
Online EM for Unsupervised Models

Percy Liang Dan Klein
Computer Science Division, EECS Department

University of California at Berkeley
Berkeley, CA 94720

{pliang,klein}@cs.berkeley.edu

Abstract

The (batch) EM algorithm plays an important
role in unsupervised induction, but it some-
times suffers from slow convergence. In this
paper, we show that online variants (1) provide
significant speedups and (2) can even find bet-
ter solutions than those found by batch EM.
We support these findings on four unsuper-
vised tasks: part-of-speech tagging, document
classification, word segmentation, and word
alignment.

1 Introduction

In unsupervised NLP tasks such as tagging, parsing,
and alignment, one wishes to induce latent linguistic
structures from raw text. Probabilistic modeling has
emerged as a dominant paradigm for these problems,
and the EM algorithm has been a driving force for
learning models in a simple and intuitive manner.

However, on some tasks, EM can converge
slowly. For instance, on unsupervised part-of-
speech tagging, EM requires over 100 iterations to
reach its peak performance on the Wall-Street Jour-
nal (Johnson, 2007). The slowness of EM is mainly
due to its batch nature: Parameters are updated only
once after each pass through the data. When param-
eter estimates are still rough or if there is high redun-
dancy in the data, computing statistics on the entire
dataset just to make one update can be wasteful.

In this paper, we investigate two flavors of on-
line EM—incremental EM (Neal and Hinton, 1998)
and stepwise EM (Sato and Ishii, 2000; Cappé and
Moulines, 2009), both of which involve updating pa-
rameters after each example or after a mini-batch

(subset) of examples. Online algorithms have the
potential to speed up learning by making updates
more frequently. However, these updates can be
seen as noisy approximations to the full batch up-
date, and this noise can in fact impede learning.

This tradeoff between speed and stability is famil-
iar to online algorithms for convex supervised learn-
ing problems—e.g., Perceptron, MIRA, stochastic
gradient, etc. Unsupervised learning raises two ad-
ditional issues: (1) Since the EM objective is non-
convex, we often get convergence to different local
optima of varying quality; and (2) we evaluate on
accuracy metrics which are at best loosely correlated
with the EM likelihood objective (Liang and Klein,
2008). We will see that these issues can lead to sur-
prising results.

In Section 4, we present a thorough investigation
of online EM, mostly focusing on stepwise EM since
it dominates incremental EM. For stepwise EM, we
find that choosing a good stepsize and mini-batch
size is important but can fortunately be done ade-
quately without supervision. With a proper choice,
stepwise EM reaches the same performance as batch
EM, but much more quickly. Moreover, it can even
surpass the performance of batch EM. Our results
are particularly striking on part-of-speech tagging:
Batch EM crawls to an accuracy of 57.3% after 100
iterations, whereas stepwise EM shoots up to 65.4%
after just two iterations.

2 Tasks, models, and datasets

In this paper, we focus on unsupervised induction
via probabilistic modeling. In particular, we define
a probabilistic model p(x, z; θ) of the input x (e.g.,



a sentence) and hidden output z (e.g., a parse tree)
with parameters θ (e.g., rule probabilities). Given a
set of unlabeled examples x(1), . . . ,x(n), the stan-
dard training objective is to maximize the marginal
log-likelihood of these examples:

`(θ) =
n∑
i=1

log p(x(i); θ). (1)

A trained model θ̂ is then evaluated on the accuracy
of its predictions: argmaxz p(z | x(i); θ̂) against the
true output z(i); the exact evaluation metric depends
on the task. What makes unsupervised induction
hard at best and ill-defined at worst is that the train-
ing objective (1) does not depend on the true outputs
at all.

We ran experiments on four tasks described be-
low. Two of these tasks—part-of-speech tagging and
document classification—are “clustering” tasks. For
these, the output z consists of labels; for evalua-
tion, we map each predicted label to the true label
that maximizes accuracy. The other two tasks—
segmentation and alignment—only involve unla-
beled combinatorial structures, which can be eval-
uated directly.

Part-of-speech tagging For each sentence x =
(x1, . . . , x`), represented as a sequence of words, we
wish to predict the corresponding sequence of part-
of-speech (POS) tags z = (z1, . . . , z`). We used
a simple bigram HMM trained on the Wall Street
Journal (WSJ) portion of the Penn Treebank (49208
sentences, 45 tags). No tagging dictionary was used.
We evaluated using per-position accuracy.

Document classification For each document x =
(x1, . . . , x`) consisting of ` words,1 we wish to pre-
dict the document class z ∈ {1, . . . , 20}. Each doc-
ument x is modeled as a bag of words drawn inde-
pendently given the class z. We used the 20 News-
groups dataset (18828 documents, 20 classes). We
evaluated on class accuracy.

Word segmentation For each sentence x =
(x1, . . . , x`), represented as a sequence of English
phonemes or Chinese characters without spaces
separating the words, we would like to predict

1We removed the 50 most common words and words that
occurred fewer than 5 times.

a segmentation of the sequence into words z =
(z1, . . . , z|z|), where each segment (word) zi is a
contiguous subsequence of 1, . . . , `. Since the naı̈ve
unigram model has a degenerate maximum likeli-
hood solution that makes each sentence a separate
word, we incorporate a penalty for longer segments:
p(x, z; θ) ∝

∏|z|
k=1 p(xzk ; θ)e

−|zk|β , where β > 1
determines the strength of the penalty. For English,
we used β = 1.6; Chinese, β = 2.5. To speed up in-
ference, we restricted the maximum segment length
to 10 for English and 5 for Chinese.

We applied this model on the Bernstein-Ratner
corpus from the CHILDES database used in
Goldwater et al. (2006) (9790 sentences) and
the Academia Sinica (AS) corpus from the first
SIGHAN Chinese word segmentation bakeoff (we
used the first 100K sentences). We evaluated using
F1 on word tokens.

To the best of our knowledge, our penalized uni-
gram model is new and actually beats the more com-
plicated model of Johnson (2008) 83.5% to 78%,
which had been the best published result on this task.

Word alignment For each pair of translated sen-
tences x = (e1, . . . , ene , f1, . . . , fnf ), we wish to
predict the word alignments z ∈ {0, 1}nenf . We
trained two IBM model 1s using agreement-based
learning (Liang et al., 2008). We used the first
30K sentence pairs of the English-French Hansards
data from the NAACL 2003 Shared Task, 447+37
of which were hand-aligned (Och and Ney, 2003).
We evaluated using the standard alignment error rate
(AER).

3 EM algorithms

Given a probabilistic model p(x, z; θ) and unla-
beled examples x(1), . . . ,x(n), recall we would like
to maximize the marginal likelihood of the data
(1). Let φ(x, z) denote a mapping from a fully-
labeled example (x, z) to a vector of sufficient statis-
tics (counts in the case of multinomials) for the
model. For example, one component of this vec-
tor for HMMs would be the number of times state
7 emits the word “house” in sentence x with state
sequence z. Given a vector of sufficient statistics µ,
let θ(µ) denote the maximum likelihood estimate. In
our case, θ(µ) are simply probabilities obtained by
normalizing each block of counts. This closed-form



Batch EM

µ← initialization
for each iteration t = 1, . . . , T :
−µ′ ← 0
−for each example i = 1, . . . , n:
−−s′

i ←
∑

z p(z | x(i); θ(µ))φ(x(i), z) [inference]
−−µ′ ← µ′ + s′

i [accumulate new]
−µ← µ′ [replace old with new]

solution is one of the features that makes EM (both
batch and online) attractive.

3.1 Batch EM

In the (batch) EM algorithm, we alternate between
the E-step and the M-step. In the E-step, we com-
pute the expected sufficient statistics µ′ across all
the examples based on the posterior over z under the
current parameters θ(µ). In all our models, this step
can be done via a dynamic program (for example,
forward-backward for POS tagging).

In the M-step, we use these sufficient statistics
µ′ to re-estimate the parameters. Since the M-step
is trivial, we represent it implicitly by θ(·) in order
to concentrate on the computation of the sufficient
statistics. This focus will be important for online
EM, so writing batch EM in this way accentuates
the parallel between batch and online.

3.2 Online EM

To obtain an online EM algorithm, we store a sin-
gle set of sufficient statistics µ and update it after
processing each example. For the i-th example, we
compute sufficient statistics s′i. There are two main
variants of online EM algorithms which differ in ex-
actly how the new s′i is incorporated into µ.

The first is incremental EM (iEM) (Neal and Hin-
ton, 1998), in which we not only keep track of µ but
also the sufficient statistics s1, . . . , sn for each ex-
ample (µ =

∑n
i=1 si). When we process example i,

we subtract out the old si and add the new s′i.
Sato and Ishii (2000) developed another variant,

later generalized by Cappé and Moulines (2009),
which we call stepwise EM (sEM). In sEM, we in-
terpolate between µ and s′i based on a stepsize ηk (k
is the number of updates made to µ so far).

The two algorithms are motivated in different
ways. Recall that the log-likelihood can be lower

Incremental EM (iEM)

si ← initialization for i = 1, . . . , n
µ←

∑n
i=1 si

for each iteration t = 1, . . . , T :
−for each example i = 1, . . . , n in random order:
−−s′

i ←
∑

z p(z | x(i); θ(µ))φ(x(i), z) [inference]
−−µ← µ+ s′

i − si; si ← s′
i [replace old with new]

Stepwise EM (sEM)

µ← initialization; k = 0
for each iteration t = 1, . . . , T :
−for each example i = 1, . . . , n in random order:
−−s′

i ←
∑

z p(z | x(i); θ(µ))φ(x(i), z) [inference]
−−µ← (1−ηk)µ+ ηks

′
i; k ← k+1 [towards new]

bounded as follows (Neal and Hinton, 1998):

`(θ) ≥ L(q1, . . . , qn, θ) (2)

def=
n∑
i=1

[ ∑
z

qi(z | x(i)) log p(x(i), z; θ) +H(qi)
]
,

where H(qi) is the entropy of the distribution qi(z |
x(i)). Batch EM alternates between optimizing L
with respect to q1, . . . , qn in the E-step (represented
implicitly via sufficient statistics µ′) and with re-
spect to θ in the M-step. Incremental EM alternates
between optimizing with respect to a single qi and θ.

Stepwise EM is motivated from the stochastic ap-
proximation literature, where we think of approxi-
mating the update µ′ in batch EM with a single sam-
ple s′i. Since one sample is a bad approximation,
we interpolate between s′i and the current µ. Thus,
sEM can be seen as stochastic gradient in the space
of sufficient statistics.

Stepsize reduction power α Stepwise EM leaves
open the choice of the stepsize ηk. Standard results
from the stochastic approximation literature state
that

∑∞
k=0 ηk = ∞ and

∑∞
k=0 η

2
k < ∞ are suffi-

cient to guarantee convergence to a local optimum.
In particular, if we take ηk = (k + 2)−α, then any
0.5 < α ≤ 1 is valid. The smaller the α, the larger
the updates, and the more quickly we forget (decay)
our old sufficient statistics. This can lead to swift
progress but also generates instability.

Mini-batch size m We can add some stability
to sEM by updating on multiple examples at once



instead of just one. In particular, partition the
n examples into mini-batches of size m and run
sEM, treating each mini-batch as a single exam-
ple. Formally, for each i = 0,m, 2m, 3m, . . . , first
compute the sufficient statistics s′i+1, . . . , s

′
i+m on

x(i+1), . . . ,x(i+m) and then update µ using s′i+1 +
· · · + s′i+m. The larger the m, the less frequent
the updates, but the more stable they are. In this
way, mini-batches interpolate between a pure online
(m = 1) and a pure batch (m = n) algorithm.2

Fast implementation Due to sparsity in NLP, the
sufficient statistics of an example s′i are nonzero for
a small fraction of its components. For iEM, the
time required to update µ with s′i depends only on
the number of nonzero components of s′i. However,
the sEM update is µ← (1−ηk)µ+ηks′i, and a naı̈ve
implementation would take time proportional to the
total number of components. The key to a more effi-
cient solution is to note that θ(µ) is invariant to scal-
ing of µ. Therefore, we can store S = µQ

j<k(1−ηj)
instead of µ and make the following sparse update:
S ← S + ηkQ

j≤k(1−ηj)
s′i, taking comfort in the fact

that θ(µ) = θ(S).
For both iEM and sEM, we also need to efficiently

compute θ(µ). We can do this by maintaining the
normalizer for each multinomial block (sum of the
components in the block). This extra maintenance
only doubles the number of updates we have to make
but allows us to fetch any component of θ(µ) in con-
stant time by dividing out the normalizer.

3.3 Incremental versus stepwise EM

Incremental EM increases L monotonically after
each update by virtue of doing coordinate-wise as-
cent and thus is guaranteed to converge to a local
optimum of both L and ` (Neal and Hinton, 1998).
However, ` is not guaranteed to increase after each
update. Stepwise EM might not increase either L or
` after each update, but it is guaranteed to converge
to a local optimum of ` given suitable conditions on
the stepsize discussed earlier.

Incremental and stepwise EM actually coincide
under the following setting (Cappé and Moulines,

2Note that running sEM with m = n is similar but not
equivalent to batch EM since old sufficient statistics are still
interpolated rather than replaced.

2009): If we set (α,m) = (1, 1) for sEM and ini-
tialize all si = 0 for iEM, then both algorithms make
the same updates on the first pass through the data.
They diverge thereafter as iEM subtracts out old sis,
while sEM does not even remember them.

One weakness of iEM is that its memory require-
ments grow linearly with the number of examples
due to storing s1, . . . , sn. For large datasets, these
sis might not even fit in memory, and resorting to
physical disk would be very slow. In contrast, the
memory usage of sEM does not depend on n.

The relationship between iEM and sEM (with
m = 1) is analogous to the one between exponen-
tiated gradient (Collins et al., 2008) and stochastic
gradient for supervised learning of log-linear mod-
els. The former maintains the sufficient statistics of
each example and subtracts out old ones whereas the
latter does not. In the supervised case, the added sta-
bility of exponentiated gradient tends to yield bet-
ter performance. For the unsupervised case, we will
see empirically that remembering the old sufficient
statistics offers no benefit, and much better perfor-
mance can be obtained by properly setting (α,m)
for sEM (Section 4).

4 Experiments

We now present our empirical results for batch EM
and online EM (iEM and sEM) on the four tasks de-
scribed in Section 2: part-of-speech tagging, docu-
ment classification, word segmentation (English and
Chinese), and word alignment.

We used the following protocol for all experi-
ments: We initialized the parameters to a neutral set-
ting plus noise to break symmetries.3 Training was
performed for 20 iterations.4 No parameter smooth-
ing was used. All runs used a fixed random seed for
initializing the parameters and permuting the exam-
ples at the beginning of each iteration. We report two
performance metrics: log-likelihood normalized by
the number of examples and the task-specific accu-
racy metric (see Section 2). All numbers are taken
from the final iteration.

3Specifically, for each block of multinomial probabilities
θ1, . . . , θK , we set θk ∝ exp{10−3(1 + ak)}, where ak ∼
U [0, 1]. Exception: for batch EM on POS tagging, we used 1
instead of 10−3; more noise worked better.

4Exception: for batch EM on POS tagging, 100 iterations
was needed to get satisfactory performance.



Stepwise EM (sEM) requires setting two
optimization parameters: the stepsize reduc-
tion power α and the mini-batch size m (see
Section 3.2). As Section 4.3 will show, these
two parameters can have a large impact on
performance. As a default rule of thumb, we
chose (α,m) ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} ×
{1, 3, 10, 30, 100, 300, 1K, 3K, 10K} to maximize
log-likelihood; let sEM` denote stepwise EM with
this setting. Note that this setting requires no labeled
data. We will also consider fixing (α,m) = (1, 1)
(sEMi) and choosing (α,m) to maximize accuracy
(sEMa).

In the results to follow, we first demonstrate that
online EM is faster (Section 4.1) and sometimes
leads to higher accuracies (Section 4.2). Next, we
explore the effect of the optimization parameters
(α,m) (Section 4.3), briefly revisiting the connec-
tion between incremental and stepwise EM. Finally,
we show the stability of our results under different
random seeds (Section 4.4).

4.1 Speed

One of the principal motivations for online EM
is speed, and indeed we found this motivation to
be empirically well-justified. Figure 1 shows that,
across all five datasets, sEM` converges to a solution
with at least comparable log-likelihood and accuracy
with respect to batch EM, but sEM` does it anywhere
from about 2 (word alignment) to 10 (POS tagging)
times faster. This supports our intuition that more
frequent updates lead to faster convergence. At the
same time, note that the other two online EM vari-
ants in Figure 1 (iEM and sEMi) are prone to catas-
trophic failure. See Section 4.3 for further discus-
sion on this issue.

4.2 Performance

It is fortunate but perhaps not surprising that step-
wise EM is faster than batch EM. But Figure 1 also
shows that, somewhat surprisingly, sEM` can actu-
ally converge to a solution with higher accuracy, in
particular on POS tagging and document classifica-
tion. To further explore the accuracy-increasing po-
tential of sEM, consider choosing (α,m) to maxi-
mize accuracy (sEMa). Unlike sEM`, sEMa does re-
quire labeled data. In practice, (α,m) can be tuned

EM sEM` sEMa α` m` αa ma

POS 57.3 59.6 66.7 0.7 3 0.5 3
DOC 39.1 47.8 49.9 0.8 1K 0.5 3K
SEG(en) 80.5 80.7 83.5 0.7 1K 1.0 100
SEG(ch) 78.2 77.2 78.1 0.6 10K 1.0 10K
ALIGN 78.8 78.9 78.9 0.7 10K 0.7 10K

Table 1: Accuracy of batch EM and stepwise EM, where
the optimization parameters (α,m) are tuned to either
maximize log-likelihood (sEM`) or accuracy (sEMa).
With an appropriate setting of (α,m), stepwise EM out-
performs batch EM significantly on POS tagging and
document classification.

on a small labeled set along with any model hyper-
parameters.

Table 1 shows that sEMa improves the accuracy
compared to batch EM even more than sEM`. The
result for POS is most vivid: After one iteration of
batch EM, the accuracy is only at 24.0% whereas
sEMa is already at 54.5%, and after two iterations,
at 65.4%. Not only is this orders of magnitude faster
than batch EM, batch EM only reaches 57.3% after
100 iterations.

We get a similarly striking result for document
classification, but the results for word segmentation
and word alignment are more modest. A full un-
derstanding of this phenomenon is left as an open
problem, but we will comment on one difference be-
tween the tasks where sEM improves accuracy and
the tasks where it doesn’t. The former are “clus-
tering” tasks (POS tagging and document classifi-
cation), while the latter are “structural” tasks (word
segmentation and word alignment). Learning of
clustering models centers around probabilities over
words given a latent cluster label, whereas in struc-
tural models, there are no cluster labels, and it is
the combinatorial structure (the segmentations and
alignments) that drives the learning.

Likelihood versus accuracy From Figure 1, we
see that stepwise EM (sEM`) can outperform batch
EM in both likelihood and accuracy. This suggests
that stepwise EM is better at avoiding local minima,
perhaps leveraging its stochasticity to its advantage.

However, on POS tagging, tuning sEM to maxi-
mize accuracy (sEMa) results in a slower increase
in likelihood: compare sEMa in Figure 2 with sEM`

in Figure 1(a). This shouldn’t surprise us too much
given that likelihood and accuracy are only loosely



20 40 60 80
iterations

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

20 40 60 80
iterations

-9.8

-8.8

-7.8

-6.9

-5.9

lo
g-

lik
el

ih
oo

d

EM
sEMi

sEM`

2 4 6 8 10
iterations

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

2 4 6 8 10
iterations

-9.8

-9.3

-8.8

-8.3

-7.8

lo
g-

lik
el

ih
oo

d

EM
iEM
sEMi

sEM`

(a) POS tagging (b) Document classification

2 4 6 8 10
iterations

0.2

0.4

0.6

0.8

1.0

F
1

2 4 6 8 10
iterations

-4.8

-4.6

-4.4

-4.2

-4.0

lo
g-

lik
el

ih
oo

d

EM
iEM
sEMi

sEM`

2 4 6 8 10
iterations

0.2

0.4

0.6

0.8

1.0

F
1

2 4 6 8 10
iterations

-9.5

-8.9

-8.4

-7.8

-7.2

lo
g-

lik
el

ih
oo

d

EM
iEM
sEMi

sEM`

(c) Word segmentation (English) (d) Word segmentation (Chinese)

2 4 6 8 10
iterations

0.2

0.4

0.6

0.8

1.0

1
−

A
E

R

2 4 6 8 10
iterations

-10.9

-9.4

-7.9

-6.5

-5.0

lo
g-

lik
el

ih
oo

d

EM
iEM
sEMi

sEM`

accuracy log-likelihood
EM sEM` EM sEM`

pos 57.3 59.6 -6.03 -6.08
doc 39.1 47.8 -7.96 -7.88
seg(en) 80.5 80.7 -4.11 -4.11
seg(ch) 78.2 77.2 -7.27 -7.28
align 78.8 78.9 -5.05 -5.12

(e) Word alignment (f) Results after convergence

Figure 1: Accuracy and log-likelihood plots for batch EM, incremental EM, and stepwise EM across all five datasets.
sEM` outperforms batch EM in terms of convergence speed and even accuracy and likelihood; iEM and sEMi fail in
some cases. We did not run iEM on POS tagging due to memory limitations; we expect the performance would be
similar to sEMi, which is not very encouraging (Section 4.3).

correlated (Liang and Klein, 2008). But it does sug-
gest that stepwise EM is injecting a bias that favors
accuracy over likelihood—a bias not at all reflected
in the training objective.

We can create a hybrid (sEMa+EM) that com-
bines the strengths of both sEMa and EM: First run
sEMa for 5 iterations, which quickly takes us to a
part of the parameter space yielding good accura-
cies; then run EM, which quickly improves the like-
lihood. Fortunately, accuracy does not degrade as

likelihood increases (Figure 2).

4.3 Varying the optimization parameters

Recall that stepwise EM requires setting two opti-
mization parameters: the stepsize reduction power α
and the mini-batch size m. We now explore the ef-
fect of (α,m) on likelihood and accuracy.

As mentioned in Section 3.2, larger mini-batches
(increasing m) stabilize parameter updates, while
larger stepsizes (decreasing α) provide swifter



doc accuracy
α\m 1 3 10 30 100 300 1K 3K 10K
0.5 5.4 5.4 5.5 5.6 6.0 25.7 48.8 49.9 44.6
0.6 5.4 5.4 5.6 5.6 22.3 36.1 48.7 49.3 44.2
0.7 5.5 5.5 5.6 11.1 39.9 43.3 48.1 49.0 43.5
0.8 5.6 5.6 6.0 21.7 47.3 45.0 47.8 49.5 42.8
0.9 5.8 6.0 13.4 32.4 48.7 48.4 46.4 49.4 42.4
1.0 6.2 11.8 19.6 35.2 47.6 49.5 47.5 49.3 41.7

pos doc align

doc log-likelihood
α\m 1 3 10 30 100 300 1K 3K 10K
0.5 -8.875 -8.71 -8.61 -8.555 -8.505 -8.172 -7.92 -7.906 -7.916
0.6 -8.604 -8.575 -8.54 -8.524 -8.235 -8.041 -7.898 -7.901 -7.916
0.7 -8.541 -8.533 -8.531 -8.354 -8.023 -7.943 -7.886 -7.896 -7.918
0.8 -8.519 -8.506 -8.493 -8.228 -7.933 -7.896 -7.883 -7.89 -7.922
0.9 -8.505 -8.486 -8.283 -8.106 -7.91 -7.889 -7.889 -7.891 -7.927
1.0 -8.471 -8.319 -8.204 -8.052 -7.919 -7.889 -7.892 -7.896 -7.937

seg(en) seg(ch)

Figure 3: Effect of optimization parameters (stepsize reduction power α and mini-batch size m) on accuracy and
likelihood. Numerical results are shown for document classification. In the interest of space, the results for each task
are compressed into two gray scale images, one for accuracy (top) and one for log-likelihood (bottom), where darker
shades represent larger values. Bold (red) numbers denote the best α for a given m.

20 40 60 80
iterations

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

20 40 60 80
iterations

-12.7

-11.0

-9.3

-7.6

-5.9

lo
g-

lik
el

ih
oo

d

EM
sEMa

sEMa+EM

Figure 2: sEMa quickly obtains higher accuracy than
batch EM but suffers from a slower increase in likeli-
hood. The hybrid sEMa+EM (5 iterations of EMa fol-
lowed by batch EM) increases both accuracy and likeli-
hood sharply.

progress. Remember that since we are dealing with a
nonconvex objective, the choice of stepsize not only
influences how fast we converge, but also the quality
of the solution that we converge to.

Figure 3 shows the interaction between α and m
in terms of likelihood and accuracy. In general, the
best (α,m) depends on the task and dataset. For ex-
ample, for document classification, larger m is criti-
cal for good performance; for POS tagging, it is bet-
ter to use smaller values of α and m.

Fortunately, there is a range of permissible set-
tings (corresponding to the dark regions in Figure 3)
that lead to reasonable performance. Furthermore,

the settings that perform well on likelihood gener-
ally correspond to ones that perform well on accu-
racy, which justifies using sEM`.

A final observation is that as we use larger mini-
batches (larger m), decreasing the stepsize more
gradually (smaller α) leads to better performance.
Intuitively, updates become more reliable with larger
m, so we can afford to trust them more and incorpo-
rate them more aggressively.

Stepwise versus incremental EM In Section 3.2,
we mentioned that incremental EM can be made
equivalent to stepwise EM with α = 1 and m = 1
(sEMi). Figure 1 provides the empirical support:
iEM and sEMi have very similar training curves.
Therefore, keeping around the old sufficient statis-
tics does not provide any advantage and still requires
a substantial storage cost. As mentioned before, set-
ting (α,m) properly is crucial. While we could sim-
ulate mini-batches with iEM by updating multiple
coordinates simultaneously, iEM is not capable of
exploiting the behavior of α < 1.

4.4 Varying the random seed

All our results thus far represent single runs with a
fixed random seed. We now investigate the impact
of randomness on our results. Recall that we use
randomness for two purposes: (1) initializing the
parameters (affects both batch EM and online EM),



accuracy log-likelihood
EM sEM` EM sEM`

POS 56.2 ±1.36 58.8 ±0.73, 1.41 −6.01 −6.09
DOC 41.2 ±1.97 51.4 ±0.97, 2.82 −7.93 −7.88
SEG(en) 80.5 ±0.0 81.0 ±0.0, 0.42 −4.1 −4.1
SEG(ch) 78.2 ±0.0 77.2 ±0.0, 0.04 −7.26 −7.27
ALIGN 79.0 ±0.14 78.8 ±0.14, 0.25 −5.04 −5.11

Table 2: Mean and standard deviation over different ran-
dom seeds. For EM and sEM, the first number after ±
is the standard deviation due to different initializations
of the parameters. For sEM, the second number is the
standard deviation due to different permutations of the
examples. Standard deviation for log-likelihoods are all
< 0.01 and therefore left out due to lack of space.

and (2) permuting the examples at the beginning of
each iteration (affects only online EM).

To separate these two purposes, we used two
different seeds, Si ∈ {1, 2, 3, 4, 5} and Sp ∈
{1, 2, 3, 4, 5} for initializing and permuting, respec-
tively. Let X be a random variable denoting either
log-likelihood or accuracy. We define the variance
due to initialization as var(E(X | Si)) (E averages
over Sp for each fixed Si) and the variance due to
permutation as E(var(X | Si)) (E averages over Si).
These two variances provide an additive decompo-
sition of the total variance: var(X) = var(E(X |
Si)) + E(var(X | Si)).

Table 2 summarizes the results across the 5 tri-
als for EM and 25 for sEM`. Since we used a very
small amount of noise to initialize the parameters,
the variance due to initialization is systematically
smaller than the variance due to permutation. sEM`

is less sensitive to initialization than EM, but addi-
tional variance is created by randomly permuting the
examples. Overall, the accuracy of sEM` is more
variable than that of EM, but not by a large amount.

5 Discussion and related work

As datasets increase in size, the demand for online
algorithms has grown in recent years. One sees
this clear trend in the supervised NLP literature—
examples include the Perceptron algorithm for tag-
ging (Collins, 2002), MIRA for dependency parsing
(McDonald et al., 2005), exponentiated gradient al-
gorithms (Collins et al., 2008), stochastic gradient
for constituency parsing (Finkel et al., 2008), just
to name a few. Empirically, online methods are of-

ten faster by an order of magnitude (Collins et al.,
2008), and it has been argued on theoretical grounds
that the fast, approximate nature of online meth-
ods is a good fit given that we are interested in test
performance, not the training objective (Bottou and
Bousquet, 2008; Shalev-Shwartz and Srebro, 2008).

However, in the unsupervised NLP literature, on-
line methods are rarely seen,5 and when they are,
incremental EM is the dominant variant (Gildea and
Hofmann, 1999; Kuo et al., 2008). Indeed, as we
have shown, applying online EM does require some
care, and some variants (including incremental EM)
can fail catastrophically in face of local optima.
Stepwise EM provides finer control via its optimiza-
tion parameters and has proven quite successful.

One family of methods that resembles incremen-
tal EM includes collapsed samplers for Bayesian
models—for example, Goldwater et al. (2006) and
Goldwater and Griffiths (2007). These samplers
keep track of a sample of the latent variables for
each example, akin to the sufficient statistics that we
store in incremental EM. In contrast, stepwise EM
does not require this storage and operates more in
the spirit of a truly online algorithm.

Besides speed, online algorithms are of interest
for two additional reasons. First, in some applica-
tions, we receive examples sequentially and would
like to estimate a model in real-time, e.g., in the clus-
tering of news articles. Second, since humans learn
sequentially, studying online EM might suggest new
connections to cognitive mechanisms.

6 Conclusion

We have explored online EM on four tasks and
demonstrated how to use stepwise EM to overcome
the dangers of stochasticity and reap the benefits of
frequent updates and fast learning. We also discov-
ered that stepwise EM can actually improve accu-
racy, a phenomenon worthy of further investigation.
This paper makes some progress on elucidating the
properties of online EM. With this increased under-
standing, online EM, like its batch cousin, could be-
come a mainstay for unsupervised learning.

5Other types of learning methods have been employed
successfully, for example, Venkataraman (2001) and Seginer
(2007).
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