
Bitwuzla: A New SMT Solver For Bit-Precise

Reasoning

Aina Niemetz and Mathias Preiner

CENTAUR Meeting, August 17, 2023



Bitwuzla

A New SMT Solver

. . . for quantified and quantifier-free theories of

• fixed-size bit-vectors

• floating-point arithmetic

• arrays

• uninterpreted functions

and their combinations.

▶ Pronounced as “bitvootslah”

▶ Derived from an Austrian dialect expression for someone who

tinkers with bits.

1



Successor of Boolector

Boolector

▶ An award-winning SMT solver, but . . .

◦ Specialized, tight integration of bit-vectors with arrays

◦ Monolithic C code base, rigid architecture

▶ Cumbersome to maintain, adding new features difficult

Bitwuzla

• Started as an improved and extended fork of Boolector in 2018

▶ No official release, limitations of Boolector remained

• In 2022, code base discarded and rewritten from scratch

• Written in C++, inspired by techniques in Boolector

▶ Bitwuzla considered superior successor of Boolector

2



Selected Features

Theories

▶ Focus: Theories primarily used in hardware verification

• Arrays, bit-vectors, floating-point arith., uninterpreted functions

• Quantifiers in combination with all supported theories

User-Facing

• Full incremental support

• Seamless interaction between multiple solver instances

• Models, unsat cores/assumptions

• Comprehensive and easy-to-use APIs

▶ C++, C, Python, OCaml (WIP), Rust (planned)

• Input Formats: SMT-LIBv2, BTOR2, SMT-LIBv3 (planned)

3



Architecture

4



Public Interface

5



Node Manager

▶ Formulas and terms represented as

reference-counted, immutable

nodes in directed acyclic graph

Node Manager, Type Manager

• Used to manage and construct nodes/types

• Employs hash-consing to maximize sharing of subgraphs

• Global (thread-local) node and type storage

▶ Allows sharing between arbitrarily many solving contexts

6



Solving Context

Solving Context

• Internal equivalent of solver instance

• Determines satisfiability of a set of asserted formulas

• Fully configurable via options

• Incremental interface for adding/removing assertions via push/pop

• Provides models for satisfiable queries

• Provides unsat cores for unsatisfiable queries

▶ Consists of three main components:

Rewriter, Preprocessor, Solver Engine

7



Rewriter

▶ Transforms terms via predefined set

of rewrites rules into semantically

equivalent normal forms

Rewriting

• Local (independent from current set of assertions)

• Implements more than 230 rules

• Required and optional rewrite rules grouped into levels 0–2

▶ 0 . . . required rewrite rules (e.g.: −x ⇝ ∼x + 1)

▶ 1 . . . immediate children only (e.g.: x + 0⇝ x)

▶ 2 . . . multiple levels of children (e.g.: a− b = c⇝ b + c = a)

• Implemented as preprocessing pass

8



Preprocessor

Preprocessing

• Invoked prior to solving

• Global (based on current set of assertions)

• Applies preprocessing passes in predefined order until fixed-point

• Passes implement a set of satisfiability-preserving transformations

• Fully incremental

• Speculative preprocessing

• Most passes are optional

Passes

Rewriting, Boolean And Flattening, Term Substitution, Boolean

Skeleton Preprocessing, Embedded Constraints Substitution, Bit-vector

Extract Elimination, Arithmetic Normalization, Lambda Elimination,

. . .

9



Solver Engine

Solver Engine

• Maintains a theory solver for each supported theory

• Quantifiers module implemented as theory solver

• Distributes relevant terms to theory solvers

• Processes lemmas generated by theory solvers

• Implements lazy SMT paradigm lemmas on demand

• Bit-vector abstraction of formula (instead of propositional)

▶ Bit-vector solver at its core

Bit-Vector Abstraction

• BV solver reasons about Boolean and bit-vector terms

• Non-BV theory atoms abstracted as Boolean constant

• BV terms with non-BV operator abstracted as bit-vector constant

10



Theory Solvers

Bit-Vectors

▶ Bit-blasting: BV terms → AIG circuits (+rewriting [BB’06]) → CNF

▶ Ternary propagation-based local search [Niemetz’20]

Floating-Point Arithmetic

▶ Word-blasting: FP terms → BV terms (via SymFPU [BSS’19])

Arrays

▶ Lemmas on Demand for Extensional Arrays [BB’09]

▶ Supports extensional nested arrays and constant arrays (ext. WIP)

Uninterpreted Functions

▶ Dynamic Ackermannization [DdM’06]

Quantifiers

▶ Model-based Quantifier Instantiation (MBQI) [GdM’09]

11



Evaluation

Setup

• Comparison against

◦ Boolector

◦ Z3 (SMT-COMP’22 version)

◦ cvc5 (SMT-COMP’22 version)

◦ SC22 (Bitwuzla SMT-COMP’22 version)

• SMT-LIB 2022 benchmarks

◦ 146, 235 non-incremental benchmarks in 23 supported logics

◦ 25, 443 incremental benchmarks in 15 supported logics

• Limits: 1200 seconds, 8GB memory

12



Evaluation (non-incremental)

Results

▶ Solves largest number of benchmarks (+670 compared to SC22)

▶ Solves most benchmarks in 13 out of 23 logics

▶ On 140, 438 commonly solved:

◦ slightly faster than SC22 (203, 838s vs 208, 310s)

◦ 2.85× faster than cvc5 (586, 105s)

◦ 5.1× faster than Z3 (1, 049, 534s)

SMT-COMP’23 SQ Track: 17 out of 30 gold medals in 6 divisions

13



Evaluation (incremental)

Results

▶ Solves largest number of queries (+8257 compared to SC22)

▶ Solves most queries in 11 out of 15 logics

SMT-COMP’23 INC Track: 5 out of 6 gold medals in 6 divisions

14



Conclusion

Bitwuzla

▶ A new state-of-the-art SMT solver for all things bits (and more)

Open Source

• MIT license

• Source code: https://github.com/bitwuzla/bitwuzla

Website and Documentation: https://bitwuzla.github.io

Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

15

https://github.com/bitwuzla/bitwuzla
https://bitwuzla.github.io
https://doi.org/10.5281/zenodo.7864687


Appendix: Non-Incremental Results

16



Appendix: Incremental Results

17



References

R. Brummayer, A. Biere. Lemmas on Demand for the Extensional

Theory of Arrays. JSAT, 2009.

R. Brummayer, A. Biere. Local Two-Level And-Inverter Graph

Minimization without Blowup. In Proc. of MEMICS’06, 2006.

M. Brain, F. Schanda, Y. Sun. Building Better Bit-Blasting for

Floating-Point Problems. In Proc. of TACAS’19, 2019.

B. Dutertre, L. de Moura. The Yices SMT Solver., 2006.

Y. Ge, L. de Moura. Complete Instantiation for Quantified Formulas

in Satisfiabiliby Modulo Theories, In Proc. of CAV’09, 2009.

18



References

A. Niemetz, M. Preiner. Ternary Propagation-Based Local Search for

more Bit-Precise Reasoning. In Proc. of FMCAD’20, pages 214–224,

IEEE, 2020.

19


