and deletions. The task that remains, and which our work addresses, is to construct
codes in the same parameter settings that can efficiently correct a combination of insertions and
deletions.

The regime under which errors are insertions and deletions is closely related to edit-distance
(also known as Levenshtein distance), which measures errors of a code under insertions, deletions,
and substitutions. A substitution can be viewed as a deletion followed by an insertion. Thus, all
results established in the insertion and deletion regime, both constructive and algorithmic, hold in
the edit-distance regime when the number of errors is cut in half, and therefore in the traditional
coding theory setting in which the only errors are substitutions. The edit-distance is a more chal-
lenging model, however; while the Gilbert-Varshamov bound gives codes over size k alphabets
that can correct up to a fraction of substitutions approaching 1

2
(1 − 1

k
), the question of whether

there exist positive rate codes capable of correcting a deletion fraction approaching 1 − 1
k

is still
open.

These are the efficiently decodable code constructions in the deletion-only regime that we are
generalizing to the insertion/deletion regime.

1) A binary code family of rate 1 − Õ(
√
ε) that can be efficiently decoded from an ε fraction

of worst-case deletions, for all ε smaller than some absolute constant ε0 > 0. Furthermore, the
codes are constructible, encodable, and decodable, in time Npoly(1/ε), where N is the block length.
[Theorem 4.1 from [20]]

2) For any ε > 0, a code family over an alphabet of size poly(1/ε) and rate Ω(ε2) that can
be decoded from a 1 − ε fraction of worst-case deletions. Furthermore, this code is constructible,
encodable, and decodable in time Npoly(1/ε). [Theorem 3.1 from [20]]

3) For all integers k ≥ 2 and all ε > 0, a code family over alphabet size k of positive
rate r(k, ε) > 0 that can be decoded from a 1 − 2

k+
√
k
− ε fraction of worst-case deletions in

Ok,ε(N
3(logN)O(1)) time.

Our work constructs the following three families of codes.
1. alphabet size: 2, rate: 1 − Õ(

√
ε), insertion/deletion fraction: ε, decoding time: Npoly(1/ε).

(Thm. 3.4.2)

2. alphabet size: poly(1/ε), rate: Ω(ε5), insertion/deletion fraction: 1 − ε, decoding time:
Npoly(1/ε). (Thm. 3.6.3)

3. alphabet size: k ≥ 2, rate: (ε/k)poly(1/ε), insertion/deletion fraction: 1− 2
k+
√
k
− ε, decoding

time: Ok,ε(N
3 poly log(N)). (Thm. 3.7.2)

Remark. Theorem 3.6.3 gives constant rate codes that decode from a 1 − ε fraction of inser-
tions/deletions. This also follows as a corollary from Theorem 3.7.2. However, the rate of the
construction in Theorem 3.7.2 is (ε/k)poly(1/ε), which is far worse than poly(ε). The main point of
3.7.2 is to highlight the near-tight trade-off between alphabet size and insertion/deletion fraction.
Remark. At the expense of slightly worse parameters, the construction and decoding complexities
in Theorems 3.4.2 and 3.6.3 can be improved to poly(N) · (logN)poly(1/ε). See Theorems 3.4.7
and 3.6.4.
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Theorems 3.6.3 and 3.7.2 use the powerful idea of list decoding, exemplified in [4]. A normal
decoding algorithm is required to return the exact codeword, but a list decoding algorithm is al-
lowed to return a list of codewords containing the correct codeword. The codes for both theorems
are decoded by first applying a list decoding algorithm, and then noting that if the easier list decod-
ing is guaranteed to succeed (that is, returns a list containing the correct codeword), one can simply
pass through the resulting list and choose the unique codeword that has sufficiently small distance
from the received word. The codeword will be unique because the codes constructed are provably
decodable under the required number of insertion/deletions according to the results in [4, 20].

The extent of difference between the insertion/deletion decoding algorithms and their deletion-
only analogues varies depending on the parameter setting. For a 1 − 2

k+
√
k
− ε fraction of inser-

tions/deletions, the decoding algorithm uses the same list decoding approach as the deletion-only
decoding algorithm in [4]. For a 1 − ε fraction of insertions/deletions, we adopt the list decoding
approach that in fact simplifies the construction presented in [20]. For achieving a rate of 1− ε, we
use the same code as in [20] with different parameters, but considerably more bookkeeping is done
to provide a provably correct decoding algorithm. In particular, both Theorem 4.1 from [20] and
Theorem 3.4.2 place chunks of 0s between inner codewords. However, while identifying buffers in
the received word in the deletion-only case merely requires identifying long runs of 0s, identifying
buffers in the insertion/deletion case requires identifying strings of fixed length with sufficiently
small fraction of 1s.

3.4 High rate

Lemma 3.4.1 (Proposition 2.5 of [20]). Let δ, β ∈ (0, 1). Then, for every m, there exists a code
C ⊆ {0, 1}m of rate R = 1− 2h(δ)−O(log(δm)/m)− 2−Ω(βm)/m such that
• for every string s ∈ C, every interval of length βm in s, contains at least βm/10 1’s,
• C can be corrected from a δ fraction of worst-case deletions, and
• C can be found, encoded, and decoded in time 2O(m).

Theorem 3.4.2. There exists a constant ε0 > 0 such that the following holds. Let 0 < ε < ε0.
There is an explicit binary code C ⊆ {0, 1}N with rate 1 − Õ(

√
ε) that is decodable from an ε

fraction of insertions/deletions in Npoly(1/ε) time. Furthermore, C can be constructed and encoded
in time Npoly(1/ε).

Proof. With hindsight, let ε0 = 1
1212 , and let 0 < ε < ε0. Consider the concatenated construction

with the outer code being a Reed-Solomon code that can correct a 60
√
ε fraction of errors and

erasures. For each 1 ≤ i ≤ n, we replace the ith coordinate ci with the pair (i, ci); to ensure that
this doesn’t affect the rate much, we take the RS code to be over Fqh , where n = q is the block
length and h = 1/ε. We encode each outer symbol pair in the inner code, defined as follows.

The inner code is a good binary insertion/deletion code C1 of block length m decoding a δ =
40
√
ε < 1

2
fraction of insertions and deletions, such that every interval of length δm/16 in a

codeword has at least 1/10 fraction of 1s. This code can be found using Lemma 3.4.1. We also
assume each codeword begins and ends with a 1.

Now take our concatenated Reed-Solomon code of block length mn, and between each pair of
adjacent inner codewords of C1, insert a chunk of δm 0s. This gives us our final code C with block
length N = nm(1 + δ).
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Lemma 3.4.3. The rate of C is 1− Õ(
√
ε).

Proof. The rate of the outer RS code is (1 − 120
√
ε) h
h+1

, and the rate of the inner code can be
taken to be 1− 2h(δ)− o(1) by Lemma 3.4.1. Adding in the buffers reduces the rate by a factor of

1
1+δ

. Combining these with our choice of δ gives us a total rate for C of 1− Õ(
√
ε).

Lemma 3.4.4. The code C can be decoded from an ε fraction of insertions and deletions in time
Npoly(1/ε).

Consider the following algorithm that runs in time Npoly(1/ε) for decoding the received word:
1) Scan from the left of the received word. Every time we encounter a substring of length

exactly δm with at most 1
160

fraction of 1s (or δm/160 1s), mark it as a decoding buffer. Then,
continue scanning from the end of the buffer and repeat. This guarantees no two buffers overlap.
This takes time poly(N).

2) Start with an empty set L. The buffers divide the received word into strings which we call
decoding windows. For each decoding window, apply the decoder from Lemma 3.4.1 to recover a
pair (i, ri). If we succeed, add this pair to L. This takes Npoly(1/ε) time.

3) If for any i, L contains multiple pairs with first coordinate i, remove all such pairs from L.
L thus contains at most one pair (i, ri) for each index i. Then apply the RS decoding algorithm to
the string r whose ith coordinate is ri if (i, ri) ∈ L and erased otherwise. This takes time poly(N).

Remark. In the deletion only case, the decoding buffers are runs of at least δm/2 contiguous
zeros. Runs of consecutive zeros are obviously a poor choice for decoding buffers in the presence
of insertions, as we can destroy any buffer with a constant number of insertions.

Note that the total number of insertions/deletions we can make is at most (1 + δ)mnε < 2εmn.
Suppose our received codeword is s = u1y1u2 · · ·un′ , where y1, . . . , yn′−1 are the identified

decoding buffers and u1, . . . , un′ are the decoding windows. Then consider a canonical mapping
from characters of c to characters of s where ui is mapped to by a substring ti of c, yi is mapped to
by a string xi, so that c = t1x1 · · · tn′ and ∆(c, s) =

∑n′

i=1 ∆(ui, ti) +
∑n′−1

i=1 ∆(yi, xi).
With our canonical mapping, we can identify LCS(c, s) many characters in s with characters

in c. Intuitively, these are the characters that are uncorrupted when we transform c into s using
insertions and deletions. Call a received buffer yi in s a good decoding buffer (or good buffer for
short) if at least 3

4
δm of its characters are identified with characters from a single chunk of δm 0s

in c. Call a decoding buffer bad otherwise. Call a chunk of δm 0s in c good if at least 3
4
δm of its

zeros map to characters in single decoding buffer. Note that there is a natural bijection between
good chunks in c and good decoding buffers in s.

Lemma 3.4.5. The number of bad decoding buffers of s is at most 8
√
εn.

Proof. Suppose we have a bad buffer yi. It either contains characters from at least two different
chunks of δm 0s in c or contains at most 3δm

4
characters from a single chunk.

In the first case, xi must contain characters in two different chunks so its length must be at least
m, so yi must have been obtained from at least m− δm > δm > 40

√
εm deletions from xi.

In the second case, if xi has length at most 7δm
8

then the insertion/deletion distance between xi
and yi is at least δm

8
= 5
√
εm. Otherwise, xi has at least δm

8
characters in some inner codeword of

c, so xi has at least δm
80

1s, so we need at least δm
80
− δm

160
= 1

4

√
εm deletions to obtain yi from xi.
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By a simple counting argument, the total number of bad buffers we can have is at most 2εmn
1
4

√
εm

=

8
√
εn.

Lemma 3.4.6. The number of good decoding buffers of s is at least (1− 8
√
ε)n.

Proof. It suffices to prove the number of good chunks of c is at least (1− 8
√
ε)n. If a chunk is not

mapped to a good buffer, at least one of the following is true.

1. The chunk is “deleted” by inserting enough 1s.
2. Part of the chunk is mapped to a bad buffer that contains characters from t − 1 ≥ 1 other

chunks.
3. Part of the chunk is mapped to a bad buffer that contains no characters from other chunks.

In the first case, we need at least δm
160

= 1
4

√
εm insertions to delete the chunk. In the second case,

creating the bad buffer costs at least (t − 1)(m − δm) ≥ tδm
2

deletions, which is at least 20
√
εm

deletions per chunk. In the third case, creating the bad buffer costs at least 1
4

√
εm edits by the

argument in Lemma 3.4.5. Thus, we have at most 2εmn
1
4

√
εm

= 8
√
εn bad chunks, so we have at least

(1− 8
√
ε)n good chunks, as desired.

Since there are at least (1 − 8
√
ε)n good decoding buffers and at most 8

√
εn bad decoding

buffers, there must be at least (1 − 16
√
ε)n pairs of consecutive good decoding buffers. For any

pair of consecutive good decoding buffers yj−1, yj in s, the corresponding two good chunks of δm
0s in c are consecutive unless there is at least one bad chunk in between the two good chunks,
which happens for at most 8

√
εn pairs. Thus, there are at least (1 − 24

√
ε)n pairs of consecutive

good decoding buffers in s such that the corresponding good chunks of 0s in c are also consecutive.
Now suppose w is an inner codeword between two good chunks with corresponding consecu-

tive good decoding buffers, yj−1, yj . The corresponding decoding window between the decoding
buffers is uj , mapped to from tj , a substring of c. We claim that most such w are decoded correctly.

For all but 22εmn
δm/8

+ 22εmn
δm/8

+ 2εmn
δm/4

< 2
√
εn choices of j, we have ∆(xj−1, yj−1) ≤ δm

8
,

∆(xj, yj) ≤ δm
8

, and ∆(tj, uj) ≤ δm
4

. When we have an inner codeword w and an index j
such that all these are true, we have |xj−1|, |xj| ≤ 9δm

8
, and each of xj−1, xj shares at least 3δm

4

characters with one of the chunks of δm 0s neighboring w. It follows that xj−1, xj each contain at
most 3δm

8
characters of w. Additionally, by the definition of a good chunk, uj contains at most δm

4

characters in each of the chunks neighboring w. Thus, we have ∆(w, tj) ≤ 3δm
4

, in which case,
∆(w, tj) ≤ ∆(w, tj) + ∆(tj, uj) ≤ δm. Thus, for at least (1 − 24

√
ε)n − 2

√
εn = (1 − 26

√
ε)n

inner words w, there exists j ∈ {1, . . . , n′} such that ∆(w, uj) ≤ δm.
Therefore, our algorithm detects at least (1− 26

√
ε)n correct pairs (i, ri). Since our algorithm

detects at most (1+8
√
ε)n pairs total, we have at most 34

√
εn incorrect pairs. Thus, after removing

conflicts, we have at least (1− 60
√
ε)n correct values, so our Reed Solomon decoder will succeed.

Remark. Our decoding algorithm succeeds as long as the inner code can correct up to a δ fraction
of insertions/deletions and consists of codewords such that every interval of length δm/16 has at
least 1/10 fraction of 1s. The time complexity of Theorem 3.4.2 can be improved using a more
efficient inner code, at the cost of reduction in rate.

Because of the addition of buffers, the code of Theorem 3.4.2 may not be dense enough to use
as an inner code. The inner code needs to have 1/10 fraction of 1s for every interval of length
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δm/16. However, we can modify the construction of the inner concatenated code so that the inner
codewords of the inner code in Theorem 3.4.2 have at least 1/5 fraction of 1s in every interval
of length δm/16. This guarantees that the inner codewords of our two level construction have
sufficiently high densities of 1s. This is summarized in the following theorem.
Theorem 3.4.7. There exists a constant ε0 > 0 such that the following holds. Let ε0 > ε > 0. There
is an explicit binary code C ⊆ {0, 1}N that is decodable from an ε fraction of insertions/deletions
with rate 1− Õ( 4

√
ε) in time poly(N) · (logN)poly(1/ε).

3.5 High noise

Because our decoding algorithms for the 1 − ε and 1 − 2
k+
√
k
− ε insertion/deletion constructions

use the same list decoding technique, we abstract out the technical part of the decoding algorithm
with the following theorem.
Theorem 3.5.1. Let C be a code over alphabet of size k and length N = nm obtained by con-
catenating a Reed-Solomon Cout of length n with an inner code Cin of length m. Suppose Cout has
rate r and is over Fq with n = q. Suppose Cin : [n] × Fq → [k]m can correct a 1 − δ fraction
of insertions and deletions in O(t(n)) for some function t. Then, provided C is (combinatorially)
decodable under up to 1− δ − 4r1/4 fraction of insertions and deletions, it is in fact decodable in
time O(N3 · (t(N) + polylogN)).

Proof. Let γ = 4r1/4. Consider the following algorithm, which takes as input a string s that is the
result of changing a codeword c under a fraction ≤ (1− δ − γ) of insertions/deletions.

1) J ← ∅.
2) For each 0 ≤ j ≤ d2n

γ
e 1 ≤ j′ ≤ d 4

γ
e, do the following.

a) Let σj,j′ denote the substring from indices γm
2
j to γm

2
(j + j′).

b) By brute force search over Fq×Fq, find all pairs (α, β) such that ∆(EncCin((α, β)), σj,j′) ≤
(1− δ)m. If exactly one such pair (α, β) exists, then add (α, β) to J .

3) Find the list, call it L, of all polynomials p ∈ Fq[X] of degree less than rn such that
|{(α, p(α))|α ∈ Fq} ∩ J | ≥ γn

2
.

4) Find the unique polynomial in L, if any, such that the insertion/deletion distance between its
encoding under C and s is at most (1− γ − δ)N .

CORRECTNESS. Break the codeword c ∈ [k]nm of the concatenated codeC into n inner blocks,
with the ith block bi ∈ [k]m corresponding to the inner encoding of the ith symbol (αi, f(αi)) of
the outer Reed-Solomon code. For some fixed canonical way of forming s out of c, let si be the
block formed out of bi, so that s1, . . . , sn partition the string s. Call an index i good if it can be
obtained from bi by at most (1− δ − γ

2
)m insertions or deletions, and bad otherwise. The number

of bad indices is at most (1−δ−γ)mn
(1−δ−γ/2)m

≤ (1− γ
2
)n, so the number of good indices is at least γn

2
.

For any good index a, there exists some σj,j′ such that sa is a substring of σj,j′ and 0 <
|σj,j′ | − |sa| < γm

2
. Since a is good, the insertion/deletion distance between ba and sa is at most

(1 − δ − γ/2)m, and the insertion/deletion distance between sa and σj,j′ is less than γm/2, so
the insertion/deletion distance between ba and σj,j′ is at most (1 − δ)m. Since Cin can handle up
to (1 − δ)m insertions and deletions, it follows that ba is the unique codeword of Cin such that
∆(EncCin(ba), σj,j′) ≤ (1− δ)m. Since ba is the encoding of (αa, f(αa)) under Cin, we conclude
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that for any good index a, the pair (αa, f(αa)) will be included in J . In particular, J will have at
least γn/2 such pairs, so the correct f will be in L.

We now check that step 3 of the algorithm will succeed. We have |J | ≤ 2n
γ
· 4
γ

= 8n
γ2 , and

Sudan’s list decoding algorithm will give a list of degree-less-than-rn polynomials over Fq such
that (α, p(α)) ∈ J for more than

√
2(rn)|J | values of α ∈ Fq [40]. Furthermore, this list will

have at most
√

2|J |/(rn) elements. For our choice of γ, we have γn/2 >
√

16rn2

γ2 ≥
√

2(rn)|J |,
so the list decoding will succeed.

By above, there will be at least one polynomial in L such that the longest common subsequence
of its encoding with s has length at least (γ + δ)m, namely the correct polynomial f . Since we
assumed C can decode up to a 1− δ−γ fraction of insertions/deletions, all other polynomials in L
will have longest common subsequence with s smaller than (γ + δ)m. Thus our algorithm returns
the correct f .

RUNTIME. We have O(n) ≤ O(N) intervals σj,j′ to check, and each one brute forces over
n2 terms of Fq × Fq. Encoding takes time O(t(n)) ≤ O(t(N)) by assumption and computing
the longest common subsequence takes O(m2) = O(log2N) time, so in total the second step of
the algorithm takes O(N3(t(N) + log2N)) time. Since |J | ≤ O(N) for sufficiently large N ,
the Reed-Solomon list decoding algorithm can be performed in time O(N2), see for instance [37].
There are a constant number of polynomials to check at the end, and each one takes O(N2) time
using the longest common subsequence algorithm. Thus, the overall runtime of the algorithm is
O(N3(t(N) + polylogN)).

3.6 High noise: Decoding against 1− ε insertions/deletions
Lemma 3.6.1. Suppose we have a code C which is the concatenation of an outer code Cout of
length n with an inner code Cin of length m. Suppose further that for some ∆, δ ∈ (0, 1), we have
LCS(Cout) ≤ ∆n,LCS(Cin) ≤ δm. Then LCS(C) ≤ (∆ + 2δ)nm.
Lemma 3.6.2 (θ = 1/3 case of Corollary 2.6 of [20]). Let 1/2 > ε > 0, and k be a positive
integer. For every m, there exists a code C ⊆ [k]m of rate R = ε/3 that can correct a 1− ε fraction
of insertions/deletions in time kO(m), provided k ≥ 64/ε3.
Theorem 3.6.3. For any ε > 0, there exists a family of codes over an alphabet of size poly(1/ε) and
rate Ω(ε5) that can be efficiently decoded from a 1−ε fraction of insertions/deletions. Furthermore,
this code is constructible, encodable, and decodable in time Npoly(1/ε).

Proof. Let n = q,m = 24 log q/ε, and k = O(1/ε3). By Lemma 3.6.2, we can construct by brute
force a code C1 : n×Fq → [k]m that can be decoded from 1−ε/4 fraction of worst-case insertions
and deletions. We can concatenate C1 with an outer Reed-Solomon code of rate (ε/8)4.

The rate of the inner code is Ω(ε), and the rate of the outer code is Ω(ε4), so the total rate is
Ω(ε5).

By Lemma 3.6.1, LCS(C) ≤ (ε/8)4 + 2(ε/4) < ε, so C is capable of decoding up to 1 − ε
fraction of insertions and deletions. Encoding in C1 is done by brute force in time Npoly(1/ε), so by
Theorem 3.5.1, C is capable of decoding up to 1−ε/4−4((ε/8)4)1/4 > 1−ε fraction of worst-case
insertions and deletions in time O(N3(Npoly(1/ε) + poly logN)) = Npoly(1/ε), as desired.

Remark. Our construction only requires that the inner code can be decoded from 1− ε/4 fraction
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of worst-case insertions and deletions. By using the concatenated code of Theorem 3.6.3 as the
inner code of the same construction (thus giving us two levels of concatenation), we can reduce
the time complexity significantly, at the cost of a polynomial reduction in other parameters of the
code, as summarized below.
Theorem 3.6.4. For any ε > 0, there exists a family of constant rate codes over an alphabet of size
poly(1/ε) and rate Ω(ε9) that can be decoded from a 1 − ε fraction of insertions/deletions. Fur-
thermore, this code is constructible, encodable, and decodable in time poly(N) · (logN)poly(1/ε).

3.7 High noise: Decoding against 1 − 2
k+
√
k
− ε insertions/dele-

tions
First, we summarize an existence result from [4].
Lemma 3.7.1 (Theorem 18 of [4]). Fix an integer k ≥ 2 and γ > 0. Then there are infinitely many
N for which there is a concatenated Reed Solomon code C ⊆ [k]N that has outer rate at least
γ/2, has total rate at least (γ/k)O(γ−3), is decodable under 1 − 2

k+
√
k
− γ fraction of insertions

and deletions, has an inner code decodable under 1− 2
k+
√
k
− γ/4 insertions and deletions, and is

constructible in time O(N log2N).
Theorem 3.7.2. Fix an integer k ≥ 2 and ε > 0. For infinitely many and sufficiently large N ,
there is an explicit code C ⊆ {0, 1}N with rate r(k, ε) = (ε/k)O(ε−12) over a size k alphabet
that can be decoded from a 1 − 2

k+
√
k
− ε fraction of worst-case insertions and deletions in time

Ok,ε(N
3 polylog(N)). Furthermore, this code is constructible in time Ok,ε(N log2N).

Proof. Consider the codes C given by Lemma 3.7.1 with γ = 2(ε/5)4. C has outer rate at least
γ/2 = (ε/5)4 and total rate at least (γ/k)O(γ−3). Furthermore, C can decode up to 1 − 2

k+
√
k
− γ

fraction of insertions/deletions, and the inner code of C can decode 1 − 2
k+
√
k
− γ/4 fraction of

insertions/deletions. Thus, by Theorem 3.5.1, C can efficiently decode up to 1 − 2
k+
√
k
− γ/4 −

4(γ/2)1/4 > 1− 2
k+
√
k
− ε fraction of insertions/deletions.
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Chapter 4

Random deletions

4.1 Introduction
We consider the problem of designing error-correcting codes for reliable and efficient communica-
tion on the binary deletion channel. The binary deletion channel (BDC) deletes each transmitted
bit independently with probability p, for some p ∈ (0, 1) which we call the deletion probability.
Crucially, the location of the deleted bits are not known at the decoder, who receives a subsequence
of the original transmitted sequence. The loss of synchronization in symbol locations makes the
noise model of deletions challenging to cope with. As one indication of this, we still do not know
the channel capacity of the binary deletion channel. Quoting from the first page of Mitzenmacher’s
survey [35]: “Currently, we have no closed-form expression for the capacity, nor do we have an
efficient algorithmic means to numerically compute this capacity.” This is in sharp contrast with
the noise model of bit erasures, where each bit is independently replaced by a ’?’ with probability
p (the binary erasure channel (BEC)), or of bit errors, where each bit is flipped independently with
probability p (the binary symmetric channel (BSC)). The capacity of the BEC and BSC equal 1−p
and 1−h(p) respectively, and we know codes of polynomial complexity with rate approaching the
capacity in each case.

In §4.2, we survey the existing literature on the binary deletion channel and similar models of
synchronization errors. We then present a result from [18] in §4.3 and a proof in §4.4. We then
conclude in §4.5 with a discussion of possible alternatives to coding against the BDC and potential
limitations of such approaches.

4.2 Prior work
The capacity of the binary deletion channel is clearly at most 1 − p, the capacity of the simpler
binary erasure channel. Diggavi and Grossglauser [11] establish that the capacity of the deletion
channel for p ≤ 1

2
is at least 1 − h(p). Kalai, Mitzenmacher, and Sudan [23] proved this lower

bound is tight as p → 0, and Kanoria and Montanari [24] determined a series expansion that can
be used to determine the capacity exactly. Turning to large p, Rahmati and Duman [36] prove that
the capacity is at most 0.4143(1− p) for p ≥ 0.65. Drinea and Mitzenmacher [12, 13] proved that
the capacity of the BDC is at least (1− p)/9, which is within a constant factor of the upper bound.
In particular, the capacity is positive for every p < 1, which is perhaps surprising. The asymptotic
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behavior of the capacity of the BDC at both extremes of p→ 0 and p→ 1 is thus known.
This work is concerned with constructive results for coding for the binary deletion channel.

That is, we seek codes that can be constructed, encoded, and decoded from deletions caused by
the BDC, in polynomial time. Recently, there has been good progress on codes for adversarial
deletions, including constructive results. Here the model is that the channel can delete an arbitrary
subset of pn bits in the n-bit codeword. A code capable of correcting pn worst-case deletions
can clearly also correct deletions caused by a BDC with deletion probability (p − ε) with high
probability, so one can infer results for the BDC from some results for worst-case deletions. For
small p, Guruswami and Wang [20] constructed binary codes of rate 1 − O(

√
p) to efficiently

correct a p fraction worst-case deletions. So this also gives codes of rate approaching 1 for the BDC
when p → 0. For larger p, Kash et al. [25] proved that randomly chosen codes of small enough
rate R > 0 can correctly decode against pn adversarial deletions when p ≤ 0.17. Even non-
constructively, this remained the best achievability result in terms of correctable deletion fraction
until the recent work of Bukh, Guruswami, and Håstad [4] who constructed codes of positive rate
efficiently decodable against pn adversarial deletions for any p <

√
2−1. For adversarial deletions,

it is impossible to correct a deletion fraction of 1/2, whereas the capacity of the BDC is positive
for all p < 1. So solving the problem for the much harder worst-case deletions is not a viable
approach to construct positive rate codes for the BDC for p > 1/2.

To the best of our knowledge, explicit efficiently decodable code constructions were not avail-
able for the binary deletion channel for arbitrary p < 1. We present such a construction in this
work. Our rate is worse than the (1− p)/9 achieved non-constructively, but has asymptotically the
same dependence on p for p→ 1.

One work that considers efficient recovery against random deletions is by Yazdi and Dolecek
[42]. In their setting, two parties Alice and Bob are connected by a two-way communication chan-
nel. Alice has a string X , Bob has string Y obtained by passing X through a binary deletion chan-
nel with deletion probability p � 1, and Bob must recover X . They produce a polynomial-time
synchronization scheme that transmits a total of O(pn log(1/p)) bits and allows Bob to recover X
with probability exponentially approaching 1.

For other models of random synchronization errors, Kirsch and Drinea [26] prove information
capacity lower bounds for channels with i.i.d deletions and duplications. Fertonani et al. [15]
prove capacity bounds for binary channels with i.i.d insertions, deletions, and substitutions.

For deletion channels over non-binary alphabets, Rahmati and Duman [36] prove a capacity
upper bound of C2(p)+(1−p) log(|Σ|/2), where C2(p) denotes the capacity of the binary deletion
channel with deletion probability p, when the alphabet size |Σ| is even. In particular, using the best
known bound for C2(p) of C2(p) ≤ 0.4143(1− p), the upper bound is (1− p)(log |Σ| − 0.5857).

4.3 New result on efficiently coding against random deletions

We consider the problem of constructing explicit codes with efficient decoding for the binary dele-
tion channel. Here our result is the following. Our rate is worse than the (1 − p)/9 achieved
non-constructively, but has asymptotically the same dependence on p for p→ 1.
Theorem 4.3.1. Let p ∈ (0, 1). There is an explicit a family of binary codes that (1) has rate
(1−p)/110, (2) is constructible in polynomial time, (3) encodable in timeO(N), and (3) decodable
with high probability on the binary deletion channel with deletion probability p in time O(N2).
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(Here N is the block length of the code)
Our construction concatenates a high rate outer code over a large alphabet that is efficiently

decodable against a small fraction of adversarial insertions and deletions, with a good inner binary
code. For the outer code, we can use the recent construction of [21]. To construct the inner code,
we first choose a binary code correcting a small fraction of adversarial deletions. By concentration
bounds, duplicating bits of a codeword in a disciplined manner is effective against the random
deletion channel, so we, for some constant B, duplicate every bit of the binary code B/(1 − p)
times. We further ensure our initial binary code has only runs of length 1 and 2 to maximize the
effectiveness of duplication. We add small buffers of 0s between inner codewords to facilitate
decoding.

One might wonder whether it would be possible to use Drinea and Mitzenmacher’s existential
result [12, 13] of a (1 − p)/9 capacity lower bound as a black box inner code to achieve a better
rate together with efficient decodability. We discuss this approach in §4.5 and elaborate on what
makes such a construction difficult to implement.

4.4 Construction
We present a family of constant rate codes that decodes with high probability on a binary deletion
channel with deletion fraction p (BDCp). These codes have rate c0(1− p) for an absolute positive
constant c0, which is within a constant of the upper bound (1 − p), which even holds for the
erasure channel. By Drinea and Mitzenmacher [12] the maximum known rate of a non-efficiently
correctable binary deletion channel code is (1− p)/9.

The construction is based on the intuition that deterministic codes are better than random codes
for the deletion channel. Indeed, for adversarial deletions, length n random codes correct at most
0.22n deletions [25], while explicitly constructed codes can correct close to (

√
2 − 1)n deletions

[4].
We begin by borrowing a result from [20].

Lemma 4.4.1 (Corollary of Lemma 2.3 of [20]). For every binary string c ∈ {0, 1}m, there are at
most δm

(
m

(1−δ)m

)2 strings c′ ∈ {0, 1}m such that it is possible to apply δm deletions to c and c′ and
obtain the same result.

The next lemma gives codes against a small fraction of adversarial deletions with an additional
run-length constraint on the codewords.
Lemma 4.4.2. Let δ > 0. There exists a length m binary code of rate R = 0.6942 − 2h(δ) −
O(log(δm)/m) correcting a δ fraction of adversarial insertions and deletions such that each
codeword contains only runs of size 1 and 2. Furthermore this code is constructible in time
Õ(2(0.6942+R)m).

Proof. It is easy to show that the number of codewords with only runs of 1 and 2 is Fm, the mth
Fibonacci number, and it is well known that Fm = ϕm + o(1) ≈ 20.6942m where ϕ is the golden
ratio. Now we construct the code by choosing it greedily. Each codeword is confusable with at
most δm

(
m

(1−δ)m

)2 other codewords, so we can choose at least

20.6942m

δm
(

m
(1−δ)m

)2 = 2m(0.6942−2h(δ)−O(log(δm)/m)) (4.1)
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codewords.
We can find all words of length m whose run lengths are only 1 and 2 by recursion in time

O(Fm) = O(20.6942m). Running the greedy algorithm, we need to, for at most Fm · 2Rm pairs of
such words, determine whether the pair is confusable (we only need to check confusability of a
candidate word with words already added to the code). Checking confusability of two words under
adversarial deletions reduces to checking whether the longest common subsequence is at least
(1− δ)m, which can be done in time O(m2). This gives an overall runtime of O(m2 ·Fm · 2Rm) =
Õ(2(0.6942+R)m).

Corollary 4.4.3. There exists a constant m∗0 such that for all m ≥ m∗0, there exists a length m
binary code of rate Rin = 0.558 correcting a δin = 0.0083 fraction of adversarial insertions and
deletions such that each codeword contains runs of size 1 and 2 only and each codeword starts and
ends with a 1. Furthermore this code is constructible in time O(2m).

Our construction utilizes the following result as a black box for efficiently coding against an
arbitrary fraction of insertions and deletions with rate approaching capacity.
Theorem 4.4.4 (Theorem 1.1 of [21]). For any 0 ≤ δ < 1 and ε > 0, there exists a code C over
alphabet Σ with |Σ| = poly(1/ε) with block length n, rate 1 − δ − ε, and is efficiently decodable
from δn insertions and deletions. The code can be constructed in time poly(n), encoded in time
O(n), and decoded in time O(n2).

We apply Theorem 4.4.4 for small δ, so we also could use the high rate binary code construction
of [16].

We now turn to our code construction for Theorem 4.3.1.
The code. Let

B = 60, B∗ = 1.43̄B = 86, η =
1

1000
, δout =

1

1000
. (4.2)

Let
m0 = max(α log(1/δout)/η,m

∗
0) (4.3)

where α is a sufficiently large constant and m∗0 is given by Corollary 4.4.3. Let εout > 0 be small
enough such that the alphabet Σ, given by Theorem 4.4.4 with ε = εout and δout, satisfies |Σ| ≥ m0,
and let Cout be the corresponding code.

Let Cin : |Σ| → {0, 1}m be the code given by Corollary 4.4.3, and let Rin, δin, and m =
1
Rin log |Σ| = O(log(1/ε)) be the rate, deletion fraction, and block length of the code, respectively
(Rin and δin are given by Corollary 4.4.3). Each codeword of Cin has runs of length 1 and 2 only,
and each codeword starts and ends with a 1. This code is constructed greedily.

Our code is a modified concatenated code. We encode our message as follows.
• Outer Code. First, encode the message into the outer code, Cout, to obtain a word c(out) =
σ1 . . . σn.

• Concatenation with Inner Code. Encode each outer codeword symbol σi ∈ Σ by the inner
code Cin.

• Buffer. Insert a buffer of ηm 0s between adjacent inner codewords. Let the resulting word
be c(cat). Let c(in)

i = Cin(σi) denote the encoded inner codewords of c(cat).
• Duplication. After concatenating the codes and inserting the buffers, replace each charac-

ter (including characters in the buffers) with dB/(1− p)e copies of itself to obtain a word
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of length N := Bnm/(1 − p). Let the resulting word be c, and the corresponding inner
codewords be {c(dup)

i }.
Rate. The rate of the outer code is 1− δout − εout, the rate of the inner code is Rin, the buffer

and duplications multiply the rate by 1
1+η

and (1− p)/B respectively. This gives a total rate that is
slightly greater than (1− p)/110.

Notation. Let s denote the received word after the codeword c is passed through the deletion
channel. Note that (i) every bit of c can be identified with a bit in c(cat), and (ii) each bit in the
received word s can be identified with a bit in c. Thus, we can define relations f (dup) : c(cat) →
c, and f (del) : c → s (that is, relations on the indices of the strings). These are not functions
because some bits may be mapped to multiple (for f (dup)) or zero (for f (del)) bits. Specifically,
f (del) and f (dup) are the inverses of total functions. In this way, composing these relations (i.e.
composing their inverse functions) if necessary, we can speak about the image and pre-image of
bits or subwords of one of c(cat), c, and s under these relations. For example, during the Duplication
step of encoding, a bit 〈bj〉 of c(cat) is replaced withB/(1−p) copies of itself, so the corresponding
string 〈bj〉B/(1−p) in c forms the image of 〈bj〉 under f (dup), and conversely the pre-image of the
duplicated string 〈bj〉B/(1−p) is that bit 〈bj〉.

Decoding algorithm.
• Decoding Buffer. First identify all runs of 0s in the received word with length at leastBηm/2.

These are our decoding buffers that divide the word into decoding windows, which we iden-
tify with subwords of s.

• Deduplication. Divide each decoding window into runs. For each run, if it has strictly more
than B∗ copies of a bit, replace it with as two copies of that bit, otherwise replace it with
one copy. For example, 〈0〉2B gets replaced with 〈00〉 while 〈0〉B gets replaced with 〈0〉. For
each decoding window, concatenate these runs of length 1 and 2 in their original order in the
decoding window to produce a deduplicated decoding window.

• Inner Decoding. For each deduplicated decoding window, decode an outer symbol σ ∈ Σout

from each decoding window by running the brute force deletion correction algorithm forCin.
That is, for each deduplicated decoding window s

(in)
∗ , find by brute force a codeword c(in)

∗

in Cin that such that ∆i/d(c
(in)
∗ , s

(in)
∗ ) ≤ δinm. If c(in)

∗ is not unique or does not exist, do not
decode an outer symbol σ from this decoding window. Concatenate the decoded symbols σ
in the order in which their corresponding decoding windows appear in the received word s
to obtain a word s(out).

• Outer Decoding. Decode the message m from s(out) using the decoding algorithm of Cout in
Theorem 4.4.4.

For purposes of analysis, label as s(dup)
i the decoding window whose pre-image under f (del) con-

tains indices in c(dup)
i . If this decoding window is not unique (that is, the image of c(dup)

i contains
bits in multiple decoding windows), then assign s(dup)

i arbitrarily. Note this labeling may mean
some decoding windows are unlabeled, and also that some decoding windows may have multiple
labels. In our analysis, we show both occurrences are rare. For a decoding window s

(dup)
i , denote

the result of s(dup)
i after Deduplication to be s(in)

i .
The following diagram depicts the encoding and decoding steps. The pair ({c(in)

i }i, c(cat))

indicates that, at that step of encoding, we have produced the word c(cat), and the sequence {c(in)
i }i
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are the “inner codewords” of c(cat) (that is, the words in between what would be identified by the
decoder as decoding buffers). The pair ({c(dup)

i }i, c) is used similarly.

m
Cout−−→ c(out) Cin,Buf−−−−−→

({
c

(in)
i

}
i
, c(cat)

)
Dup−−→

({
c

(dup)
i

}
i
, c
)

s
DeBuf−−−−→

{
s

(dup)
i

}
i

DeDup−−−−→
{
s

(in)
i

}
i

Decin−−−→ s(out) Decout−−−−→ m

BDC

Runtime. The outer code is constructible in poly(n) time and the inner code is constructible
in time O(2m) = poly(1/ε), which is a constant, so the total construction time is poly(N).

Encoding in the outer code is linear time, each of the n inner encodings is constant time, and
adding the buffers and applying duplications each can be done in linear time. The overall encoding
time is thus O(N).

The Buffer step of the decoding takes linear time. The Deduplication step of each inner code-
word takes constant time, so the entire step takes linear time. For each inner codeword, Inner
Decoding takes time O(m22m) = poly(1/ε) by brute force search over the 2m possible code-
words: checking each of the 2m codewords is a longest common subsequence computation and
thus takes time O(m2), giving a total decoding time of O(m22m) for each inner codeword. We
need to run this inner decoding O(n) times, so the entire Inner Decoding step takes linear time.
The Outer Decoding step takes O(n2) time by Theorem 4.4.4. Thus the total decoding time is
O(N2).

Correctness. Note that, if an inner codeword is decoded incorrectly, then one of the following
holds.

1. (Spurious Buffer) A spurious decoding buffer is identified in the corrupted codeword during
the Buffer step.

2. (Deleted Buffer) A decoding buffer neighboring the codeword is deleted.

3. (Inner Decoding Failure) Running the Deduplication and Inner Decoding steps on s
(dup)
i

computes the inner codeword incorrectly.
We show that, with high probability, the number of occurrences of each of these events is small.

The last case is the most nontrivial, so we deal with it first, assuming the codeword contains
no spurious decoding buffers and the neighboring decoding buffers are not deleted. In particular,
there is an i such that our decoding window s

(dup)
i whose pre-image under f (del) only contains bits

in c(dup)
i (because no deleted buffer) and no bits in the image of c(dup)

i appear in any other decoding
window (because no spurious buffer).

Recall that the inner codeCin can correct against δin = 0.0083 fraction of adversarial insertions
and deletions. Suppose an inner codeword c(in)

i = r1 . . . rk ∈ Cin has k runs rj each of length 1 or
2, so that m/2 ≤ k ≤ m.
Definition 4.4.5. A subword of α identical bits in the received word s is
• type-0 if α = 0
• type-1 if α ∈ [1, B∗]
• type-2 if α ∈ [B∗ + 1,∞).

By abuse of notation, we say that a length 1 or 2 run rj of the inner codeword c(in)
i has type-tj if
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the image of rj in s under f (del) ◦ f (dup) forms a type-tj subword.
Let t1, . . . , tk be the types of the runs r1, . . . , rk, respectively. The image of a run of length rj

under f (del) ◦ f (dup) has length distributed as Binomial(B|rj|/(1 − p), 1 − p). Let δ = 0.43̄ be
such that B∗ = (1 + δ)B. By the Chernoff bounds in Lemma 2.2.1, the probability that a run rj of
length 1 is type-2 is

Pr
Z∼Binomial(B/(1−p),1−p)

[Z > B∗] <
(
eδ/(1 + δ)1+δ

)B
< 0.0071. (4.4)

Similarly, the probability that a run rj of length-2 is type-1 is at most

Pr
Z∼Binomial(2B/(1−p),1−p)

[Z ≤ B∗] < e−((1−δ)/2)2B < 0.0081. (4.5)

The probability any run is type-0 is at most PrZ∼Binomial(B/(1−p),1−p)[Z = 0] < e−B < 10−10.
We now have established that, for runs rj in c(in)

i , the probability that the number of bits in
the image of rj in s under f (del) ◦ f (dup) is “incorrect” (between 1 and B∗ for length 1 runs, and
greater than B∗ for length 2 runs), is at most 0.0081, which is less than δin. If the only kinds of
errors in the Local Decoding step were runs of c of length 1 becoming runs of length 2 and runs
of length 2 become runs of length 1, then we have that, by concentration bounds, with probability
1 − 2−Ω(m), the number of insertions deletions needed to transform s

(in)
i back into c(in)

i is at most
δinm, in which case s(in)

i gets decoding to the correct outer symbol using Cin.
However, we must also account for the fact that some runs rj of c(in)

i may become deleted
completely after duplication and passing through the deletion channel. That is, the image of rj in
s under f (del) ◦ f (dup) is empty, or, in other words, rj is type-0. In this case the two neighboring
runs rj−1 and rj+1 appear merged together in the Deduplication step of decoding. For example, if
a run of 1s was deleted completely after duplication and deletion, its neighboring runs of 0s would
be interpreted by the decoder as a single run. Fortunately, as we saw, the probability that a run is
type-0 is extremely small (< 10−9), and we show each type-0 run only increases ∆i/d(c

(in)
i , s

(in)
i )

by a constant. We show this constant is at most 6.
Let Yj be a random variable that is 0 if |rj| = tj , 1 if {|rj|, tj} = {1, 2}, and 6 if tj = 0. We

claim
∑k

j=1 Yj is an upper bound on ∆i/d(c
(in)
i , s

(in)
i ). To see this, first note that if tj 6= 0 for all i,

then the number of runs of c(in)
i and s(in)

i are equal, so we can transform c
(in)
i into s(in)

i by adding a
bit to each length-1 type-2 run of c(in)

i and deleting a bit from each length-2 type-1 run of s(in)
i .

Now, if some number, `, of the tj are 0, then at most 2` of the runs in c(in)
i become merged

with some other run (or a neighboring decoding buffer) after duplication and deletion. Each set
of consecutive runs rj, rj+2, . . . , rj+2j′ that are merged after duplication and deletion gets replaced
with 1 or 2 copies of the corresponding bit. For example, if r1 = 〈11〉, r2 = 〈0〉, r3 = 〈11〉, and
if after duplication and deletion, 2B bits remain in each, and r2 is type-0, then the image of r1r2r3

under f (del) ◦ f (dup) is 〈1〉4B, which gets decoded as 〈11〉 in the Deduplication step because 〈1〉4B
is type-2. To account for the type-0 runs in transforming c(in)

i into s(in)
i , we (i) delete at most two

bits from each of the ` type-0 runs in c(in)
i and (ii) delete at most two bits for each of at most 2`

merged runs in c(in)
i . The total number of additional insertions and deletions required to account

for type-0 runs of c is thus at most 6`, so we need at most 6 insertions and deletions to account for
each type-0 run.
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Our analysis covers the case when some bits in the image of c(in)
i under f (del) ◦ f (dup) are

interpreted as part of a decoding buffer. Recall that inner codewords start and end with a 1, so
that r1 ∈ {〈1〉, 〈11〉} for every inner codeword. If, for example, t1 = 0, that is, the image under
f (del) ◦ f (dup) of the first run of 1s, r1, is the empty string, then the bits of r2 are interpreted as
part of the decoding buffer. In this case too, our analysis tells us that the type-0 run r1 increases
∆i/d(c

(in)
i , s

(in)
i ) by at most 6.

We conclude
∑k

j=1 Yj is an upper bound for ∆i/d(c
(in)
i , s

(in)
i ).

Note that if rj has length 1, then by (4.4) we have

E[Yj] = 1 ·Pr[rj is type-2] + 6 ·Pr[rj is type-0] < 1 · 0.0071 + 6 · 10−9 < 0.0082. (4.6)

Similarly, if rj has length 2, then by (4.5) we have

E[Yj] = 1 ·Pr[rj is type-1] + 6 ·Pr[rj is type-0] < 1 · 0.0081 + 6 · 10−9 < 0.0082. (4.7)

Thus E[Yj] < 0.0082 for all i. We know the word s(in)
i is decoded incorrectly (i.e. is not decoded

as σi) in the Inner Decoding step only if ∆i/d(c
(in)
i , s

(in)
i ) > δinm. The Yj are independent, so

Lemma 2.2.2 gives

Pr[s
(in)
i decoded incorrectly] ≤ Pr[Y1 + Y2 + · · ·+ Yk ≥ δinm]

≤ Pr[Y1 + Y2 + · · ·+ Yk ≥ δink]

≤ exp

(
−(δin − 0.0082)2k

3 · 6 · δin

)
≤ exp (−Ω(m)) (4.8)

where the last inequality is given by k ≥ m/2. Since our m ≥ Ω(log(1/δout)) is sufficiently large,
we have the probability s(in)

i is decoded incorrectly is at most δout/10. If we let Y (i)
j denote the Yj

corresponding to inner codeword c(in)
i , the eventsEi given by

∑
j Y

(i)
j ≥ δinm are independent. By

concentration bounds on the events Ei, we conclude the probability that there are at least δoutn/9
incorrectly decoded inner codewords is 2−Ω(n).

Our aim is to show that the number of spurious buffers, deleted buffers, and inner decoding
failures is small with high probability. So far, we have shown that, with high probability, assuming
a codeword is not already affected by spurious buffers and neighboring deleted buffers, the number
of inner decoding failures is small. We now turn to showing the number of spurious buffers is likely
to be small.

A spurious buffer appears inside an inner codeword if many consecutive runs of 1s are type-0.
A spurious buffer requires at least one of the following: (i) a codeword contains a sequence of
at least ηm/5 consecutive type-0 runs of 1s, (ii) a codeword contains a sequence of ` ≤ ηm/5
consecutive type-0 runs of 1s, such that, for the ` + 1 consecutive runs of 0s neighboring these
type-0 runs of 1s, their image under f (del) ◦ f (dup) has at least 0.5ηm 0s. We show both happen
with low probability within a codeword.

A set of ` consecutive type-0 runs of 1s occurs with probability at most 10−10`. Thus the
probability an inner codeword has a sequence of ηm/5 consecutive type-0 runs of 1s is at most
m2 · 10−10ηm/5 = exp(−Ω(ηm)). Now assume that in an inner codeword, each set of consecutive
type-0 runs of 1s has size at most ηm/5. Each set of ` consecutive type-0 runs of 1s merges ` + 1
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consecutive runs of 0s in c, so that they appear as a single longer run in s. The sum of the length of
these `+ 1 runs is some number `∗ that is at most 2`+ 2. The number of bits in the image of these
runs of c(in)

i under f (del)◦f (dup) is distributed as Binomial(`∗B/(1−p), 1−p). This has expectation
`∗B ≤ 0.41Bηm, so by concentration bounds, the probability this run of s has length at least
0.5Bηm, i.e. is interpreted as a decoding buffer, is at most exp(−Ω(ηm)). Hence, conditioned on
each set of consecutive type-0 runs of 1s having size at most ηm/5, the probability of having no
spurious buffers in a codeword is at least 1− exp(−Ω(ηm)). Thus the overall probability there are
no spurious buffers a given inner codeword is at least (1 − exp(−Ω(ηm))(1 − exp(−Ω(ηm))) =
1 − exp(−Ω(ηm)). Since each inner codeword contains at most m candidate spurious buffers
(one for each type-0 run of 1s), the expected number of spurious buffers in an inner codeword
is thus at most m · exp(−Ω(ηm)). By our choice of m ≥ Ω(log(1/δout)/η), this is at most
δout/10. The occurrence of conditions (i) and (ii) above are independent between buffers. The
total number of spurious buffers thus is bounded by the sum of n independent random variables
each with expectation at most δout/10. By concentration bounds, the probability that there are at
least δoutn/9 spurious buffers is 2−Ω(n).

A deleted buffer occurs only when the image of the ηm 0s in a buffer under f (del) ◦ f (dup) is at
mostBηm/2. The number of such bits is distributed as Binomial(Bηm/(1−p), 1−p). Thus, each
buffer is deleted with probability exp(−Bηm) < δout/10 by our choice of m ≥ Ω(log(1/δout)/η).
The events of a buffer receiving too many deletions are independent across buffers. By concentra-
tion bounds, the probability that there are at least δoutn/9 deleted buffers is thus 2−Ω(n).

Each inner decoding failure, spurious buffer, and deleted buffer increases ∆i/d(c
(out)
i , s

(out)
i ) by

at most 3: inner decoding failure causes up to 1 insertion and 1 deletion; spurious buffer causes
up to 1 deletion and 2 insertions; and deleted buffer causes up to 2 deletions and 1 insertion. Our
message is decoded incorrect if ∆i/d(c

(out)
i , s

(out)
i ) > δoutn. Thus, there is a decoding error in the

outer code only if at least one of (i) the number of incorrectly decoded inner codewords, (ii) the
number of spurious buffers, or (iii) the number of deleted buffers is at least δoutn/9. However, by
the above arguments, each is greater than δoutn/9 with probability 2−Ω(n), so there is a decoding
error with probability 2−Ω(n). This concludes the proof of Theorem 4.3.1.

4.5 Possible alternative constructions
As mentioned in the introduction, Drinea and Mitzenmacher [12, 13] proved that the capacity of
the BDCp is at least (1− p)/9. However, their proof is nonconstructive and they do not provide an
efficient decoding algorithm.

One might think it is possible to use Drinea and Mitzenmacher’s construction as a black box.
We could follow the approach in this thesis, concatenating an outer code given by [21] with the
rate (1 − p)/9 random-deletion-correcting code as a black box inner code. The complexity of the
Drinea and Mitzenmacher’s so-called jigsaw decoding is not apparent from [13]. However, the
inner code has constant length, so construction, encoding, and decoding would be constant time.
Thus, the efficiency of the inner code would not affect the asymptotic runtime.

The main issue with this approach is that, while the inner code can tolerate random deletions
with probability p, inner codeword bits are not deleted in the concatenated construction according
to a BDCp; the 0 bits closer to the buffers between the inner codewords are deleted with higher
probability because they might be “merged” with a buffer. For example, if an inner codeword
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is 〈101111〉, then because the codeword is surrounded by buffers of 0s, deleting the leftmost 1
effectively deletes two bits because the 0 is interpreted as part of the buffer. While this may not
be a significant issue because the distributions of deletions in this deletion process and BDCp are
quite similar, much more care would be needed to prove correctness.

Our construction does not run into this issue, because our transmitted codewords tend to have
many 1s on the ends of the inner codewords. In particular, each inner codeword ofCin has 1s on the
ends, so after the Duplication step each inner codeword hasB/(1−p) or 2B/(1−p) 1s on the ends.
The 1s on the boundary of the inner codeword will all be deleted with probability ≈ exp(−B),
which is small. Thus, in our construction, it is far more unlikely that bits are merged with the
neighboring decoding buffer, than if we were to use a general inner code construction. Further-
more, we believe our construction based on bit duplication of a worst-case deletion correcting code
is conceptually simpler than appealing to an existential code.

As a remark, we presented a construction with rate (1 − p)/110, but using a randomized en-
coding we can improve the constant from 1/110 to 1/60. We can modify our construction so that,
during the Duplication step of decoding, instead of replacing each bit of c(cat) with a fix number
B/(1 − p) copies of itself, we instead replaced each bit independently with Poisson(B/(1 − p))
copies of itself. Then the image of a run rj under duplication and deletion is distributed as
Poisson(B), which is independent of p. Because we don’t have a dependence on p, we can tighten
our bounding in (4.4) and (4.5). To obtain (1 − p)/60, we can take B = 28.12 and set B∗ = 40,
where B∗ is the threshold after which runs are decoded as two bits instead of one bit in the Dedu-
plication step. The disadvantage of this approach is that we require our encoding to be randomized,
whereas the construction presented above uses deterministic encoding.
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Chapter 5

Oblivious deletions

5.1 Introduction
We now turn to a natural model that bridges between the adversarial and random deletion models,
namely oblivious deletions. Here we assume that an arbitrary subset of pn locations of the code-
word can be deleted, but these positions must be picked without knowledge of the codeword. The
oblivious model is well-motivated in settings where the noise may be mercurial and caused by hard
to model physical phenomena, but not by an adversary.

If the code is deterministic, tackling oblivious deletions is equivalent to recovering from worst-
case deletions. We allow the encoder to be randomized, and require that for every message m and
every deletion pattern τ , most encodings of m can be decoded from the deletion pattern τ . The
randomness used at the encoding is private to the encoder and is not needed at the decoder, which
we require to be deterministic. Note that the oblivious model generalizes random deletions, as
deleting each bit independently with probability p is oblivious to the actual codeword, and with
high probability one has≈ pn deletions. Of course, any code which is decodable against pn adver-
sarial deletions is decodable also against pn oblivious deletions, even without any randomization
in the encoding. To our knowledge, before [17], there were no known results on coding against
oblivious deletions.

In this chapter, we discuss a new result, Theorem 5.2.1, in [17], on oblivious deletions, in §5.2.
We then review the relevant literature in §5.3. We provide a outline of our construction and proof
in §5.4, and we give a full proof in §5.5.

5.2 New results on codes against oblivious deletions

Perhaps surprisingly, we prove that in the oblivious model, the limit of p ≤ 1/2 does not apply,
and in fact one can correct a deletion fraction p approaching 1. This generalizes the result that one
can correct a fraction p→ 1 of random deletions.
Theorem 5.2.1 (Main). For every p < 1, there existsR > 0 and a code family with a randomized
encoder Enc : {0, 1}Rn → {0, 1}n and (deterministic) decoder Dec : {0, 1}(1−p)n → {0, 1}Rn ∪
{⊥} such that for all deletion patterns τ with pn deletions and all messages m ∈ {0, 1}Rn,

Pr[Dec(τ(Enc(m))) 6= m] ≤ o(1) ,
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where the probability is over the randomness of the encoder (which is private to the encoder and
not known to the decoder).

The above result is implied by deterministic codes C decodable from arbitrary pn deletions
under average-error criterion; i.e., there is a decoding function Dec : {0, 1}(1−p)n → C such that
for every deletion pattern τ with pn deletions, for most codewords c ∈ C, Dec(τ(c)) = c. We
stress that the above is an existential result, and the codes guaranteed by the above theorem are not
explicitly specified. The decoding algorithm amounts to looking for a codeword which contains
the received bit string as a subsequence, and outputting it if there is a unique such codeword.

5.3 Related work
The model of oblivious errors (such as bit flips) has has been studied in the information-theory lit-
erature as a particular case of arbitrarily varying channels with state constraints [31] (see the related
work section of [19] for more background on this connection). In particular, for the case of bit flips,
the capacity against the model of pn oblivious bit flips (for p ≤ 1/2) equals 1 − h(p), matching
the Shannon capacity of the binary symmetric channel that flips each bit independently with prob-
ability p. (This special case was re-proved in [30] by a different simpler random coding argument
compared to the original works [6, 7].) Similarly, the capacity against the model of pn oblivious
erasures is 1 − p, matching the Shannon capacity of the binary erasure channel. Explicit codes of
rate approaching 1 − h(p) to correct pn oblivious bit flips (in the sense of Theorem 5.2.1, with
randomized encoding) were given in [19]. This work also considered computationally bounded
noise models, such as channels with bounded memory or with small circuits, and gave optimal rate
codes for list decoding against those models. These models are more general than oblivious errors,
but still not as pessimistic as adversarial noise.

Notice that in the case of both erasures and errors, the capacity in the oblivious and random
models were the same. It is not clear if this is the case for deletions. The rate of the codes we
guarantee in Theorem 5.2.1 for p → 1 are much worse than the Ω(1 − p) lower bound known for
random deletions.

5.4 Outline of construction and proof

Our first, naive attempt at this problem is to choose a random subset of 2RN codewords in {0, 1}N .
This technique, however, does not work in the same way it does for oblivious bit-flips. See Ap-
pendix C for a discussion on the difficulties of this approach.

Instead of proving Theorem 5.2.1 directly, we prove a related theorem for decoding in the
average case. First, a definition.
Definition 5.4.1. We say a (non-stochastic) binary code C with rate R and length N decodes pN
deletions in the average case if for any deletion pattern τ deleting pN bits, we have

|{x ∈ C : ∃y ∈ C s. t. x 6= y and τ(x) ≤ y}| ≤ oN(|C|). (5.1)

Theorem 5.4.2 (Average Case Deletions). Let p ∈ (0, 1). There exists a constantR such that there
exists infinitely many N for which there is a rate R code C ⊆ {0, 1}N that decodes pN deletions
in average case.
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It is standard to show that oblivious and average-case decoding are equivalent. In particular
Theorem 5.4.2 implies Theorem 5.2.1. For completeness we provide a proof of this implication in
Appendix B. In fact the capacity for decoding in the average case is the same as the capacity for
the oblivious channel. Roughly, if we have a lengthN code C with rateR that decodes against pN
deletions in the average case, then we can group the codewords into sets of size 20.01Rn. Then we
associate every message with a set of codewords and encode the message by randomly choosing
a codeword from its set. Our decoding function simply takes a received word s and looks for a
codeword c such that s v c, i.e. c is a superstring of s. If there is exactly one such c, output
the associated codeword, otherwise output ⊥. Using the fact that C decodes pN deletions in the
average case, we can show that for all deletion patterns τ , only a few codewords do not decode
correctly via unique decoding in our new stochastic code.

We now outline our construction for Theorem 5.4.2. Our construction for the average deletion
code uses the “clean construction” construction from [4] with appropriately selected parameters.
The idea is to choose a concatenated code such that the inner code widely varies in the number of
runs between codewords. Specifically, we choose sufficiently large constants R and K and set our
inner code to have length L = 2RK . For i = 1, 2, . . . , K, set our inner codewords to be

gi =
(

0R
i−1

1R
i−1
)L/(2Ri−1)

(5.2)

where 0k and 1k denote strings of k 0s and 1s, respectively. In this way, the number of runs between
any two codewords differs by a factor of at least R. Our outer code is a subset of [K]n, so that
the total code length is N = nL, and we concatenate the code via a function ψ : [K]∗ → {0, 1}∗
that replaces a symbol i ∈ [K] with the string gi ∈ {0, 1}L. The outer code is chosen via a
random process, detailed in the following paragraphs; the process throws out a small subset of
“bad” elements of [K]n and chooses a constant rate code by including each remaining element
independently with some small fixed probability. Our decoding function is unique decoding. That
is, given a received word s, we find a codeword c such that s v c. If such a codeword is unique,
our decoder returns that output. Otherwise, the decoder returns ⊥.

The following example illustrates why the varying run length is powerful even for correct more
than 0.5N deletions: Suppose n = 100, p = 0.9, R � 20, our received word is s = g10

1 (that
is, 10 copies of g1 concatenated together) and our code contains the codeword c = g100

2 . Then s
is a subsequence of c if and only if we can identify each of the 10 g1s with non-overlapping bits
of c. However, since g1 contains over 20 times as many runs as g2, each g1 must be identified
with a subsequence of c spanning at least 20 inner codewords, i.e. copies of g2. This means the
subsequence s roughly must span at least 200 inner codewords, but c only has 100 inner codewords,
contradiction. While this imbalanced run-count behavior is a key to our argument, it is worth
noting that the behavior is asymmetric. In particular, while it takes R copies of g2 to produce g1 as
a subsequence, we only need two copies of g1 to produce g2 as a subsequence.

To analyze this code, we leverage the run-count behavior of the inner codewords. This contrasts
with the adversarial setting, where the run-count property of the same code is featured less centrally
in the proof of correctness [4]. We show that for any deletion pattern τ with up to pN deletions,
two random codewords X and Y are “confusable” with exponentially small probability in N . To
be precise, we have for all τ ,

Pr
X,Y∼U([K]n)

[τ(ψ(X)) v ψ(Y )] < 2−Ω(n). (5.3)
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The idea for this proof can be illustrated in the case that τ deletes only entire inner code-
words. If τ deletes pn of the n inner codewords and does not touch the remaining codewords,
then τ(ψ(X)) has the same distribution over length (1 − p)N binary strings as ψ(X ′) where
X ′ ∼ U([K](1−p)n). Thus we would like to show

Pr
X′∼U([K](1−p)n)

Y∼U([K]n)

[ψ(X ′) v ψ(Y )] < 2−Ω(n). (5.4)

Consider trying to find ψ(X ′) as a substring of ψ(Y ) where X ′ = X ′1X
′
2 . . . X

′
(1−p)n This is pos-

sible if and only if we match the bits of X ′ to bits of Y greedily. However, each inner codeword
gX′i spans a large number (R) of inner codewords of Y unless the greedy matching encounters at
least one Yj such that Yj ≤ X ′i, i.e. a higher frequency inner codeword (if Yj < X ′i, we may need
to encounter two such higher frequency inner codewords, but two is at least one). Thus, if X ′i = 1
for some i, then the number of inner codewords spanned by gX′i is approximately distributed as
Geometric(1/K). In general, conditioned on X ′i = k, the number of inner codewords spanned by
gX′i is approximately distributed as Geometric(k/K). Thus, the number of inner codewords of Y
spanned by a single inner codeword X ′i is

1

K
·Θ
(
K

1

)
+

1

K
·Θ
(
K

2

)
+ · · ·+ 1

K
·Θ
(
K

K

)
= Θ(logK) (5.5)

If we choose K so that Θ(logK) > 2
1−p then the expected number of inner codewords of Y

spanned by X ′ is more than Θ(logK) · (1 − p)n > 2n, so concentration bounds tell us that the
probability that ψ(X ′) v ψ(Y ) is exponentially small in n.

Note that there is a slight caveat to the above argument because the numbers of inner codewords
in ψ(Y ) spanned by ψ(X ′i) are not independent across all i. For example, if ψ(Y ) begins with g2g1

and ψ(X ′) begins with g1g1, then the second inner codeword of ψ(Y ) has a few “leftover bits” that
easily match with ψ(X ′)’s second inner codeword. However, we can adjust for this independence
by relaxing our analysis by a constant factor.

The above addresses the case when the deletion pattern, for each inner codeword, either deletes
the codeword entirely or does not modify it at all. We now show how to extend this to general
deletion patterns, starting with the case of p < 1

2
.

Note that the above argument only depended on the inner codewords having widely varying
runs. By a simple counting argument, we can verify that at least a (0.5− p) fraction of codewords
have at most (p + (0.5 − p)/2)L = (0.5 + p)L/2 deletions. Since we are in the regime where
p < 1

2
, applying (0.5 + p)L/2 deletions to an inner codeword with r runs cannot make the number

of runs less than (0.5 − p)r, as it can delete at most (0.5 + p)/2 fraction of the runs, and deleting
each run reduces the number of runs by at most two. If we choose R � 1/(0.5 − p)2, then
we can guarantee that even if we have a generic deletion pattern, we have a constant fraction
(0.5− p) of positions for which the run-count properties of all inner codewords in those positions
are preserved up to a factor of

√
R. Thus, as the number of runs between any two inner codewords

differs by a factor of at least R, even after these corruptions the ratio between the number of runs
of two “preserved” inner codewords is still at least

√
R. Using the same argument as above and

now requiring Θ(logK) > 2
0.5−p , we can conclude that even for general deletion patterns that the

probability that two random candidate codewords are confused is exponentially small.
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As a technical note, working with deletion patterns directly is messy as they encode a large
amount of information, much of which we do not need in our analysis. Furthermore, the caveat
mentioned in the clean deletion pattern case regarding the independence of number inner code-
words spanned by some ψ(X ′i) becomes more severe for general deletion patterns. This happens
because in general deletion patterns, especially later for p > 1

2
, the inner codewords of ψ(X)

that have preserved their run-count property might nonetheless be shorter, so many (in particular,
Θ(1/(1 − p))) inner codewords could match to single inner codewords of ψ(Y ). To alleviate this
complexity in the analysis, we introduce a technical notion called a matching intended to approx-
imate the subsequence relation. This notion allows us to capture only the run-count behavior of
the deletion patterns with respect to the inner codewords while also accounting for the lack-of-
independence caveat. For a deletion pattern τ , let σ be the associated deletion pattern such that
σ(X) to removes all outer codeword symbols except the ones in whose position τ preserves the
run-count property of all the inner codewords (these exist because we are still in the case p < 1/2).
In our proof, we argue that if τ(ψ(X)) is a subsequence of ψ(Y ), then σ(X) has a matching in Y ,
and that the probability that σ(X) has a matching in Y for two codewordsX and Y is exponentially
small.

To extend the argument for generic deletion patterns from p < 1/2 to p < 1, we must use
a “local list decoding” idea. Note that when the number of deletion patterns exceeds 1/2, for
every codeword there exists deletion patterns that destroy all or almost all of the information in
the codeword, e.g. the deletion pattern that deletes all the 1s (or 0s) of the codeword. For this
reason, codes cannot correct against more than 1/2 fraction of adversarial deletions. However, one
can show that this does not happen too frequently allowing us to correct oblivious and average
case deletions. In contrast to the p < 1/2 case where we found a small, constant fraction of inner
codeword positions in which the deletion pattern of the inner codeword preserved the run-count
property for all inner codewords, we can now find a small, constant fraction of inner codeword
positions in which the deletion pattern of the inner codeword preserves the run-count property
for all but a few inner codewords. For example, even if an inner code deletion pattern deletes
every other bit and thus deletes all the information of g1, the number of runs of g2, g3, . . . , gK
are still preserved. We call this idea “local list decoding” because while we cannot decode our
constant fraction of inner codewords uniquely, we can still pin down the inner codewords to a
few possibilities. By extending our definition of matching to account for a few inner codewords
potentially losing their run-count behavior, we can prove, just as for p < 1/2, that τ(ψ(X)) v
ψ(Y ) implies σ(X) has a matching in Y , and σ(X) having a matching in Y happens with small
probability.

At this point of the proof, we have combinatorially established everything we need to prove
that our code is decodable in the average case (and thus against oblivious deletions). That is, we
have shown that a random candidate codeword in ψ([K]n) has an exponentially small probability
of being confused with another random candidate codeword. Given that codewords have an expo-
nentially small probability of being confusable with each other, it is natural to consider choosing a
code by randomly selecting a subset of [K]n. Using this construction, we might try using concen-
tration bounds to show that, for any deletion pattern τ , the probability that we have more than ε|C|
codewords (for ε = o(N)) that are confusable with some other codeword is at most 2−ω(N), and
we can union bound over the at-most-2N choices of τ . This however does not work directly as the
decodability for a given deletion pattern τ depends on the decodability of other deletion patterns.
For example, if p > 1

2
and we happen to choose c = ψ(11 . . . 1) = 0101 . . . 01 as a codeword,
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then for any deletion pattern τ with pN deletions, c′ v c for all candidate codewords c′. From
this example alone, the probability of many codewords confusable with c is at least K−n and there
are many more examples of such easily disguised candidate codewords. Fortunately, we can prove
that the number of easily disguised candidate codewords is small. In particular, we show that the
majority of elements of ψ([K]n) are not easily disguised in all deletion patterns τ . This intuitively
makes sense because, as we have shown, in any deletion pattern τ , on average, words are disguised
as an exponentially small fraction of codewords, and because the easily disguised words tend to
be easily disguised in every deletion pattern τ . For example, ψ(11 . . . 1K) = 0101 . . . 01 is easily
disguised for any deletion pattern τ .

After throwing out the easily disguised candidate codewords, we randomly choose a constant
rate code from the remaining candidate codewords. Careful bookkeeping confirms that with pos-
itive probability we obtain a code that decodes pN -deletions in the average case. The bookkeep-
ing is nontrivial, because just as there are a handful of words like ψ(11 . . . 1) that are easily dis-
guised as other codewords with deletions, there are also a handful of easily confused words like
ψ(KK . . .K) that can be confused with many other words when deletions are applied to it. Fur-
thermore, unlike easily disguised codewords, these easily confused words vary over the different
deletion patterns, so we cannot simply throw them out. However, like for easily disguised code-
words, we show the number of easily confused words is an exponentially small fraction of the
codebook size in expectation, so such words do not contribute significantly to the number of incor-
rectly decoded codewords. Note the subtle difference between easily disguised and easily confused
words: a single easily disguised word like ψ(11 . . . 1) causes many candidate codewords to fail to
decode under our unique decoding, but any easily confused codeword adds at most one failed
decoding.

We model managing easily disguised and easily confusable codewords via a directed graph,
where, roughly, for each deletion pattern, we consider a graph on [K]n where

−−→
Y X is an edge

if and only if τ(ψ(X)) v ψ(Y ). In our proof, we replace the subsequence relation with the
matching relation (see §5.8). In this graph language, the easily disguised codewords correspond
to vertices with high outdegree, and the easily confusable codewords correspond to vertices with
high indegree.

Our construction illustrates the subtle nature of the oblivious deletion channel and average
case errors. These settings share much of the behavior of the adversarial deletion channel such as
the fact that for p > 1

2
, every codeword has a deletion pattern destroying all of its information.

Consequently, our approach tackles the oblivious and average case errors using a combinatorial
argument just as the best adversarial deletion results do [4]. Yet, the relaxed decoding requirement
allows us to exploit it to correct a fraction of deletions approaching 1.

5.5 Overview of proof

In §5.4 we gave a high level overview. We now begin with a brief snapshot of the proof structure
and how it is organized.

We present our general code construction in §5.6. The construction uses the “clean construc-
tion” in [4] and an outer code that we choose randomly. We analyze properties of the concatenated
construction in §5.7. We begin by extracting the useful behavior of deletion patterns with respect
to our codewords. This deletion pattern analysis culminates in Lemma 5.7.7, allowing us to define
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the signature (Definition 5.7.8) of a deletion pattern. The key result of §5.7 is Proposition 5.7.18.
It states that for any deletion pattern τ , the probability that two random candidate codewords c, c′

are confusable (in the sense that τ(c) v c′) is exponentially small in the code length. However,
because working with deletion patterns directly is messy, the proposition is written in the language
of matchings, a technical notion defined in Definition 5.7.11. In short, because the inner codewords
are nicely behaved, we do not need to know the exact details of the behavior of a given deletion
pattern τ , but rather only need certain properties of it, given by its signature. We thus define a
matching to approximate the subsequence relation using only the signature of τ , so that “σ(X) is
matchable in Y ” (where σ is the outer code deletion pattern given by τ ’s signature) holds roughly
when “τ(ψ(X)) v ψ(Y )” holds.

Combinatorially, Proposition 5.7.18 allows us to finish the proof. As stated in §5.4, for our outer
code we consider [K]n minus a small set of easily disguised candidate codewords. The notion of
a easily disguised candidate codeword is well defined by Lemma 5.7.23. For a sufficiently small
constant γ, we randomly choose a size 2γn outer code over the remaining outer codewords. In §5.8,
we use the graph language described in §5.4 and prove Lemma 5.8.3, which roughly states that in
a sparse directed graph, if we randomly sample a small subset of vertices, the induced subgraph is
also sparse (for some appropriate definition of sparse) with high probability. Finally, in §5.9, we
piece together these results, showing that Lemma 5.8.3 guarantees, with positive probability, that
our random code combinatorially decodes against pN deletions in the average case.

5.6 Construction

Let p ∈ (0, 1), and let λ = λ(p) be the smallest integer such that (1 + p)/2 < 1 − 2−λ. For our
argument any λ such that p < 1 − 2−λ suffices. In particular, for p < 1

2
, we can choose λ = 1,

slightly simplifying the argument as described in §5.4. However, we choose λ to be the smallest λ
such that (1 + p)/2 < 1− 2−λ to ensure a clean formula for the rate.

Let δ be such that p = 1− 2−λ − δ. Let n be a positive integer. With hindsight, choose

K = 2d2
λ+5/δe, R = 4K4, L = 2RK , N = nL. (5.6)

Note that R is even. For the remainder of this section, the variables p, λ, δ,K,R and L are fixed.
In this way we have 1− 2−λ − 1√

R
− δ

2
> p. For i = 1, . . . , K, let gi be the length L word

gi =
(

0R
i−1

1R
i−1
)L/(2Ri−1)

. (5.7)

Consider the encoding ψ : [K]∗ → {0, 1}∗ where ψ(X1 · · ·Xk) = gX1gX2 · · · gXk . We con-
struct a concatenated code where the outer code is a length n code over [K] and the inner code is
{g1, g2, . . . , gK} ⊆ {0, 1}L. For the outer code, we choose a random code Cout where each code-
word is chosen uniformly at random from [K]n minus a small undesirable subset that we specify
later. We choose our decoding function to be unique decoding. That is, our decoder iterates over
all codewords c ∈ C and checks if the received word s is a subsequence of c. If it is a subsequence
of exactly one c, the decoder returns that c, otherwise it fails. While this decoder is not optimal in
terms of the fraction of correctly decoded codewords (it could try to break ties instead of just giving
up), it is enough for this proof. Furthermore, since we are showing combinatorial decodability, we
do not need the decoder to be efficient.
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If, for some p′ > p, a code can decode p′nL average case or oblivious deletions, then it can
decode pnL deletions. Thus, we can decrease δ until δn is an even integer, so may assume without
loss of generality that δn is an even integer.

5.7 Analyzing construction behavior

Definition 5.7.1. A gi-segment is an interval in [L] corresponding to a run of gi. Note that the gi-
segments partition [L] and are of the form [1 + aRi−1, (a+ 1)Ri−1] for a ∈ {0, . . . , L/Ri−1 − 1}.

Note that gi has 2RK+1−i runs. In particular, the number of runs greatly varies between inner
codewords. This property makes the concatenated construction powerful because it is difficult to
find common subsequences of different inner codewords. The following definition allows us to
reason about the inner codewords in terms of their run counts.
Definition 5.7.2. We say an inner code deletion pattern σ preserves gi if σ(gi) has at least

2RK+1−i/
√
R = 2RK+ 1

2
−i (5.8)

runs. Otherwise we say σ corrupts gi.
We start with a basic but useful fact about deletion patterns and runs.

Lemma 5.7.3. Suppose w is a word with r runs I1, . . . , Ir and τ is a deletion pattern such that
τ(w) has r′ runs. We can think of these runs Ik as subsets of consecutive indices in {1, . . . , |w|}.
Then the number of runs Ik of w completely deleted by τ , i.e. satisfying I ⊆ τ when τ is thought
of as a subset of {1, . . . , |w|}, is at least r−r

′

2
.

Proof. Deleting any run reduces the number of runs in a word by at most 2, and τ reduces the
number of runs by r − r′, so the claim follows.

The next lemma establishes the usefulness of widely varying runs in our construction. It says
that even when an inner code deletion pattern has a large number of deletions, most of the inner
codewords still look the same in terms of the number of runs. The intuition for the lemma is
as follows. Consider the extreme example of an inner code deletion pattern σ that “completely
corrupts” the inner codewords g1, . . . , gλ. That is, σ deletes all the zeros of each of g1, . . . , gλ.
Since σ deletes all the zeros of gλ, it must delete every other run of Rλ−1 bits, thus deleting L/2
bits. Applying these deletions alone to gλ−1 leaves it with half as many runs of length exactly
Rλ−2. However, since σ also deletes all zeros of gλ−1, it must delete every other run of Rλ−2 bits
of the remaining L/2 bits, thus deleting L/4 more bits. Similarly, since σ deletes all zeros of gλ−2,
it must delete an additional L/8 bits. Continuing this logic, we have σ must delete L(1− 2−λ) bits
total. This tells us that if an inner code deletion pattern completely corrupts the inner codewords
g1, . . . , gλ, it needs L(1− 2−λ) deletions. This logic works even if we chose to corrupt any subset
of λ inner codewords other than {g1, . . . , gλ}. One can imagine that corrupting (according to
Definition 5.7.2) inner codewords is almost as hard as completely corrupting them, so adding
some slack gives the lemma.

Lemma 5.7.4. If σ is an inner code deletion pattern with |σ| ≤ L
(

1− 1
2λ
− 1√

R

)
, then σ preserves

all but at most λ− 1 choices of gi.
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Proof. Suppose λ is a positive integer such that σ corrupts gi for λ different values of i, say
i1 > i2 > · · · > iλ. We wish to show |σ| > L

(
1− 1

2λ
− 1√

R

)
.

Recall that a gi segment is an interval of the form [1 + aRi−1, (a+ 1)Ri−1]. Inductively define
the collections of intervals I1, . . . , Iλ and the sets of indices I1, . . . , Iλ as follows. For 1 ≤ a ≤ λ,
set

Ia =

{
J : J is gia-segment, J ⊆ σ \

a−1⋃
b=1

Ib

}
and Ia =

⋃
J∈Ia

J. (5.9)

Intuitively, I1 as the set of runs in gi1 that are entirely deleted by σ, and I1 is the set of those
deleted indices. Then, I2 is the set of runs of gi2 deleted by σ but not already accounted for by I1,
and I2 is the set of bits in the runs of I2. We can interpret I3, . . . , Iλ and I3, . . . , Iλ similarly. By
construction, I1, . . . , Iλ are disjoint, and their union is a subset of σ (thought of as a subset of [L]),
so
∑λ

b=1 |Ib| ≤ |σ|. It thus suffices to prove

λ∑
b=1

|Ib| > L

(
1− 1

2λ
− 1√

R

)
. (5.10)

Note that for any j < j′, every gj′-segment is the disjoint union of Rj′−j many gj-segments.
We thus have [L] is the disjoint union of gia-segments and Ib is also the disjoint union of gia-
segments when b < a (and thus ib > ia). Hence, [L] \ ∪a−1

b=1Ib is the disjoint union of gia-segments.
Furthermore, asR is even, each Ib covers an even number of gia-segments, so the segments of [L]\
∪a−1
b=1Ib alternate between segments corresponding to runs of 0s in gia and segments corresponding

to runs of 1s in gia . It follows that all runs of gia \∪a−1
b=1Ib have length exactly Ria−1, so the number

of runs in the string gia \ ∪a−1
b=1Ib is

L

Ria−1
−

a−1∑
b=1

Rib−ia|Ib|. (5.11)

By construction, the only gia-segments that are deleted by σ are the intervals covered by I1∪· · ·∪Ia.
Since σ corrupts gia , we know σ(gia) has less than L/(Ria−1

√
R) runs. By Lemma 5.7.3, we have

|Ia| >
1

2

((
L

Ria−1
−

a−1∑
b=1

Rib−ia |Ib|

)
− L

Ria−1
√
R

)
. (5.12)

Simplifying and using |Ib| = Rib−1|Ib| for all b, we obtain

|Ia| > L

(
1

2
− 1

2
√
R

)
− 1

2

a−1∑
b=1

|Ib|. (5.13)

From here it is easy to verify by induction that, for all 1 ≤ a ≤ λ, we have

a∑
b=1

|Ib| > L

(
1− 1

2a

)(
1− 1√

R

)
. (5.14)
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Indeed, (5.13) for a = 1 provides the base case, and if we know (5.14) for some a − 1, then by
(5.13) we have

a∑
b=1

|Ib| > L

(
1

2
− 1

2
√
R

)
+

1

2

a−1∑
b=1

|Ib|

> L

(
1

2
− 1

2
√
R

)
+
L

2

(
1− 1

2a−1

)(
1− 1√

R

)
= L

(
1− 1

2a

)(
1− 1√

R

)
, (5.15)

completing the induction. The induction proves (5.10), from which we have

|σ| ≥
λ∑
b=1

|Ib| > L

(
1− 1

2λ
− 1√

R

)
, (5.16)

as desired.

Lemma 5.7.4 motivates the following definition.
Definition 5.7.5. We say an inner code deletion pattern |σ| is `-admissible if |σ| ≤ L(1−1/2`+1−

1√
R

).
If, for some `, σ is `-admissible, then Lemma 5.7.4 tells us σ corrupts at most ` different

gi. However, note that `-admissibility is stronger that corrupting at most ` different gi as `-
admissibility gives a stronger upper bound on the number of deletions in σ, which is necessary
in Lemma 5.7.12.
Lemma 5.7.6. Let δ > 0. Let τ = τ1 _ · · · _ τn be a deletion pattern with at most (1 − 1

2λ
−

1√
R
− δ

2
)N deletions. There are at least δn indices i such that τi is (λ− 1)-admissible.

Proof. By a simple counting argument, we have |τi| > L(1− 1
2λ
− 1√

R
) for at most

n · L
(

1− 1
2λ
− 1√

R
− δ

2

)
L
(

1− 1
2λ
− 1√

R

) ≤ n

(
1− δ/2

1− 2−λ

)
≤ n (1− δ) (5.17)

values of i. For the remaining at least δn values of i, we have τi is (λ− 1)-admissible.

The following corollary allows us to reduce our analysis of a deletion pattern τ to analyzing
positions where τ ’s inner code deletion pattern is (λ − 1)-admissible. We effectively assume that
our deletion pattern completely deletes all inner codewords with a non-admissible index.
Lemma 5.7.7. Let τ ∈ D(nL, pnL). There exists τ ′ ∈ D(δnL), σ ∈ D(n, (1 − δ)n) and sets
S1, . . . , Sδn such that

1. |Si| = λ− 1 for all i,
2. for all X ∈ [K]n, we have τ ′(ψ(σ(X))) v τ(ψ(X)), and
3. when we write τ ′ = τ ′1 _ · · ·_ τ ′δn as the concatenation of δn inner code deletion patterns,

we have, for all i and all j /∈ Si, that τ ′i ∈ D(L) preserves gj .
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Proof. Let τ = τ1 _ · · · _ τn. By Lemma 5.7.6, there exist δn indices `1 < · · · < `δn such
that, for i = 1, . . . , δn, τ`i is (λ− 1)-admissible. Choose σ ∈ D(n, (1− δ)n) via σ(X1 . . . Xn) =
X`1X`2 . . . X`δn , and choose τ ′ ∈ D(δnL) via τ ′ = τ`1 _ · · · _ τ`δn . We have τ ′ ◦ ψ ◦ σ(X) v
τ ◦ ψ(X) for all X ∈ [K]n because τ ′ ◦ ψ ◦ σ(X) is simply the result of deleting the remaining
bits in inner codewords of non-admissible indices in τ ◦ ψ(X). By construction, each τ`i ∈ D(L)
is (λ − 1)-admissible, so we can choose S1, . . . , Sδn by setting S` to be the set that τ`i corrupts.
Note that some Si may have size less than λ − 1, but we can arbitrarily add elements of [K] to Si
until it has λ− 1 elements. This is okay as item 3 in the corollary statement remains true if we add
elements to Si.

In our analysis, for a deletion pattern τ = τ1 _ · · · _ τn, we only care about the behavior
of a given inner code deletion pattern τi as far as the set Si of inner codewords gj that it corrupts;
instead of considering all possible deletion patterns τ ∈ D(nL), it suffices to only consider all
possible σ, S1, . . . , Sδn. This motivates the following definition.
Definition 5.7.8. The signature of a deletion pattern τ is (σ, S1, S2, . . . , Sδn), where σ, S1, . . . , Sδn
are given by Lemma 5.7.7. If the choice of σ, S1, . . . , Sδn satisfying the conditions of Lemma 5.7.7
are not unique, then choose one such collection of σ, S1, . . . , Sδn arbitrarily and assign this collec-
tion to be the signature of τ .

Below we define the matchability relation ≺. Definition 5.7.11 allows us to worry only about
the signature of a deletion pattern τ rather than τ itself. Intuitively, we can think of the match-
ability relation ≺ as an approximation of the subsequence relation v. Proposition 5.7.12 estab-
lishes this relationship formally. Specifically, it states that if τ is a deletion pattern with signature
(σ, S1, . . . , Sδn), then for X, Y ∈ [K]n, we have σ(X) v Y implies that σ(X) has a matching
in Y with appropriate parameters. This means that if we want to show there are few incorrectly
decoded codewords in a given code, it suffices to show that few codewords have an appropriately
parameterized matching in some other codeword.

We first define type-A and type-B pairs of indices (i, j) ∈ {1, . . . , |X|} × {1, . . . , |Y |}. Intu-
itively, pairs (i, j) are type-B only if τi(ψ(Xi)) has many more runs than ψ(Yj), i.e. it is difficult
to find subwords of τi(ψ(Xi)) as subsequences of ψ(Yj).
Definition 5.7.9. Let X, Y ∈ [K]∗ be words over the alphabet [K] and let S1, . . . , S|X| be subsets
of K. Given a pair (i, j) ∈ {1, . . . , |X|} × {1, . . . , |Y |}, we say (i, j) is type-A with respect to
X, Y, S1, . . . , S|X| (or simply type-A if the parameters are understood) if Xi ∈ Si or Xi ≥ Yj . Call
a pair (i, j) type-B with respect to X, Y, S1, . . . , S|X| otherwise.
Definition 5.7.10. Let X, Y ∈ [K]∗ be words over the alphabet [K], let S1, . . . , S|X| be subsets of
K, and let s and t be positive integers. The following algorithm constructs the (s, t, S1, . . . , S|X|)
matching of X with Y . Begin with a pair (a, b) = (1, 1). The first and second coordinates corre-
spond to indices of the strings X and Y , respectively. Define an A-move to be incrementing the
first coordinate, a, by 1, and a B-move to be incrementing of the second coordinate, b, by 1.

1. If a = |X| or b = |Y |, stop.
2. Do one of the following

(a) If the last s moves were A-moves, make a B-move.
(b) Else if the last t moves were B-moves, make an A-move.
(c) Else if (a, b) is type-A, make an A-move.
(d) Else, (a, b) must be type-B, in which case make a B-move.

43



3. Repeat from step 1.
Note that at the end of this algorithm, exactly one of a = |X| and b = |Y | is true. We say this
matching is a success if we ended with a = |X|, otherwise it is a failure.
Definition 5.7.11. Note also that the matching is uniquely determined byX, Y, S1, . . . , S|X|, s, t. If
this matching is a success, we say X is (s, t, S1, . . . , S|X|)-matchable (or has a (s, t, S1, . . . , S|X|)-
matching) in Y , denoted

X ≺(s,t,S1,...,S|X|) Y. (5.18)

Proposition 5.7.12. Let S1, . . . , Sδn be subsets of [K] of size exactly λ − 1. Let τ = τ1 _ · · · _
τδn ∈ D(nL) be a deletion pattern such that for all i, τi ∈ D(L) is (λ − 1)-admissible and in
particular preserves gj for all j /∈ Si. Suppose we have X ∈ [K]δn and Y ∈ [K]n such that
τ(ψ(X)) v ψ(Y ) (recall v is the subsequence relation). Then X ≺(2λ,

√
R,S1,...,Sδn) Y .

Proof. Let s = 2λ, t =
√
R. Run the matching algorithm defined above to obtain a matching of X

and Y . LetM be the set of all (a, b) reached by some step of the algorithm. We wish to show this
matching is a success, i.e. that there exists some b such that (|X|, b) ∈ M, or, equivalently, there
does not exist a such that (a, |Y |) ∈M.

Since τ(ψ(X)) v ψ(Y ), we can find τ(ψ(X)) as a subsequence of ψ(Y ) by greedily matching
the bits of τ(ψ(X)) with the bits of ψ(Y ). LetN be the set of (i, k) such that some bit of τi(ψ(Xi))
is matched with some bit in ψ(Yk). We first establish some basic facts aboutM,N .

Fact 5.7.13. 1. (|X|, |Y |) /∈M.
2. M,N ⊆ {1, . . . , |X|} × {1, . . . , |Y |}.
3. For all a∗ ∈ {1, . . . , |X|}, b∗ ∈ {1, . . . , |Y |}, we have {b : (a∗, b) ∈ M} and {a : (a, b∗) ∈
M} are intervals of consecutive integers of lengths at most t+ 1 and s+ 1, respectively.

4. For all i∗ ∈ {1, . . . , |X|}, k∗ ∈ {1, . . . , |Y |}, we have {k : (i∗, k) ∈ N} and {i : (i, k∗) ∈
N} are intervals of consecutive integers.

5. Let ≤M be a relation onM such that (a, b) ≤M (a′, b′) if and only if a ≤ a′ and b ≤ b′.
ThenM is totally ordered under ≤M. As such, we can define nextM(a, b) and prevM(a, b)
to be the next larger and next smaller element after (a, b) under ≤M, respectively. Then
nextM(a, b) ∈ {(a+ 1, b), (a, b+ 1)} and prevM(a, b) ∈ {(a− 1, b), (a, b− 1)}.

6. Let ≤N be a relation on N such that (i, k) ≤N (i′, k′) if and only if i ≤ i′ and k ≤ k′. Then
N is totally ordered under≤N . As such, we can define nextN (i, k) and prevN (i, k) to be the
next larger and next smaller element after (i, k) under≤N , respectively. Then nextN (i, k) ∈
{(i+ 1, k), (i, k+ 1), (i+ 1, k+ 1)} and prevN (i, k) ∈ {(i−1, k), (i, k−1), (i−1, k−1)}.

7. If (a, b), (a′, b′) ∈M, we never have both a < a′ and b′ < b.
8. If (i, k), (i′, k′) ∈ N , we never have both i < i′ and k′ < k.

For a ∈ {1, . . . , |X|} and b ∈ {1, . . . , |Y |}, define

α0(b) = min{a : (a, b) ∈M} αf (b) = max{a : (a, b) ∈M}
β0(a) = min{b : (a, b) ∈M} βf (a) = max{b : (a, b) ∈M}
ι
(b)
0 = min{i : (i, b) ∈ N} ι

(b)
f = max{i : (i, b) ∈ N}

κ
(a)
0 = min{k : (a, k) ∈ N} κ

(a)
f = max{k : (a, k) ∈ N}. (5.19)
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β0(α0(β0(α0(b)))) β0(α0(b)) b

Figure 5.1: Illustrations of α0(b), αf (b), β0(a), βf (a), ι0(b), ιf (b), κ0(a), κf (a)

See Figure 5.1 for illustrations of the behavior of these eight functions. We first establish a few
facts about the notation α0, β0, . . . that are helpful for developing intuition and are also useful later.
These proofs are more involved than Fact 5.7.13 and are provided.

Lemma 5.7.14. 1. For all a ∈ {1, . . . , |X|}, if κf (a) − κ0(a) <
√
R, then there exists b′ ∈

[κ0(a), κf (a)] such that (a, b′) is type-A.
2. For all a ∈ {1, . . . , |X|} we have βf (a) − β0(a) ≤

√
R and for all β0(a) ≤ b′ < βf (a) we

have (a, b′) is type-B Furthermore, if βf (a)− β0(a) <
√
R, then (a, βf (a)) is type-A.

3. For all b ∈ {1, . . . , |Y |}, we have ιf (b)− ι0(b) ≤ 2λ.
4. For all b ∈ {1, . . . , |Y |}, we have (i′, b) is type-A for all i′ ∈ [ι0(b) + 1, ιf (b)− 1].
5. For all b ∈ {1, . . . , |Y |}, we have αf (b)− α0(b) ≤ 2λ and for all a′ ∈ [α0(b), αf (b)− 1] we

have (a′, b) is type-A. Furthermore, if αf (b)− α0(b) < 2λ, then (αf (b), b) is type-B.

Proof. Parts 2 and 5 follow from Definition 5.7.10.
For part 1, suppose for contradiction that (a, b′) is type-B for all κ0(a) ≤ b′ ≤ κf (a). Then

Xa /∈ Sa and Xa < Yb′ for all such b′. This means τa(ψ(Xa)) has at least 2RK+ 1
2
−Xa runs while

ψ(Yb′) has at most 2RK+1−(Xa+1) runs for κ0(a) ≤ b′ ≤ κf (a). On the other hand, we have

τa(ψ(Xa)) v ψ
(
Yκ0(a) . . . Yκf (a)

)
. (5.20)

As κf (a) − κ0(a) <
√
R this means the right side of (5.20) has less than

√
R · 2RK−Xa =

2RK+ 1
2
−Xa runs while the left side has at least that many runs, a contradiction.

For part 3, suppose for contradiction that ιf (b) − ι0(b) − 1 ≥ 2λ. Since ψ(Yb) contains∏ιf (b)−1

i′=ι0(b)+1 τi′(ψ(Xi′)) as a strict subsequence (ψ(Yb) additionally contains at least one bit from
each of τι0(ψ(Xι0)) and τιf (ψ(Xιf ))), we have

L+ 2 ≤ (ιf (b)− ι0(b)− 1) · L
2λ

+ 2 ≤

(
ιf−1∑

i′=ι0+1

|τi′(ψ(Xi′))|

)
+ 2 ≤ |ψ(Yb)| = L, (5.21)

a contradiction.
For part 4, suppose for contradiction that (i′, b) is type-B for some ι0(b) < i′ < ιf (b). Thus

Xi′ /∈ Si′ and Xi′ < Yb. In particular, τi′(ψ(Xi′)) has at least 2RK+ 1
2
−Xi′ runs, which is more than

the at-most-2RK−Xi′ runs of ψ(Yb). However, ι0(b) < i′ < ιf (b), so (i′, b) ∈ N and in particular
τi′(ψ(Xi′)) v ψ(Yb), which is a contradiction. Note that i′ = ι0(b) and i′ = ιf (b) do not guarantee
a contradiction because for such i′, some bits of τi′(ψ(Xi′)) might be matched with other inner
codewords in ψ(Y ).
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Figure 5.2: Step 2, Assume FSOC β0(a) ≤ κ0(a) ≤ κf (a) < βf (a)

The following definition of proper indices is introduced for convenience. Intuitively, indices
of Y are Y -proper if the bit-matching N consumes corresponding indices of X “slower” than
in the algorithmic matchingM, and indices of X are X-proper if the bit-matching N consumes
corresponding indices of Y “faster” than in the algorithmic matchingM.

Definition 5.7.15. We say an index in a ∈ {1, . . . , |X|} is X-proper if

β0(a) ≤ κ0(a), βf (a) ≤ κf (a) (5.22)

and we say an index b ∈ {1, . . . , |Y |} is Y -proper if

ι0(b) ≤ α0(b), ιf (b) ≤ αf (b). (5.23)

Claim 5.7.16. For all a ∈ {1, . . . , |X|} and all b ∈ {1, . . . , |Y |}, a is X-proper and b is Y -proper.

Remark 5.7.17. First we illustrate how the Claim 5.7.16 implies Proposition 5.7.12. Suppose for
contradiction that Proposition 5.7.12 is false. Then there exists some a such that (a, |Y |) ∈M and
for all b we have (|X|, b) /∈ M. In particular, αf (b) < |X| for all b ∈ {1, . . . , |Y |}. By the claim,
ι
(|Y |)
f ≤ α

(|Y |)
f < |X|, implying that no bits from τ|X|(ψ(X|X|)) are matched with bits of ψ(Y ), a

contradiction of τ(ψ(X)) v ψ(Y ).

Proof. Step 1. First, note that, as (1, 1) ∈M,N , we have α(1)
0 = β

(1)
0 = ι

(1)
0 = κ

(1)
0 = 1.

Step 2. Next, we show that for all a, if β0(a) ≤ κ0(a) then a is X-proper. That is, we
show βf (a) ≤ κf (a). Suppose for contradiction we have κf (a) < βf (a) so that β0(a) ≤ κ0(a) ≤
κf (a) < βf (a) (see Figure 5.2). By Lemma 5.7.14 part 2, we have βf (a)−β0(a) ≤

√
R and (a, b′)

is type-B for all b′ ∈ [β0(a), βf (a) − 1]. In particular, (a, b′) is type-B for all b′ ∈ [κ0(a), κf (a)].
As κf (a)−κ0(a) < βf (a)−β0(a), we have κf (a)−κ0(a) <

√
R, so we can apply Lemma 5.7.14

part 1 to obtain that (a, b′) is type-A for some b′ ∈ [κ0(a), κf (a)]. This is a contradiction as all
such b′ must be type-B.

Step 3. Next, we show that for all b, if ι0(b) ≤ α0(b) and α0(b) is X-proper, then b is Y -proper.
That is, we show ιf (b) ≤ αf (b). Suppose for contradiction that αf (b) < ιf (b) so that ι0(b) ≤
α0(b) ≤ αf (b) < ιf (b) (see Figure 5.3a). We have αf − α0 < ιf − ι0 ≤ 2λ by Lemma 5.7.14 part
3. Thus, by Lemma 5.7.14 part 5, (αf (b), b) is type-B. By Lemma 5.7.14 part 4, (i′, b) is type-A for
i′ ∈ [ι0(b) + 1, ιf (b)− 1]. Since αf (b) ∈ [ι0(b), ιf (b)− 1] we must have αf (b) = ι0(b), so ι0(b) =
α0(b) = αf (b) (See Figure 5.3b). By definition of αf (b), we have nextM(αf (b), b) = (αf (b), b+1)

so β(αf (b))

f ≥ b+1. However, since we assumed αf < ιf , we have nextN (αf (b), b) = (αf (b)+1, b),
so κf (αf (b)) = b. Thus

βf (α0(b)) = βf (αf (b)) ≥ b+ 1 > b = κf (αf (b)) = κf (α0(b)). (5.24)
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Figure 5.3: Step 3
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Figure 5.4: Step 4

On the other hand, β(α0(b))
f ≤ κ

(α0(b))
f by assumption that α0(b) is X-proper, which is a contradic-

tion. This covers all possible cases, completing Step 3.
Step 4. We prove that, for all b ∈ {1, . . . , |Y |}, if α0(b) is X-proper, then b is Y -proper. By

Step 3, it suffices to prove ι0(b) ≤ α0(b). Suppose for contradiction that α0(b) < ι0(b). Since
(α0(b), b) ∈ M, we have b ≤ βf (α0(b)). By assumption, α0(b) is X-proper, so βf (α0(b)) ≤
κf (α0(b)), which means b ≤ κf (α0(b)). If b < κ

(α0)
f , then we have (α0(b), κf (α0(b))) ∈ N .

However, (ι0(b), b) ∈ N , contradicting Fact 5.7.13 part 8. Thus, κf (α0(b)) = b. But then
(α0(b), b) = (α0(b), κf (α0(b))) ∈ N with α0(b) < ι0(b), contradicting the minimality of ι0(b).

Step 5. By the same argument as Step 4, we have that, for all a ∈ {1, . . . , |X|}, if β0(a) is
Y -proper, then a is X-proper.

Step 6. We prove by strong induction that for pairs (a, b), ordered by <M, we have a is X-
proper and b is Y -proper. Combining Steps 1,2, and 3, we have

β
(1)
0 ≤ κ

(1)
0 , β

(1)
f ≤ κ

(1)
f , ι

(1)
0 ≤ α

(1)
0 , ι

(1)
f ≤ α

(1)
f , (5.25)

where the first and third inequalities are actually equalities arising from Step 1, the second inequal-
ity is established by Step 2, and the fourth is established by Step 3. Thus, 1 is both X-proper and
Y -proper.

Now suppose we have some pair (a, b) ∈ M with (1, 1) <M (a, b) and (5.20) has been estab-
lished for all smaller pairs. If prevM(a, b) = (a− 1, b), then by the inductive hypothesis, we have
b is Y -proper. However, as (a− 1, b) ∈M, we have (a, b− 1) /∈M, so we have β0(a) = b. Thus
β0(a) is Y -proper, so a is X-proper by Step 5. Similarly, if prevM(a, b) = (a, b− 1), then by the
inductive hypothesis, we have a is X-proper. Thus α0(b) = a is X-proper, so b is Y -proper by
Step 4. This completes the proof of Claim 5.7.16, proving Proposition 5.7.12.

The following proposition is the key result of this subsection. Following our approach, it should
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Figure 5.5: Ai’s and Bi’s behavior

be possible to prove this proposition for any choice of S1, . . . , Sδn, not just [λ − 1], . . . , [λ − 1].
However, because of Lemma 5.7.23, which tells us that [λ− 1], . . . , [λ− 1] is the “worst” possible
choice of S1, . . . , Sδn, it suffices to prove the proposition as stated.
Proposition 5.7.18. There exists a constant β > 0 such that for any fixed deletion pattern σ ∈
D(n, (1− δ)n) we have

Pr
X,Y∼U([K]n)

[σ(X) ≺(2λ,
√
R,[λ−1],...,[λ−1]) Y ] < 2−βn. (5.26)

Proof. Let s = 2λ. With hindsight, let β = logK
16R

. It suffices to prove

Pr
X∼U([K]δn)
Y∼U([K]n)

[
X ≺(2λ,

√
R,[λ−1],...,[λ−1]) Y

]
< 2−βn. (5.27)

This suffices because for any σ, the distribution of σ(X) for X ∼ U([K]n) is the same as X ∼
U([K]δn).

Let X1, . . . , Xδn, Y1, Y2, . . . be independently chosen from [K]. Let X = X1 . . . Xδn, Y =
Y1 . . . Yn, and Y∞ = Y1Y2 . . . so that X ∼ U([K]δn) and Y ∼ U([K]n).

Construct a (2λ,
√
R, S1, . . . , Sδn)-matching ofX in Y∞. Note that, as Y∞ is an infinite random

string,M succeeds almost surely, i.e. ends in (|X|, b) for some integer b.
LetM be the set of all reached states (a, b) in the matching, and let αf (b) = max{a : (a, b) ∈

M} and βf (a) = max{b : (a, b) ∈ M} as in Proposition 5.7.12. Let A0 = 1, B0 = 1. For i ≥ 1,
set Ai = αf (Bi−1) and Bi = βf (Ai−1). As Ai−Ai−1 ≤ s for all i ≥ 1, we have Ai is well defined
for i ≤ δn/s − 1. By the definition of matching,M′ succeeds if and only ifM succeeds and the
final position (|X|, βf (|X|)) satisfies βf (|X|) < |Y |. It thus suffices to prove

Pr
[
Bbδn/sc−1 < |Y |

]
< 2−βn. (5.28)

The key idea of this proof is that the Bi’s grow much faster than the Ai’s, so that the Bi’s “run
out of indices in Y ” faster than the Ai’s “run out of indices in X”, even though Y is longer than
X . In particular, by definition of a matching, we have Ai+1−Ai ≤ s = 2λ, but, on the other hand,
we show that Bi+1 −Bi is, in expectation, Ω(logK) (see Figure 5.5).

We have two technical lemmas. The proofs are straightforward, and we include them in Ap-
pendix D for completeness.

Lemma 5.7.19. Let J be chosen uniformly from [K]. Let D be a random variable that is 1 if
J ∈ [λ − 1] and, conditioned on a fixed J ≥ λ, is distributed as min(Geometric(J/K),

√
R).

Then E[D] ≥ (logK)/4.
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Lemma 5.7.20. Let λ′ ∈ [λ,K] and let J be chosen uniformly from {λ, λ + 1, . . . , λ′}. Let D be
the random variable that, conditioned on a fixed J , is distributed as min(Geometric(J/K),

√
R).

Then E[D] ≥ (logK)/4.

Claim 5.7.21. Let i ≥ 1. For any fixed A0, . . . , Ai, B0, . . . , Bi, X1, . . . , XAi , Y1, . . . , YBi , we have

E [Bi+1 −Bi|A1, . . . , Ai, B1, . . . , Bi, X1, . . . , XAi , Y1, . . . , YBi ] >
logK

4
. (5.29)

Proof. It suffices to prove that if we additionally condition on Ai+1−Ai < s, then the expectation
is at least (logK)/4, and that the same is true if we condition on Ai+1 − Ai = s.

First, note that, for 1 ≤ b <
√
R, we have Bi+1 = Bi + b if and only if (Ai+1, Bi + j) is type-B

for j ∈ {1, . . . , Bi + b− 1} and (Ai+1, Bi + b) is type-A. If no such b exists, we have Bi+1−Bi =√
R. Thus, conditioned on fixed A0, . . . , Ai+1, B0, . . . , Bi, X1, . . . , XAi+1

, Y1, . . . , YBi , we have
Bi+1 −Bi is distributed as min(Geometric(XAi+1

/K),
√
R).

Suppose we condition on Ai+1−Ai = s. This is equivalent to saying (Ai + `, Bi) is type-A for
` = 1, . . . , s − 1. However, this assertion depends only on XAi , XAi+1, . . . , XAi+s−1, which are
independent of XAi+1

, so we have XAi+1
is still distributed uniformly on [K]. If XAi+1

∈ [λ − 1],
then Bi+1−Bi = 1, otherwise Bi+1−Bi is distributed as min(Geometric(XAi+1

/K),
√
R), so by

Lemma 5.7.19 on D = Bi+1 −Bi, we have

E[Bi+1−Bi|Ai+1−Ai = s, A1, . . . , Ai, B1, . . . , Bi, X1, . . . , XAi , Y1, . . . , YBi ] >
logK

4
. (5.30)

Suppose we condition onAi+1−Ai = s′ < s. This is equivalent to saying (Ai+`, Bi) is type-A
for ` = 1, . . . , s′ − 1 and (Ai + s′, Bi) is type-B. This implies XAi+1

≥ λ (i.e. XAi+1
/∈ [λ − 1])

and XAi+1
< YBi , Since YBi is fixed and, without any conditioning, XAi+1

is distributed uniformly
in [K], we have XAi+1

is distributed uniformly on [λ, . . . , YBi ]. By the previous argument, we have
Bi+1 − Bi is distributed as min(Geometric(XAi+1

/K),
√
R), so by Lemma 5.7.20 on λ′ = YBi

and D = Bi+1 −Bi, we have

E[Bi+1 −Bi|Ai+1 − Ai = s′ < s,A1, . . . , Ai, B1, . . . , Bi, X1, . . . , XAi , Y1, . . . , YBi ] >
logK

4
.

(5.31)

Corollary 5.7.22. We have, for any fixed B1, . . . , Bi,

E[Bi+1 −Bi|B1, . . . , Bi] >
1

4
logK. (5.32)

Continuing the proof of Proposition 5.7.18, let α = 1
4

logK so that

α(k − 1) >
1

4
logK ·

(
δn

2λ
− 1

)
> 2n. (5.33)

Define the random variable B′i := Bi − i · α. As B′i and Bi uniquely determine each other, we
have, by Corollary 5.7.22,

E[B′i+1 −B′i|B′1, . . . , B′i] = E[Bi+1 −Bi|B1, . . . , Bi]− α > 0. (5.34)
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Thus, B′i form a submartingale with |B′i+1−B′i| <
√
R, so by Azuma’s Inequality (Lemma 2.2.3),

we have

Pr

[
B′k −B′1 ≤ −

α(k − 1)

2

]
≤ exp

(
− (α(k − 1)/2)2

2(k − 1) · (
√
R)2

)
= exp

(
−α

2(k − 1)

8R

)
< exp

(
−n logK

16R

)
.

(5.35)
Combining with (5.33) gives

Pr[Bk ≤ n] ≤ Pr[B′k −B′1 ≤ −n] ≤ Pr

[
B′k −B′1 ≤ −

α(k − 1)

2

]
< exp

(
−n logK

16R

)
.

(5.36)
We conclude

Pr
X∼U([K]δn)
Y∼U([K]n)

[X ≺(
√
R,2λ,[λ−1],...,[λ−1]) Y ] ≤ Pr[mδn ≤ n] ≤ Pr[Bk ≤ n] < exp

(
−n logK

16R

)
.

(5.37)

As exp(−n logK
16R

) < 2−
n logK

16R , we have (5.27) is true, completing the proof of Proposition 5.7.18.

To conclude this section, we formalize the intuition that the “worst possible deletion pattern”,
that is, the deletion pattern that makes decoding most difficult in some sense, is the deletion pattern
such that each (λ−1)-admissible inner deletion pattern corrupts g1, . . . , gλ−1. This fact is intuitive,
as it is hard, for example, to find g1 as a subsequence of a random ψ(Y ) because g1 has many
runs. Thus if our deletion pattern τ corrupts the inner codewords with the most runs, there is a
greater probability that over random X, Y we have τ(ψ(X)) is a subsequence of ψ(Y ). However,
note that, to make a clean assertion, we continue to argue using the matching relation rather than
subsequence relation.
Lemma 5.7.23. Let r, s ∈ N and S1, . . . , Sδn be subsets of [K] of size exactly λ − 1. Then for all
Y ∈ [K]n we have

#
{
X ∈ [K]δn : X ≺(2λ,

√
R,S1,...,Sδn) Y

}
≤ #

{
X ∈ [K]δn : X ≺(2λ,

√
R,[λ−1],...,[λ−1]) Y

}
(5.38)

Proof. We start with a claim.

Claim 5.7.24. For every setA ⊆ [K] with size exactly λ−1, there exists a bijection hA : [K]→ [K]
such that hA(x) ∈ [λ− 1] for x ∈ A and hA(x) ≥ x for x /∈ A.

Proof. Pair each element x ∈ A \ [λ− 1] with an element y ∈ [λ− 1] \A arbitrarily and for each
pair (x, y) set hA(x) = y, hA(y) = x. Note this always gives x > y. This is possible as A \ [λ− 1]
and [λ − 1] \ A have the same size. Then set hA(x) = x for all other x. It is easy to check this
function satisfies hA(x) ≥ x for x /∈ A.

Fix Y ∈ [K]n. For all i, let hi : Si → [λ − 1] be a bijection such that hi(x) ∈ [λ − 1] for
x ∈ Si and f(x) ≥ x for all other x. This exists by Claim 5.7.24. Let h : [K]δn → [K]δn be such
that h(X1, . . . , Xδn) = h1(X1)h2(X2) · · ·hδn(Xδn). Since each of h1, . . . , hδn are bijections, h is
a bijection as well.
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LetX be such thatX ≺(2λ,
√
R,S1,...,Sδn) Y . We claim h(X) ≺(2λ,

√
R,[λ−1],...,[λ−1]) Y . LetM be a

(2λ,
√
R, S1, . . . , Sδn)-matching ofX in Y and letM′ be a (2λ,

√
R, [λ−1], . . . , [λ−1])-matching

of h(X) in Y . We know M is a successful matching, and we wish to show M′ is a successful
matching.

If (a, b) is type-A with respect toX, Y, S1, . . . , S|X|, then Yb ≤ Xa orXa ∈ Sa, so, by definition
of h, either h(Xa) ∈ [λ−1] or Yb ≤ Xa ≤ h(Xa), so (a, b) is type-A with respect to h(X), Y, [λ−
1], . . . , [λ − 1]. Let ` ≥ 0 be an integer and let (a, b) ∈ M and (a′, b′) ∈ M′ be the state of the
matchings after the `th step of the matchings of X in Y and h(X) in Y , respectively. It is easy to
see by induction that a ≤ a′ and b′ ≤ b; if a < a′ then after one move we still have a ≤ a′, and if
a = a′ andMs next move is an A-move, thenM′s next move must also be an A-move. SinceM
succeeds, we have (|X|, b) ∈ M for some b < |Y |, so we conclude that (|X|, b′) ∈ M′ for some
b′ ≤ b < |Y |. ThusM′ succeeds as well.

Since h is a bijection such that

h
({
X ∈ [K]δn : X ≺(2λ,

√
R,S1,...,Sδn) Y

})
⊆
{
X ∈ [K]δn : X ≺(2λ,

√
R,[λ−1],...,[λ−1]) Y

}
,

(5.39)
we have

#
{
X ∈ [K]δn : X ≺(2λ,

√
R,S1,...,Sδn) Y

}
≤ #

{
X ∈ [K]δn : X ≺(2λ,

√
R,[λ−1],...,[λ−1]) Y

}
(5.40)

as desired.

5.8 Technical combinatorial lemmas

Lemma 5.8.1. Let n be a positive integer and suppose we have 0 < β < 1. Suppose that γ = β/3,
M = 2γn, and ε ≥ 2−(γ−o(1))n/2. Suppose G is a graph on N = K(1−o(1))n vertices such that each
vertex has degree at most d = Nr for some r = r(n) = 2−(β−o(1))n. Suppose Cout is chosen as a
random subset of V (G) by including each vertex of V (G) in Cout with probability M/N . Then for
sufficiently large n, we have PrCout [|E(G|Cout)| > εM ] < 2−ω(n).
Remark 5.8.2. Essentially this lemma is saying that when the edge density is extremely small,
around 2−βn, then for all but an extremely small set of choices for Cout, Cout is extremely sparse.

Proof. Let E = E(G). We know E satisfies |E| ≤ dN/2 < N2r.
Enumerate the edges 1, . . . , |E| arbitrarily. Let Y1, . . . , Y|E| be Bernoulli random variables

denoting whether the ith edge is in Cout. Let Z = Y1 + · · ·+ Y|E|. We would like to show

Pr
Cout

[Z > εM ] < 2−n. (5.41)

We do this by computing a sufficiently large moment of Z and using

Pr
Cout

[Z > εM ] ≤ E[Zk]

(εM)k
. (5.42)

For a tuple of (not necessarily distinct) edges (e1, . . . , ek), denote V (e1, . . . , ek) to be the set
of vertices on at least one of the edges e1, . . . , ek. Alternatively, we say V (e1, . . . , ek) is the set of
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vertices covered by edges e1, . . . , ek. Note that for all e1, . . . , ek, we have 2 ≤ V (e1, . . . , ek) ≤ 2k.
Let Pk,` = #{(e1, . . . , ek) : |V (e1, . . . , ek)| = `} denote the number of ordered tuples of edges
from E that cover exactly ` vertices.

Claim.
Pk,` < N ` · r`/2 · `2k+`−1 · kk (5.43)

Proof. We bound Pk,` by first bounding the number of sets (unordered tuples) of edges covering
exactly ` vertices and then multiply by k!. We first compute the number of ways to construct a
forest of trees covering ` vertices using only edges from E. We do this by casework on the number
of connected components. Let 1 ≤ c ≤ b`/2c be an integer. To construct a forest with c connected
components, we first choose c disjoint edges e1, . . . , ec. This can be done in at most |E|c ways.
We have |V (e1, . . . , ec)| = 2c. For c + 1 ≤ i ≤ ` − c, choose a vertex v ∈ V (e1, . . . , ei−1) and
an edge vw such that w /∈ V (e1, . . . , ei−1). By construction, for c + 1 ≤ i ≤ ` − c, we have
|V (e1, . . . , ei)| = i+c. Thus the ith edge can be added in at most (i+c−1)d ways. The i = `−cth

edge completes a forest covering ` vertices. Recalling that |E| < N2r and d = Nr, we have that
the total number of ways to construct a forest in this fashion is at most

|E|c · 2cd · (2c+ 1)d · · · (`− 1)d ≤ |E|c · d`−2c · ``−2c < N ` · r`−c · ``−2c. (5.44)

We have used ` − c edges thus far. There are k − ` + c remaining edges. As |V (e1, . . . , ek)| = `,
these remaining edges must connect one of the

(
`
2

)
pairs of vertices in V (e1, . . . , ek−`+c). As

c ≤ b`/2c < `, we have k − ` + c < k. The remaining edges can thus be chosen in at most(
`
2

)k−`+c
< `2k ways. Using (5.44) and multiplying by k! we have

Pk,` < k!·
`/2∑
c=1

N ` ·r`−c ·``−2c ·`2k < kk ·(`/2)·N ` ·r`/2 ·``−2 ·`2k < N ` ·r`/2 ·`2k+`−1 ·kk. (5.45)

Note that M
√
r � 1. With this claim, we have

E[Zk] = E[(Y1 + · · ·+ Y|E|)
k]

=
∑

(e1,...,ek)∈{1,...,|E|}k
E[Y1 · · ·Yk]

=
2k∑
`=2

∑
|V (e1,...,ek)|=`

E[Ye1 · · ·Yek ]

=
2k∑
`=2

∑
|V (e1,...,ek)|=`

(
M

N

)`

=
2k∑
`=2

(
M

N

)`
· Pk,` <

2k∑
`=2

(
M

N

)`
·N ` · r`/2 · `2k+`−1 · kk

<
2k∑
`=2

`2k+`−1 · kk < 2k · (2k)4k−1 · kk = 24k · k5k. (5.46)
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Finally, choosing k = log n, we have

Pr[Z ≥ εM ] ≤ E[Zk]

(εM)k
<

24kk5k

εkMk
<

(
16k5

ε2γn

)k
≤
(

16k5

2γn/2

)k
< 2−ω(n) (5.47)

as desired.

Lemma 5.8.3. Let n be a positive integer, and suppose 0 < β < 1 and γ = β/4. SupposeM = 2γn

and ε ≥ 2−γn/2. Suppose G is a directed graph on N = Kn(1−o(1)) vertices such that each vertex
has outdegree at most Nr for some r = 2−(β−o(1))n. Choose a subset Cout ⊆ V (G) at random by
including each vertex of V (G) in Cout with probability M/N so that E[|Cout|] = M . Then, for
sufficiently large n, we have

Pr
Cout

[
#
{
X ∈ Cout : ∃Y ∈ Cout s. t.

−−→
Y X ∈ E(G)

}
> ε|Cout|

]
< 2−ω(n). (5.48)

Proof. As, by assumption, Y has outdegree at most N · r for all Y ∈ V (G), the average indegree
of G is at most N · r. Thus at most ε/8 fraction of all words in V (G) have indegree larger than
8
ε
·N · r. Call this set of vertices W . We have

E
Cout

[
#

{
X ∈ Cout : indegG(X) >

8

ε
·N · r

}]
= E[|Cout ∩W |] ≤

ε

8
M. (5.49)

Since |Cout ∩W | is the sum of i.i.d Bernoulli random variables, we have by Lemma 2.2.1

Pr
Cout

[
#

{
X ∈ Cout : indegG(X) >

8

ε
·N · r

}
>
ε

4
M

]
= Pr

[
|Cout ∩W | >

ε

4
M
]
< e−

1
2
· ε
8
·M < 2−ω(n).

(5.50)
Now consider the undirected graphH on V (G) such thatXY ∈ E(H) if

−−→
XY ∈ E(G) and Y /∈ W

or
−−→
Y X ∈ E(G) and X /∈ W . For every vertex v, the in-edges of v in G correspond to edges in H

only if the indegree is at most 8
ε
·N ·r, and the outdegree of v inG is always at mostNr. Therefore

the degree of every vertex in H is at most r′N where r′ =
(

8
ε

+ 1
)
· r < 2−(β−γ−o(1))n.

We are including each vertex of V (G) (and thus each vertex of V (H)) in Cout independently
with probability M/N . Let ε′ = ε/4, β′ = 3

4
β, γ′ = γ so that γ′ = β′/3, ε ≥ 2−(γ+o(1))n/2,M =

2γn, and r′ = 2−(β′−o(1))n. By Lemma 5.8.1 for β′, γ′,M, ε′, and r′, andH , we have for sufficiently
large n that

Pr
Cout

(
E(H|Cout) >

ε

4
M
)
< 2−ω(n). (5.51)

Also, by Chernoff bounds, we have

Pr
Cout

[
|Cout| <

3

4
M

]
< 2−Ω(M) =⇒ Pr

Cout

[
|Cout| <

3

4
M

]
< 2−ω(n). (5.52)

Note that if the number of X such that indegG|Cout (X) > 0 at least ε|Cout|, that is,

#
{
X ∈ Cout : ∃Y ∈ Cout s. t.

−−→
Y X ∈ E(G)

}
> ε|Cout|, (5.53)

then one of the following must be false. .
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1. |Cout| ≥ 3
4
M

2. #{X ∈ Cout : degH|Cout (X) > 0} ≤ ε
2
M

3. |Cout ∩W | ≤ ε
4
M

Indeed, suppose to the contrary all of these were true. The number of vertices in Cout ∩W with
positive indegree in G|Cout is at most |Cout ∩W | ≤ ε

4
M . If a vertex X ∈ Cout \W has positive

indegree inG|Cout then there exists Y ∈ Cout such that
−−→
Y X ∈ E(G), soXY ∈ E(H) by definition

of H and thus degH|Cout (X) > 0. Thus the number of vertices in Cout \W with positive indegree
is at most ε

2
M by property 2. Hence the total number of vertices in Cout with positive indegree in

G|Cout is at most 3
4
εM ≤ ε|Cout|.

Each of items 1, 2, and 3 is false with probability 2−ω(n) by (5.50), (5.51), and (5.52), so the
probability any of them occur is at most 2−ω(n), as desired.

5.9 Proof of construction (Theorem 5.4.2)

Proof of Theorem 5.4.2. We would like to show there exists a code C and an ε = oN(1) such that,
for any deletion pattern τ deleting pN bits,

#{x ∈ C : ∃y ∈ C s. t. x 6= y and τ(x) ≤ y} ≤ ε|C|. (5.54)

For Y ∈ [K]n, define

f(Y ) = Pr
Z∼U([K]δn)

[
Z ≺(2λ,

√
R,[λ−1],...,[λ−1]) Y

]
. (5.55)

Let σ ∈ D(n, (1 − δ)n) be a deletion pattern for our outer code [K]n. Let S1, . . . , Sδn be
subsets of [K] of size exactly λ − 1. Let G∗σ,S1,...,Sδn

be the graph on the vertex set [K]n such that
−−→
Y X is an edge if and only if σ(X) ≺(2λ,

√
R,S1,...,Sδn) Y . Note that for all σ ∈ D(n, (1 − δ)n) and

all Y ∈ [K]n we have, by Lemma 5.7.23,

#{X ∈ [K]n : σ(X) ≺(2λ,
√
R,S1,...,Sδn) Y } = K(1−δ)n ·#{Z ∈ [K]δn : Z ≺(2λ,

√
R,S1,...,Sδn) Y }

≤ K(1−δ)n ·#{Z ∈ [K]δn : Z ≺(2λ,
√
R,[λ−1],...,[λ−1]) Y }

= Kn · f(Y ). (5.56)

In the graph language, this means every Y ∈ [K]n has outdegree at most Kn · f(Y ) in every
G∗σ,S1,...,Sδn

.
We remove all Y with large f(Y ). Let β = logK/16R. By Proposition 5.7.18, we know the

average value of f(Y ) is 2−βn. Hence at most Kn/2 such Y satisfy f(Y ) ≥ 2 · 2−βn. These
are the easily disguised candidate codewords mentioned in §5.4. There is thus a set W ⊆ [K]n

such that |W | = Kn/2 and each Y ∈ W satisfies f(Y ) < 2 · 2−βn = 2−(β−o(1))n. For all σ ∈
D(n, (1− δ)n), S1, . . . , Sδn, consider the subgraph Gσ,S1,...,Sδn := G∗σ,S1,...,Sδn

|W . By construction,
for all σ, S1, . . . , Sδn, the outdegree of every vertex of Gσ,S1,...,Sδn is at most (Kn/2) · r for some
r = 2−(β−o(1))n.

Let γ = β/4. Let M = 2γn and ε = 2−γn/2. Choose a subset Cout ⊆ W by including each
vertex of W in Cout independently with probability M/|W | so that E[|Cout|] = M .
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By Lemma 5.8.3 for N = Kn/2, β, γ,M, ε, r, and Gσ,S1,...,Sδn , we have that, for all σ and
sufficiently large n,

Pr
Cout

[
#{X ∈ Cout : ∃Y ∈ Cout s. t.

−−→
Y X ∈ E(Gσ,S1,...,Sδn)} > ε|Cout|

]
< 2−ω(n). (5.57)

This is equivalently

Pr
Cout

[
#{X ∈ Cout : ∃Y ∈ Cout s. t. σ(X) ≺(2λ,

√
R,S1,...,Sδn) Y } > ε|Cout|

]
< 2−ω(n). (5.58)

Union bounding over the at-most-2n possible values of σ and
(
K
λ−1

)δn
values of S1, . . . , Sδn gives

Pr
Cout

[
∃σ, S1, . . . , Sδn s. t.#

{
X ∈ Cout : ∃Y ∈ Cout s. t. σ(X) ≺(2λ,

√
R,S1,...,Sσn) Y

}
> ε|Cout|

]
< 2n ·

(
K

λ− 1

)δn
· 2−ω(n)

< 2n · 2nδ(λ−1) logK · 2−ω(n) = 2−ω(n). (5.59)

Additionally, with probability approaching 1, |Cout| ≥ 3
4
M . Thus, there exists a Cout with |Cout| ≥

3
4
M such that the following holds for all σ ∈ D(n, (1 − δ)n) and all S1, . . . , Sδn ∈

(
[K]
λ−1

)
: at

most ε|Cout| of the codewords X are (2λ,
√
R, S1, . . . , Sδn) matchable in some other codeword

Y ∈ Cout.
By Lemma 5.7.7, there exists σ ∈ D(n, (1 − δ)n) and τ ′ ∈ D(δnL) such that the following

holds: If we write τ ′ = τ ′1 _ · · ·_ τ ′δn then each τ ′i is (λ−1)-admissible and preserves all gj for all
j not in some size-λ−1 set Si, and furthermore we have τ ′(ψ(σ(X))) v τ(ψ(X)) for allX ∈ [K]n.
By choice of Cout, for at least (1−ε)|Cout| choices ofX ∈ Cout, σ(X) is not (2λ,

√
R, S1, . . . , Sδn)

matchable in all Y ∈ Cout. Thus, for these X , we have τ ′(ψ(σ(X))) 6v ψ(Y ) for all Y ∈ Cout by
Lemma 5.7.12. Since τ ′(ψ(σ(X))) v τ(ψ(X)) for all X ∈ [K]n, we have for these (1− ε)|Cout|
choices of X that τ(ψ(X)) 6v ψ(Y ) for all Y ∈ Cout. Thus, choosing C = ψ(Cout) gives our
desired average deletion code.

Recall λ is the smallest integer such that (1 + p)/2 < 1 − 2−λ and δ = 1 − 2−λ − p so that
2λ = Θ(1/(1−p)) and δ = Θ(1−p). RecallK = 2d2

λ+5/δe andR = 4K4 so thatK = 2Θ(1/(1−p)2).
The rate of the outer code is log 2γn/n logK and the rate of the inner code is logK/L. The total
rate is thus

R =
logK

48R · 2RK
= 2−2Θ(1/(1−p)2)

. (5.60)

This completes the proof of Theorem 5.4.2.
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Chapter 6

Online Deletions

6.1 Introduction and related work
The online model sits between the oblivious and adversarial noise models. An online channel
chooses whether to erase/flip/delete the ith bit ci of a codeword c without knowledge of the future
bits of the codeword, and is limited to corrupting at most pn bits total for some fixed p. Chen,
Jaggi, and Langberg [5], in an impressive work, determined the exact capacities of the online
erasure channel and the online bit-flip channel. A recent work studies a seemingly slight (but in
fact fundamental) restriction of the online model where the channel’s decision regarding the i’th
bit depends only on the first (i − 1) bits and is independent of the current bit [10]. They proved
that in the setting of erasures, the capacity in this restricted online model increases to match the
capacity 1− p of the binary erasure channel, as opposed to 1− 2p in the true online model. To our
knowledge, codes against online deletions have not been studied.

In §6.2, we present Theorem 6.2.1, a result from [17]. We then outline our lower-bound-type
proof in §6.3 and present a full proof in §6.4.

6.2 New result relating p(adv)
0 with p(on)

0

Formally, an online deletion channel OnAdv consists of n functions {OnAdvi : i ∈ [n]} such
that OnAdvi : X i × Y i−1 → Y , where X = {0, 1} and Y = {〈0〉, 〈1〉, 〈〉} is a set of strings and
〈〉 denotes the empty string, satisfies OnAdv(x1, . . . , xi, y1, . . . , yi−1) ∈ {〈xi〉, 〈〉}. The resulting
string received by the output is the concatenation of the outputs of OnAdv1, . . . ,OnAdvn. Note
that all online adversaries are valid adversaries in the omniscient adversary case, so all codes
correcting against pn adversarial deletions can also correct against pn online deletions. Notice that
an online channel can delete all the 0s or 1s in the string, so as in the case of adversarial deletions, it
is impossible to communicate with positive rate when the deletion fraction is at least 1

2
. However,

as the omniscient adversary has more information than the online channel, it could be the case
that one can code against a fraction of deletions approaching 1

2
for the online channel, whereas

this is not possible against an omniscient adversary. Our next result rules out this possibility —
if the zero-rate threshold p(adv)

0 for adversarial deletions is bounded away from 1/2, then so is the
zero-rate threshold for online deletions.
Theorem 6.2.1. For any p > 1/(3−2p

(adv)
0 ) andR > 0, there exists a deterministic online channel
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OnAdv such that, for sufficiently large n, for any code C of block length n and rate R > 0, and
any decoder Dec : {0, 1}(1−p)n → C, we have Prc∈C [Dec(OnAdv(c)) 6= c] ≥ η for some absolute
constant η > 0.

In contrapositive form, the above states that in order to construct codes against adversarial
deletions with error fraction approaching 1

2
, it suffices to construct deterministic codes decodable

in the average case against a fraction of online deletions approaching 1
2
.

Note that since online deletions contain as a special case oblivious deletions, if we insist on
deterministic codes where every codeword is correctly decoded, then the question is just as hard
as adversarial deletions. So it is important to allow some error, either in the form of randomized
encoding, or some small fraction of codewords to be decoded incorrectly (i.e., an average-error
criterion). This is why the online strategy of Theorem 6.2.1 ensures that a constant fraction of
codewords are miscommunicated.

6.3 Outline of theorem 6.2.1 proof

We give a high level outline of the proof of Theorem 6.2.1. Recall that the goal is to prove that,
assuming p(adv)

0 < 1
2
, for some p < 1

2
, for every code of rate bounded away from 0, there exists a

deterministic online deletion channel applying up to pn deletions that prevents successful decoding
in the average case. That is, when a uniformly random codeword is transmitted, the probability of
incorrect decoding is bounded away from 0. Note first that it suffices to find a randomized online
deletion strategy guaranteeing average-case decoding error because, if for a given code the channel
has a random strategy to guarantee average-case decoding error, then sampling a strategy over the
randomness of the channel gives a deterministic online strategy that inflicts similar probability of
incorrect decoding.

To do this, we assume that the adversarial zero rate threshold is p(adv)
0 < 1

2
, and set p(on)

0 =

1/(3 − 2p
(adv)
0 ). Our choice of p(on)

0 satisfies p(adv)
0 < p

(on)
0 < 1

2
. Now we show that for any

p
(on)
0 < p < 1

2
, there exists a randomized strategy that inflicts pn deletions in an online manner to a

deterministic code, and guarantees that the probability, over the randomness of a uniformly chosen
codeword and the randomness of the adversary, of incorrect decoding is positive (we show it is at
least 1

10
).

We adapt the “wait-push” strategy of Bassily and Smith [2] for an online adversary against
erasures. In the “wait phase” of this strategy, the adversary observes a prefix x∗ of ` bits from the
transmitted word x without erasing any bits. Then it constructs a list Lx∗ of candidate codewords,
among which is the actual codeword chosen by the encoder. In the “push phase”, the adversary
chooses a codeword x′ randomly from Lx∗ , which, with positive probability, corresponds to a
different message than the actually transmitted word. The adversary then, for the last n− ` bits of
the transmission, erases bit xi of x where xi 6= x′i (x′i the ith bit of x′).

Our strategy adapts the wait push strategy to deletions. In our wait phase, we observe a prefix
of the string until we know the codeword x exactly. We choose in advance a random bit and delete
every instance of that bit that we see during the wait phase. After the wait phase, suppose we have
seen qn bits and deleted rn bits, where r < q, and we also know the codeword x exactly. Using
the definition of p(adv)

0 , we can show that, for most choices of x, there is another codeword y such
that (i) the wait phase lengths qn for x and y are the same, (ii) their majority bits b in the wait
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phases are the same, (iii) the number of bits rn deleted in the wait phases is the same, and (iv)
the length-(1 − q)n suffixes x∗ and y∗ of x and y, respectively, have a common subsequence s∗

satisfying |s∗| > (1− p(adv)
0 )|x∗|. We can form pairs of such codewords (x, y) in advance, so that

when we see either x or y we push the suffixes x∗ or y∗ to s∗, so that the received word in both
cases is brns∗. For these typical choices of x, the total number of required deletions to obtain brns∗

is at most qn/2+p
(adv)
0 (1−q)n. If q is bounded away from 1 (in our case, less than (1−p)n), then

we can bound the number of deletions away from 1
2

(in our case, less than p(on)
0 = 1/(3−2p

(adv)
0 )).

On the other hand, if q is large (larger than (1−p)n), then we can simply observe the first (1−p)n
bits and delete the rest. Since we can only choose one strategy to run, we choose one of these two
strategies at random. This gives our modified wait push strategy.

6.4 Relating zero-rate threshold of online and adversarial dele-
tions

Recall that the zero-rate threshold for adversarial deletions, p(adv)
0 , is the supremum of all p such

that there exists a family of code C ⊆ {0, 1}n with |C| = 2Ω(n) satisfying LCS(C) > (1 − p)n.
Additionally, recall that the zero-rate threshold for online deletions, p(on)

0 , is the supremum of
p such that there exist families of deterministic codes with rate bounded away from 0 that can
correct against pn online deletions in the average case (when a uniformly random codeword is
transmitted). That is, when a uniformly random codeword is transmitted, the probability of a
decoding error, over the choice of the codeword and possibly the randomness of the online channel
strategy, is o(1) in the block length of the code. Since an online strategy can guess the minority
bit in the codeword and delete all its occurrences, adversary can always delete the majority bit, we
trivially have

p
(adv)
0 ≤ p

(on)
0 ≤ 1

2
. (6.1)

Recall that the currently best known lower bound on p(adv)
0 is based on the code construction in

[4] and implies p(adv)
0 ≥

√
2 − 1. An outstanding question in this area is whether p(adv)

0 = 1/2.
Our main result in this section ties this question to the corresponding question for online deletions.
Namely, we have
Theorem 6.4.1. If p(adv)

0 = 1
2

if and only if p(on)
0 = 1

2
.

By virtue of (6.1), Theorem 6.4.1 follows if we show that p(adv)
0 < 1

2
implies p(on)

0 < 1
2
. The

idea to show this is based on a suitable adaptation of the “wait-push” idea of [2]. We wait qn bits
until we know the codeword, then push so that it is confused with another codeword. In the first
wait phase, we delete the minority bit for a budget of qn/2 deletions, and while we push we need at
most (1− q)np(adv)

0 deletions. If we assume that p(adv)
0 < 1

2
, we end up with a total of αn deletions

for some α < 1
2
. The exact details are more subtle, but this is the rough idea.

From the definition of p(adv)
0 , we have the following fact.

Fact 6.4.2. For any R > 0 and p > p
(adv)
0 , there exists n0 such that for all n ≥ n0, for any

C ⊆ {0, 1}n with |C| ≥ 2Rn, there exist two strings x, y ∈ C such that LCS(x, y) > (1− p)n.
Corollary 6.4.3. For any R > 0 and p > p

(adv)
0 , there exists n0 such that for all n ≥ n0, for any
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C ⊆ {0, 1}n with |C| ≥ 2Rn, there exists C ′ ⊆ C such that |C ′| ≥ |C| − 2Rn/2, and all elements
of C ′ are confusable with another element of C. That is, for all x ∈ C ′ there exists y ∈ C such
that x 6= y and LCS(x, y) > (1− p)n.

Proof. We can apply Fact 6.4.2 forR′ = R/2. Start with C ′ = ∅. While |C \C ′| > 2Rn/2, find an
x that is confusable with some y in C and add it to C ′. This is possible by Fact 6.4.2.

The following is the precise statement of our result relating the zero-rate thresholds for online
and adversarial deletions.
Theorem 6.4.4. We have

p
(on)
0 ≤ 1

3− 2p
(adv)
0

. (6.2)

In particular, if p(adv)
0 < 1

2
, then p(on)

0 < 1
2
.

Remark 6.4.5. If it is the case that the bound in [4] is tight and p(adv)
0 =

√
2 − 1 ≈ 0.414, then

Theorem 6.4.4 gives p(on)
0 ≤ 0.4605.

The rest of this section is devoted to proving Theorem 6.4.4. We start with the following helpful
definition.
Definition 6.4.6. Given a code C and a codeword x ∈ C passing through an online deletion
channel, define the wait phase and the push phase for a codeword as follows. Let qxn be the
smallest index such that x1 . . . xqxn uniquely determines the codeword. The wait phase refers to
the time until Adv receives bit qxn, but not acted on it (chosen whether to transmit or delete it).
Thus in the wait phase Adv receives bits 1, . . . , qxn and has acted on bits 1, . . . , qxn− 1. The push
phase is the time after the end of the wait phase. We say the wait length of x is qxn and the push
length is (1− qx)n.

For a codeword x, let qx denote the relative wait length (wait length divided by n), and let rx,b
denote number b-bits that appear in x1x2 . . . xqxn, so that rx,0 + rx,1 = qx. Let bx ∈ {0, 1} denote
the bit that appears more frequently in x1 . . . xqxn (break ties arbitrarily).

Proof of Theorem 6.4.4. Since p(on)
0 ≤ 1

2
, (6.2) holds if p(adv)

0 = 1
2
, so assume p(adv)

0 < 1
2
.

Let p be such that
1

2
> p >

1

3− 2p
(adv)
0

. (6.3)

We show that, for large enough n, when Adv gets pn online deletions, he can, with constant
probability independent of n, guarantee that, if the encoder sends x ∈ C, the decoder receives a
string s that is a substring of y ∈ C where x 6= y.

Call a pair of codewords x, y online-confusable if qx = qy ≤ 1− p, rx,0 = ry,0, bx = by, and

LCS(x[qxn :], y[qxn :]) > (1− qx)(1− p(adv)
0 )n. (6.4)

For an online-confusable pair x, y, let s∗(x, y) denote a common subsequence of x[qxn :] and
y[qxn :] with length at least (1− qx)(1−p(adv)

0 )n, and let s(x, y) denote the string (bx)
rx,bns∗(x, y).
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Note that s(x, y) is a common substring of x and y and, by choice of p in (6.3) has length at least

|s(x, y)| = rx,bn+ (1− qx)(1− p(adv)
0 )n

≥ qxn

2
+ (1− qx)(1− p(adv)

0 )n

=

(
1− p(adv)

0 −
(

1

2
− p(adv)

0

)
qx

)
n

≥
(

1− p(adv)
0 −

(
1

2
− p(adv)

0

)
(1− p)

)
n

> (1− p)n , (6.5)

where the last step follows from the bound on p in (6.3).
We now claim we can find many disjoint online-confusable pairs. For fixed q∗, r∗, b∗, let

C(q∗, r∗, b∗) := {x ∈ C : qx = q∗, rx,b∗ = r∗, bx = b∗}. (6.6)

By Lemma 6.4.2 on the set {x[q∗n :] : x ∈ C(q∗, r∗, b∗)}, among any 2Rn/2 (in fact, any
2R(1−q∗)n/2) codewords in C(q∗, r∗, b∗), there exists some two codewords x and y in C(q∗, r∗, b∗)

such that LCS(x[q∗n :], y[q∗n :]) > (1 − q∗)(1 − p
(adv)
0 )n. Thus, among any 2Rn/2 codewords

in C(q∗, r∗, b∗), there are some two that are online-confusable. Thus for every q∗, r∗, b∗, we can
construct disjoint pairs of codewords (x, y) that are online-confusable, so that all but 2Rn/2 of
the elements of C(q∗, r∗, b∗) are paired. For (x, y) in a pair, call x and y partners. Thus, all but
2n2 · 2Rn/2 of the elements of C have a partner. For sufficiently large n, this means that at least
0.99|C| elements have a partner.

The online channel choose to run one of the following strategies, each with probability 1
2
.

1. Strategy 1
(a) Choose a bit b uniformly from {0, 1}.
(b) During the wait phase, delete every xi = 1 − b. After the wait phase, we know the

codeword x and have transmitted rx,bn copies of the bit b.
(c) If x /∈ C(qx, rx,b, b) (i.e. x ∈ C(qx, rx,1−b, 1 − b)) or x has no partner codeword,

transmit the remaining bits (i.e. give up).
(d) If x ∈ C(qx, rx,b, b) and x has a partner y, then let s∗xy by the canonical common

subsequence of x∗, y∗ with |s∗xy| ≥ (1 − qx)(1 − p
(adv)
0 )n. Since we know that the

remaining bits sent by the encoder is x∗, we can delete bits so that the decoder receives
s∗.

(e) If the online channel reaches pn deletions at any point, transmit the remaining bits.
2. Strategy 2

(a) Transmit the first (1− p)n bits.
(b) Delete the last pn bits.

The idea behind the strategy is that either the wait phase is short, in which case strategy 1
requires fewer than n/2 deletions, or the wait phase is long in which case strategy 2 gives less than
n/2 deletions. In particular with probability 1

2
, we employ a strategy (either strategy 1 or strategy

2) that, with constant probability, needs at most min(qxn, qxn/2 + (1− qx)p(adv)
0 n) deletions, and

we check this is at most pn.
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Suppose for codeword x ∈ C, the wait length is qxn. Condition on the fact that x has a partner
y with qx = qy and canonical common subsequence s∗xy of x∗ and y∗ with |s∗xy| ≥ (1 − qx)(1 −
p

(adv)
0 )n. By the above argument, this assumption holds with probability more than 0.99.

If qx > 1−p, then knowing x1 . . . x(1−p)n does not uniquely determine the codeword x, so there
exists another codeword y ∈ C with the same prefix y1 . . . y(1−p)n. Then when the encoder sends
each of x and y, the online channel applying strategy 2 transmits the same string x1 . . . x(1−p)n =
y1 . . . y(1−p)n. Since we assume the choice of codeword in C is uniformly at random, x and y are
equally likely to be transmitted, so the decoder fails in this case with probability at least 1

2
.

If qx ≤ 1 − p, then with probability 1
2

over the choice of b, we have x ∈ C(qx, rx,b, b), in
which case strategy 1 reaches step (d). Since x ∈ C(qx, rx,b, b), we have x1 . . . xqxn has majority
bit b, so step (b) deletes at most qxn/2 bits. Since |s∗xy| ≥ (1 − qx)(1 − p(adv)

0 )n, step (d) deletes
|x∗| − |s∗xy| ≤ (1− qx)p(adv)

0 n bits. The total number of bits required by strategy 1 is thus

qxn

2
+(1−qx)p(adv)

0 n =

(
p

(adv)
0 +

(
1

2
− p(adv)

0

)
qx

)
n <

(
p

(adv)
0 +

(
1

2
− p(adv)

0

)
(1− p)

)
n < pn

(6.7)
by our choice of p. Because x and y are partners, the encoder receives bqxns∗xy for both x and y
being sent through the online channel. Again, as each of x and y is equally likely, the decoder fails
with probability at least 1

2
.

We have shown that with probability at least 0.99 over the choice of codeword, either strategy 1
chooses the correct value of bwith probability 1

2
, and thus causes decoding error with probability at

least 1
4
, or strategy 2 causes decoding error with probability at least 1

2
. Adv chooses the “correct”

strategy with probability 1
2
, so with total probably at least 0.99 · 1

2
· min(1

4
, 1

2
) > 1

10
, there is a

decoding error, as desired.
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Chapter 7

Conclusion

7.1 Open problems

These are a number of open questions concerning deletion codes. Here are some of them, along
with the state of the art for each.

1. What is the zero rate threshold p(adv)
0 for adversarial deletions?

The best known bounds are p(adv)
0 ∈ [

√
2− 1, 1/2] [4].

2. What is the capacity of the binary deletion channel?
The capacity is known to approach 1 − h(p) as p → 0 [11, 23]. For p → 1, the capacity is
known to be c0(1− p), where c0 ∈ [1/9, 0.4143] [12, 36].

3. What are efficiently decodable codes for the binary deletion channel with rate c0(1− p) for
larger c0, perhaps reaching or beating the best known existential capacity lower bound of
c0 = 1/9?
Theorem 4.3.1 obtains c0 = 1/120 [18].

4. What are efficient codes for the binary deletion channel with rate 1−O(h(p)) for p→ 0?

5. What is the capacity of for random channels applying insertions and deletions?
In the random error model, decoding deletions, insertions, and insertions and deletions are
not the same. Indeed, it is not even clear how to define random insertions. One could
define insertions and deletions via the Poisson repeat channel where each bit is replaced
with a Poisson many copies of itself (see [12, 35]). However, random insertions do not seem
to share the similarity to random deletions that adversarial deletions share with adversarial
insertions; we can decode against arbitrarily large Poisson duplication rates, whereas for
codes of block length n we can decode against a maximum of n insertions or deletions
[13]. Alternatively one can consider a model of random insertions and deletions where, for
every bit, the bit is deleted with a fixed probability p1, a bit is inserted after it with a fixed
probability p2, or it is transmitted unmodified with probability 1 − p1 − p2 [41]. One could
also investigate settings involving memoryless insertions, deletions, and substitutions [34].

6. The existence of codes that decode against pn oblivious deletions for any p < 1 is now
known [17]. Can we modify the proof to show existence of codes decoding against a com-
bination of pn oblivious insertions and deletions for every p < 1?
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7. Can we find explicit codes for oblivious deletions that are constructable, encodable, and
decodable in polynomial time?

8. For erasures, the capacity of the random error channel and the capacity of the oblivious error
channel are both 1 − p. For bit flips, the random and oblivious error channels also have
the same capacity at 1 − h(p) [31]. Can we construct codes that decode oblivious deletions
with rate approaching the capacity of the random deletion channel (note this capacity itself
is not known)? On the other end, could we upper bound the best possible rate for correcting
a fraction p of oblivious deletions by o(1 − p) as p → 1? Such an upper bound would
fundamentally distinguish the behavior of the deletions from errors and erasures.

9. Can one find codes correcting p fraction of online deletions when p approaches 1
2
? By the

connection to adversarial deletions established in this work, this would imply p(adv)
0 = 1/2.

10. We defined p(on)
0 to be the zero-rate threshold for coding against online deletions with de-

terministic codes under average-error criterion, and proved that this threshold equals 1/2 if
and only if p(adv)

0 = 1/2. Could we establish a similar result for p(on,s)
0 in the case of cor-

recting online deletions with stochastic codes and worst-case error criterion (similar to the
guarantee offered by Theorem 5.2.1 for oblivious deletions)?
For online errors and erasures, the capacity of the online bit-flip and erasure channels are
known exactly [5], and capacity upper bounds have guarantees against stochastic codes under
both worst-case and average error criterion [2, 9].
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Appendix A

Proof of Lemma 2.2.2

Proof. For each i, we can find a random variable Bi such that Bi ≥ Ai always, Bi takes values in
[0, β], and E[Bi] = α. Applying Lemma 2.2.1 gives

Pr

[
n∑
i=1

Ai ≥ nγ

]
≤ Pr

[
n∑
i=1

Bi ≥ nγ

]

≤ Pr

[
n∑
i=1

Bi

β
≥
(

1 +

(
γ − α
α

))
nα

β

]

≤ exp

(
−
(
γ−α
α

)2 · nα
β

3

)

= exp

(
−(γ − α)2n

3αβ

)
. (A.1)
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Appendix B

Relationships between error models

In this appendix, we prove the following lemma, which shows that constructing (deterministic)
codes decodable against oblivious deletions in the average case (over random messages, in the
sense of Theorem 5.4.2), suffices to construct randomized codes with low decoding error probabil-
ity for every message, as guaranteed by Theorem 5.2.1.
Lemma B.0.1. Let p ∈ (0, 1). Suppose we have a family of codes C of length n and rate R such
that, for any deletion pattern τ with at most pn deletions, at most ε = on(1) of the codewords are
decoded incorrectly. Then, for any δ < 1

2
, provided n is sufficiently large, we can find a family of

stochastic codes C ′ of length n and rateR(1− δ)− o(1) that corrects pn oblivious deletions with
probability 1− 3ε.

Proof. For set of words C∗ a pair (c, τ) (where c ∈ C∗ and τ is a deletion pattern) C∗-bad if
τ(c) ⊆ c′ for some c′ ∈ C∗ \ {c}, and C∗-good otherwise.

Let M = |C| = 2Rn. For any τ , let Aτ denote the set of c such that (c, τ) is C-bad. Then
|Aτ | ≤ ε|C| by assumption that C decodes against pn deletions in the average case. Let d =
dh(p)/Re be a constant over varying n, so that there are at most Md >

(
n
pn

)
choices of τ .

Let t = M δ, and N = bM1−δ/2c. We construct C ′ iteratively. For 1 ≤ k ≤ N , chose a
random subset of exactly t codewords from C \ ∪k−1

i=1Ei to form Ek. With these sets of codewords,
we associate each message mi with a set Ei. We encode each message mi by choosing uniformly
at random one of t codewords in some set Ei.

Note that C ′ ⊆ C and |C ′| = Nt = M/2. It is easy to see the rate of C ′ isR(1− δ)− o(1).
We claim that, with positive probability over the choice ofC ′,C ′ corrects pn oblivious deletions

with probability 1 − 3ε. Define Bτ to be all c such that (c, τ) is C ′-bad. As Bτ ⊆ Aτ , we
have |Bτ | ≤ εM . We wish to show that the probability there exists an Bτ and a message mi

with encoding set Ei such that |Bτ ∩ Ei| ≥ 3ε|Ei| is less than 1. Fix a τ . We show that the
probability |Bτ ∩ Ei| ≥ 3ε|Ei| is tiny. When we chose Ei, we can imagine we picked the t
elements of Ei one after the other. Each one was chosen from at least M/2 codewords, so each
codeword lands in |Bτ ∩ Ei| with probability at most εM/(M/2) = 2ε. By Chernoff bounds,
Pr [|Bτ ∩ Ei| ≥ 3ε|Ei|] ≤ e−t/3. By union bound over all Ei and all Bτ , we have

Pr [∃Ei∃τ : |Bτ ∩ Ei| ≥ 3ε|Ei|] ≤ N ·Md · e−t/3 < Md+1/eM
δ/3 (B.1)

This is less than 1 for n > 2
δR log(3(d + 1)), so our code corrects pn oblivious deletions with

probability 1− 3ε, as desired.
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Appendix C

Comparison of oblivious deletions with
oblivious bit flips

First, for completeness, we outline the proof that that there exist codes achieving oblivious bit-
flip capacity. After this, we show that it is not possible to follow the same approach to construct
oblivious deletion codes.
Theorem C.0.2 ([6, 30]). The capacity of oblivious bit-flip channels is 1− h(p).

Proof that capacity 1− h(p) is achievable. Note that 1− h(p) is an upper bound for the capacity
as the capacity of the binary symmetric channel is 1 − h(p) and the adversary can always just
choose the error vector randomly.

We consider a stochastic code C where each message m is mapped uniformly into a set E(m)
of size t. Choose t = n and ε = 1/ log n. This code decodes successfully if, for all m,

Pr
c∈E(m)

c+ e ∈
⋃

c∈C\E(m)

Bpn(c′)

 ≥ 1− ε (C.1)

where Bpn(x) ⊆ {0, 1}n is the set of all words within Hamming distance pn of x.
Choose C to have 2Rn codewords at random. Fix a message m, the rest of the codeword

C \ E(m), and the error vector e. We have

Pr
c∼{0,1}n

c ∈ ⋃
c∈C\E(m)

Bpn(c′ + e)

 ≤ 1

2n
|C| · |Bpn(0)| ≈ 2Rn · 2h(p)n

2n
, (C.2)
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which is 2−Ω(n) ifR < 1− h(p). In this case

Pr
E(m)

 Pr
c∈E(m)

c+ e /∈
⋃

c∈C\E(m)

Bpn(c′)

 < 1− ε


= Pr

E(m)

 Pr
c∈E(m)

c /∈ ⋃
c∈C\E(m)

Bpn(c′ + e)

 < 1− ε


= Pr

E(m)

∣∣∣∣∣∣E(m) ∩
⋃

c∈C\E(m)

Bpn(c′ + e)

∣∣∣∣∣∣ > εt


≤ 2−Ω(εnt) = 2−Ω̃(n2). (C.3)

Thus, applying a union bound over all m and error vectors e, we get

Pr
C

∃m : Pr
c∈E(m)

c+ e ∈
⋃

c∈C\E(m)

Bpn(c′)

 > ε

 ≤ 2Rn · 2n · 2−Ω̃(n2) ≤ 2−Ω̃(n2). (C.4)

Thus when R < 1 − h(p), we can construct a rate R stochastic code correcting with high proba-
bility p oblivious bit flips.

For oblivious deletions the above technique does not work. This is established by the following
lemma.
Lemma C.0.3. Let C be a random length n rateR stochastic binary code such that each message
is encoded uniformly at random in one of t codewords. If p ≥ 0.4 and 0 < ε < 1, then for any
message m and deletion pattern τ we have

Pr
C

[
Pr

c∈E(m)
[∃c′ ∈ C \ E(m) : τ(c) v c′] > ε

]
> 2−h(p)n (C.5)

where Dk(s) = {s′ : |s′| = |s| − k, s′ ≤ s}.
In plain English, this lemma says that for a fixed message and deletion pattern, the probability

that message decodes incorrectly too many times (> ε fraction of the time) is too large (> 2−h(p)n).
In short, the reason the lemma is true is because the probability the entire code C contains a “really
bad” word (e.g. a word with at least 0.91n runs of 1s) is too large. The following remark shows
us, using Lemma C.0.3, why we cannot follow the same randomized approach as Theorem C.0.2.
Remark C.0.4. Following the approach of Theorem C.0.2, we would like to conclude, using union
bound,

Pr
C

[
∀m∀τ Pr

c∈E(m)
[∃c′ ∈ C \ E(m) : τ(c) v c′] > ε

]
≤
∑
m

∑
τ

Pr
C

[
Pr

c∈E(m)
[∃c′ ∈ C \ E(m) : τ(c) v c′] > ε

]
≤ 2Rn

(
n

pn

)
Pr
C

[
Pr

c∈E(m)
[∃c′ ∈ C \ E(m) : τ(c) v c′] > ε

]
< 2Rn2h(p)n2−h(p)n−Ω(n) = 2−Ω(n) (C.6)
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Unfortunately the last inequality (indicated in red) is false by Lemma C.0.3.

Proof. It suffices to prove for p = 0.4. Indeed, as p increases,

Pr
c∈E(m)

τ(c) ∈
⋃

c′∈C\E(m)

Dpn(c′)

 (C.7)

increases as τ(c) contains fewer symbols.
If p = 0.4, then τ(c) has 0.6n characters. Note that if c is uniform on {0, 1}n, then τ(c) is

uniform on {0, 1}0.6n. It is easy to check that for a uniformly chosen 0.6n string, the probability
it is a subsequence of the length 0.91n string a0.91n = 0101 . . . 01 is 1 − 2−Ω(n): the position in
the longest string increases by 1.5 each time, so in expectation the string spans 0.9n characters of
a0.91n, so it is not a subsequence with exponentially small probability by Chernoff bounds.

There are 20.09n length n strings that start with a0.91n. Call this set of strings A. Thus, the
probability that C contains an element of A is at least 2−0.91n since that is the probability the first
element is an element of A. Conditioned on C containing an element of A, the probability that, for
some c ∈ E(m), τ(c) is a subsequence of some element of A is at least the probability that c is a
subsequence of a0.91n, which is 1 − 2−Ω(n). Thus, conditioned on C containing an element of A,
we have

E [#{c : ∃c′ ∈ C \ E(m) s. t. τ(c) ≤ c′}] = t(1− 2−Ω(n)) (C.8)

Conditioned on C being fixed, consider the indicator random variables Xi for whether each ci ∈
E(m) satisfies τ(ci) is a subsequence of some c′ ∈ C \ E(m). The X1, . . . , Xt are i.i.d, so the
probability

∑
Xi/t > ε is approximately 1, (for sure, it is 1− 2−Ω(n)).

Thus we conclude

Pr
C

[#{c : ∃c′ ∈ C\E(m) s. t. τ(c) ≤ c′} > εt] ≥ (1−2−Ω(n))Pr
C

[C∩A 6= ∅] > 2(0.91−o(1))n > 2−H(0.4)n

(C.9)
as H(0.4) ≈ 0.97.

Intuitively C.0.3 should be true as deletion codes behave poorly when chosen completely ran-
domly. In the adversarial deletion channel, random codes correct only 0.17n deletions [25], while
the best known constructions correct 0.41n deletions [4].
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Appendix D

Proofs of Lemma 5.7.19 and Lemma 5.7.20

Lemma D.0.5. For any j ∈ [1, K], ifZ is a random variable distributed as min(Geometric(j/K),
√
R−

1), then E[Z] > K
2j
− 1.

Proof. We have

E[D] =

(
j

K

)
· 1 +

(
j

K

)(
1− j

K

)
· 2 + · · ·+

(
j

K

)(
1− j

K

)√R−2

· (
√
R− 1)

=
1−

(
1− j

K

)√R−1

j/K
− (
√
R− 1)

(
1− j

K

)√R−1

≥
1−

(
1− 1

K

)√R−1

j/K
− (
√
R− 1)

(
1− 1

K

)√R−1

>
K

2j
− 1 (D.1)

The last inequality follows from recalling R = 4K4 and twice applying

(√
R− 1

)(K − 1

K

)√R−1

< 2K2 ·
(
K − 1

K

)K2

< 2K2 ·
(

1

2

)K
< 1, (D.2)

which is true since K > 8.

Lemma (Lemma 5.7.19). Let J be chosen uniformly from [K]. Let D be a random variable that is
1 if J ∈ [λ− 1] and, conditioned on a fixed J ≥ λ, is distributed as min(Geometric(J/K),

√
R).

Then E[D] ≥ (logK)/4.

Proof. Applying Lemma D.0.5,

E[D] =
1

K

K∑
j=1

E[D|J = j] >
λ−1∑
j=1

1

K
· 1 +

K∑
j=λ

1

K

(
K

2j
− 1

)

≥ −1 +
K∑
j=λ

(
1

2j

)
>

1

2
(lnK − lnλ− 1)− 1 >

1

4
logK. (D.3)
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Lemma (Lemma 5.7.20). Let λ′ ∈ [λ,K] and let J be chosen uniformly from {λ, λ+1, . . . , λ′}. Let
D be the random variable that, conditioned on a fixed J , is distributed as min(Geometric(J/K),

√
R).

Then E[D] ≥ (logK)/4.

Proof. Applying Lemma D.0.5,

E[D] =
1

λ′ − λ+ 1

λ′∑
j=λ

E[D|J = j] >
1

λ′ − λ+ 1

λ′∑
j=λ

(
K

2j
− 1

)

>
1

K − λ+ 1

K∑
j=λ

(
K

2j
− 1

)
> −1 +

K∑
j=λ

(
1

2j

)
>

1

4
logK. (D.4)
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