Bitwuzla: A New SMT Solver For Bit-Precise Reasoning

Aina Niemetz and Mathias Preiner

CENTAUR Meeting, August 17, 2023

Bitwuzla

A New SMT Solver

- ... for quantified and quantifier-free theories of
 - fixed-size bit-vectors
 - floating-point arithmetic
 - arrays
 - uninterpreted functions

and their combinations.

Pronounced as "bitvootslah"

Derived from an Austrian dialect expression for someone who tinkers with bits.

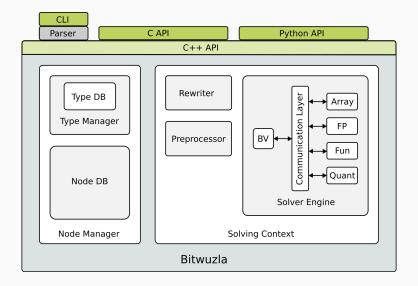
Successor of Boolector

Boolector

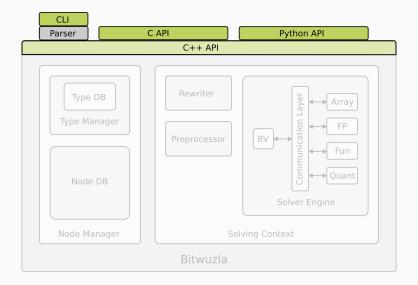
- ► An award-winning SMT solver, but ...
- $\circ~$ Specialized, tight integration of $\ensuremath{\textit{bit-vectors with arrays}}$
- Monolithic C code base, rigid architecture
- Cumbersome to maintain, adding new features difficult

Bitwuzla

- Started as an improved and extended fork of Boolector in 2018
 No official release, limitations of Boolector remained
- In 2022, code base discarded and rewritten from scratch
- Written in C++, inspired by techniques in Boolector
- Bitwuzla considered superior successor of Boolector


Theories

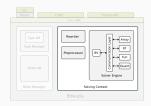
- ► Focus: Theories primarily used in hardware verification
- Arrays, bit-vectors, floating-point arith., uninterpreted functions
- Quantifiers in combination with all supported theories


User-Facing

- Full incremental support
- Seamless interaction between multiple solver instances
- Models, unsat cores/assumptions
- Comprehensive and easy-to-use APIs
 ► C++, C, Python, OCamI (WIP), Rust (planned)
- Input Formats: SMT-LIBv2, BTOR2, SMT-LIBv3 (planned)

Architecture

Public Interface


 Formulas and terms represented as reference-counted, immutable nodes in directed acyclic graph

Node Manager, Type Manager

- Used to manage and construct nodes/types
- Employs hash-consing to maximize sharing of subgraphs
- Global (thread-local) node and type storage
 - Allows sharing between arbitrarily many solving contexts

Solving Context

- Internal equivalent of solver instance
- Determines satisfiability of a set of asserted formulas
- Fully configurable via options
- Incremental interface for adding/removing assertions via push/pop
- Provides models for satisfiable queries
- Provides unsat cores for unsatisfiable queries
- Consists of three main components: Rewriter, Preprocessor, Solver Engine

Rewriter

 Transforms terms via predefined set of rewrites rules into semantically equivalent normal forms

Rewriting

- Local (independent from current set of assertions)
- Implements more than 230 rules
- Required and optional rewrite rules grouped into levels 0-2
 - ▶ 0 . . . required rewrite rules (e.g.: $-x \rightsquigarrow -x + 1$)
 - ▶ 1 ... immediate children only (e.g.: $x + 0 \rightsquigarrow x$)
 - ▶ 2 ... multiple levels of children (e.g.: $a b = c \rightsquigarrow b + c = a$)
- Implemented as preprocessing pass

Preprocessing

- Invoked prior to solving
- Global (based on current set of assertions)
- CA
 Prime AL

 Type Alongaye
 Nexter Pairs

 Nexter Pairs
 Image: Control of the pairs

 Nexter Pairs
 Image: Control of the pairs

 Nexter Pairs
 Image: Control of the pairs

 Nexter Pairs
 Scient Depice

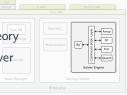
 Nexter Pairs
 Scient Control

 Nexter Pairs
 Scient Control
- Applies preprocessing passes in predefined order until fixed-point
- Passes implement a set of satisfiability-preserving transformations
- Fully incremental
- Speculative preprocessing
- Most passes are optional

Passes

Rewriting, Boolean And Flattening, **Term Substitution**, Boolean Skeleton Preprocessing, Embedded Constraints Substitution, Bit-vector Extract Elimination, **Arithmetic Normalization**, Lambda Elimination,

. . .


Solver Engine

Solver Engine

- Maintains a theory solver for each supported theory
- Quantifiers module implemented as theory solver
- Distributes relevant terms to theory solvers
- Processes lemmas generated by theory solvers
- Implements lazy SMT paradigm lemmas on demand
- Bit-vector abstraction of formula (instead of propositional)
 - Bit-vector solver at its core

Bit-Vector Abstraction

- BV solver reasons about Boolean and bit-vector terms
- Non-BV theory atoms abstracted as Boolean constant
- BV terms with non-BV operator abstracted as bit-vector constant

Theory Solvers

Bit-Vectors

- ▶ **Bit-blasting**: BV terms \rightarrow AIG circuits (+rewriting [BB'06]) \rightarrow CNF
- ► Ternary propagation-based local search [Niemetz'20]

Floating-Point Arithmetic

▶ Word-blasting: FP terms → BV terms (via SymFPU [BSS'19])

Arrays

- ► Lemmas on Demand for Extensional Arrays [BB'09]
- Supports extensional nested arrays and constant arrays (ext. WIP)

Uninterpreted Functions

▶ Dynamic Ackermannization [DdM'06]

Quantifiers

► Model-based Quantifier Instantiation (MBQI) [GdM'09]

Setup

- Comparison against
 - Boolector
 - Z3 (SMT-COMP'22 version)
 - cvc5 (SMT-COMP'22 version)
 - SC22 (Bitwuzla SMT-COMP'22 version)
- SMT-LIB 2022 benchmarks
 - o 146,235 non-incremental benchmarks in 23 supported logics
 - $\circ~25,443$ incremental benchmarks in 15 supported logics
- Limits: 1200 seconds, 8GB memory

Results

	Boolector	Z3	cvc5	SC22	Bitwuzla
Total (146,235)	64,106	141,778	$142,\!995$	$143,\!617$	$144,\!287$
Time (solved) [s]	417,643	$1,\!212,\!584$	1,000,466	563,832	580,435

- Solves largest number of benchmarks (+670 compared to SC22)
- Solves most benchmarks in 13 out of 23 logics
- On 140, 438 commonly solved:
 - slightly faster than SC22 (203,838s vs 208,310s)
 - 2.85 × faster than cvc5 (586, 105s)
 - **5.1**× faster than Z3 (1,049,534*s*)

SMT-COMP'23 SQ Track: 17 out of 30 gold medals in 6 divisions

Results

	Boolector	Z 3	cvc5	SC22	Bitwuzla
Total (699,612)	60,113	$657,\!512$	$673,\!642$	685,006	693,263
Time (solved) [s]	102,812	$3,\!359,\!645$	$1,\!516,\!672$	$157,\!083$	$172,\!534$

- Solves largest number of queries (+8257 compared to SC22)
- Solves most queries in 11 out of 15 logics

SMT-COMP'23 INC Track: 5 out of 6 gold medals in 6 divisions

Bitwuzla

► A new state-of-the-art SMT solver for all things bits (and more)

Open Source

- MIT license
- Source code: https://github.com/bitwuzla/bitwuzla

Website and Documentation: https://bitwuzla.github.io

Appendix: Non-Incremental Results

	Boolector	Z3	cvc5	SC22	Bitwuzla
ABV (169)	-	89	32	0	1
ABVFP (30)	-	25	19	0	16
ABVFPLRA (75)	-	47	36	0	31
AUFBV (1,522)	-	403	486	597	983
AUFBVFP (57)	-	7	21	24	39
BV (6,045)	5,659	5,593	5,818	5,624	5,705
BVFP (205)	-	176	171	148	188
BVFPLRA (209)	-	189	107	140	199
FP (2,669)	-	2,128	2,353	2,513	2,481
FPLRA (87)	-	72	51	55	83
QF_ABV (15,084)	15,041	14,900	14,923	15,043	15,041
QF_ABVFP (18,129)	-	18,017	18,113	18,125	18,125
$QF_ABVFPLRA$ (74)	-	69	74	34	74
QF_AUFBV (67)	45	50	42	46	55
$QF_AUFBVFP$ (1)	-	1	1	1	1
QF_BV (42,472)	41,958	40,876	41,574	42,039	42,049
QF_BVFP (17,244)	-	17,229	17,238	$17,\!242$	17,241
QF_FP (40,409)	-	40,303	40,357	40,368	40,358
QF_FPLRA (57)	-	41	48	56	56
$QF_{-}UFBV$ (1,434)	1,403	1,404	1,387	1,413	1,411
$QF_{-}UFFP$ (2)	-	2	2	2	2
UFBV (192)	-	156	141	146	147
\mathbf{UFBVFP} (2)	-	1	1	1	1
Total (146,235)	64,106	141,778	142,995	$143,\!617$	144,287
Time (solved) [s]	417,643	$1,\!212,\!584$	1,000,466	563,832	580,435

Logic	Boolector	Z3	cvc5	SC22	Bitwuzla
ABVFPLRA (2,269)	-	2,220	818	55	2,269
BV (38,856)	-	37,188	36,169	35,567	35,246
BVFP (458)	-	458	458	274	458
BVFPLRA (5,597)	-	5,507	2,964	3,144	4,797
QF_ABV (3,411)	3,238	2,866	2,746	3,242	2,939
QF_ABVFP (550,088)	-	515,714	534,629	550,034	550,041
QF_ABVFPLRA (1,876)	-	48	1,876	1,876	1,876
QF_AUFBV (967)	23	860	320	23	956
QF_BV (53,684)	52,218	51,826	51,683	51,581	52,305
QF_BVFP (3,465)	-	3,403	3,437	3,444	3,438
QF_BVFPLRA (32,736)	-	31,287	32,681	32,736	32,736
QF_FP (663)	-	663	663	663	663
QF_FPLRA (48)	-	48	48	48	48
$QF_{-}UFBV$ (5,492)	4,634	5,422	5,148	2,317	$5,\!489$
QF_UFFP (2)	-	2	2	2	2
Total (699,612)	60,113	657,512	$673,\!642$	685,006	693,263
Time (solved) [s]	102,812	3,359,645	$1,\!516,\!672$	157,083	172,534

- R. Brummayer, A. Biere. Lemmas on Demand for the Extensional Theory of Arrays. JSAT, 2009.
- R. Brummayer, A. Biere. Local Two-Level And-Inverter Graph Minimization without Blowup. In Proc. of MEMICS'06, 2006.
- M. Brain, F. Schanda, Y. Sun. *Building Better Bit-Blasting for Floating-Point Problems.* In Proc. of TACAS'19, 2019.
- B. Dutertre, L. de Moura. *The Yices SMT Solver.*, 2006.
- Y. Ge, L. de Moura. Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories, In Proc. of CAV'09, 2009.

A. Niemetz, M. Preiner. Ternary Propagation-Based Local Search for more Bit-Precise Reasoning. In Proc. of FMCAD'20, pages 214–224, IEEE, 2020.