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Bitwuzla

A New SMT Solver

. . . for quantified and quantifier-free theories of

• fixed-size bit-vectors

• floating-point arithmetic

• arrays

• uninterpreted functions

and their combinations.

▶ Pronounced as “bitvootslah”

▶ Derived from an Austrian dialect expression for someone who

tinkers with bits.
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Successor of Boolector

Boolector

▶ An award-winning SMT solver, but . . .

◦ Specialized, tight integration of bit-vectors with arrays

◦ Monolithic C code base, rigid architecture

▶ Cumbersome to maintain, adding new features difficult

Bitwuzla

• Started as an improved and extended fork of Boolector in 2018

▶ No official release, limitations of Boolector remained

• In 2022, code base discarded and rewritten from scratch

• Written in C++, inspired by techniques in Boolector

▶ Bitwuzla considered superior successor of Boolector
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Selected Features

Theories

▶ Focus: Theories primarily used in hardware verification

• Arrays, bit-vectors, floating-point arith., uninterpreted functions

• Quantifiers in combination with all supported theories

User-Facing

• Full incremental support

• Seamless interaction between multiple solver instances

• Models, unsat cores/assumptions

• Comprehensive and easy-to-use APIs

▶ C++, C, Python, OCaml (WIP), Rust (planned)

• Input Formats: SMT-LIBv2, BTOR2, SMT-LIBv3 (planned)
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Architecture
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Public Interface
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Node Manager

▶ Formulas and terms represented as

reference-counted, immutable

nodes in directed acyclic graph

Node Manager, Type Manager

• Used to manage and construct nodes/types

• Employs hash-consing to maximize sharing of subgraphs

• Global (thread-local) node and type storage

▶ Allows sharing between arbitrarily many solving contexts
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Solving Context

Solving Context

• Internal equivalent of solver instance

• Determines satisfiability of a set of asserted formulas

• Fully configurable via options

• Incremental interface for adding/removing assertions via push/pop

• Provides models for satisfiable queries

• Provides unsat cores for unsatisfiable queries

▶ Consists of three main components:

Rewriter, Preprocessor, Solver Engine
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Rewriter

▶ Transforms terms via predefined set

of rewrites rules into semantically

equivalent normal forms

Rewriting

• Local (independent from current set of assertions)

• Implements more than 230 rules

• Required and optional rewrite rules grouped into levels 0–2

▶ 0 . . . required rewrite rules (e.g.: −x ⇝ ∼x + 1)

▶ 1 . . . immediate children only (e.g.: x + 0⇝ x)

▶ 2 . . . multiple levels of children (e.g.: a− b = c⇝ b + c = a)

• Implemented as preprocessing pass
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Preprocessor

Preprocessing

• Invoked prior to solving

• Global (based on current set of assertions)

• Applies preprocessing passes in predefined order until fixed-point

• Passes implement a set of satisfiability-preserving transformations

• Fully incremental

• Speculative preprocessing

• Most passes are optional

Passes

Rewriting, Boolean And Flattening, Term Substitution, Boolean

Skeleton Preprocessing, Embedded Constraints Substitution, Bit-vector

Extract Elimination, Arithmetic Normalization, Lambda Elimination,

. . .
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Solver Engine

Solver Engine

• Maintains a theory solver for each supported theory

• Quantifiers module implemented as theory solver

• Distributes relevant terms to theory solvers

• Processes lemmas generated by theory solvers

• Implements lazy SMT paradigm lemmas on demand

• Bit-vector abstraction of formula (instead of propositional)

▶ Bit-vector solver at its core

Bit-Vector Abstraction

• BV solver reasons about Boolean and bit-vector terms

• Non-BV theory atoms abstracted as Boolean constant

• BV terms with non-BV operator abstracted as bit-vector constant
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Theory Solvers

Bit-Vectors

▶ Bit-blasting: BV terms → AIG circuits (+rewriting [BB’06]) → CNF

▶ Ternary propagation-based local search [Niemetz’20]

Floating-Point Arithmetic

▶ Word-blasting: FP terms → BV terms (via SymFPU [BSS’19])

Arrays

▶ Lemmas on Demand for Extensional Arrays [BB’09]

▶ Supports extensional nested arrays and constant arrays (ext. WIP)

Uninterpreted Functions

▶ Dynamic Ackermannization [DdM’06]

Quantifiers

▶ Model-based Quantifier Instantiation (MBQI) [GdM’09]
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Evaluation

Setup

• Comparison against

◦ Boolector

◦ Z3 (SMT-COMP’22 version)

◦ cvc5 (SMT-COMP’22 version)

◦ SC22 (Bitwuzla SMT-COMP’22 version)

• SMT-LIB 2022 benchmarks

◦ 146, 235 non-incremental benchmarks in 23 supported logics

◦ 25, 443 incremental benchmarks in 15 supported logics

• Limits: 1200 seconds, 8GB memory
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Evaluation (non-incremental)

Results

▶ Solves largest number of benchmarks (+670 compared to SC22)

▶ Solves most benchmarks in 13 out of 23 logics

▶ On 140, 438 commonly solved:

◦ slightly faster than SC22 (203, 838s vs 208, 310s)

◦ 2.85× faster than cvc5 (586, 105s)

◦ 5.1× faster than Z3 (1, 049, 534s)

SMT-COMP’23 SQ Track: 17 out of 30 gold medals in 6 divisions
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Evaluation (incremental)

Results

▶ Solves largest number of queries (+8257 compared to SC22)

▶ Solves most queries in 11 out of 15 logics

SMT-COMP’23 INC Track: 5 out of 6 gold medals in 6 divisions

14



Conclusion

Bitwuzla

▶ A new state-of-the-art SMT solver for all things bits (and more)

Open Source

• MIT license

• Source code: https://github.com/bitwuzla/bitwuzla

Website and Documentation: https://bitwuzla.github.io

Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact
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Appendix: Non-Incremental Results
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Appendix: Incremental Results
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