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» Log-likelihood function is non-convex.

» MLE is consistent but intractable.

» Local methods (EM, gradient descent, ...) are tractable but

inconsistent.
» Method of moments estimators can be consistent and

computationally-efficient, but require more data.
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Introduction

Consistent estimation for general models

» Several estimators based on the method of moments.

>
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Phylogenetic trees: Mossel and Roch 2005.

Hidden Markov models: Hsu, Kakade, and Zhang 2009
Latent trees: Anandkumar et al. 2011

Latent Dirichlet Allocation: Anandkumar et al. 2012
PCFGs: Hsu, Kakade, and Liang 2012

Mixtures of linear regressors Chaganty and Liang 2013
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Phylogenetic trees: Mossel and Roch 2005.

Hidden Markov models: Hsu, Kakade, and Zhang 2009
Latent trees: Anandkumar et al. 2011

Latent Dirichlet Allocation: Anandkumar et al. 2012
PCFGs: Hsu, Kakade, and Liang 2012

Mixtures of linear regressors Chaganty and Liang 2013

These estimators are applicable only to a specific type of model.

In contrast, EM and gradient descent apply for almost any model.
Note: some work in the observable operator framework does apply to

a more general model class.

» Weighted automata: Balle and Mohri 2012.
» Junction trees: Song, Xing, and Parikh 2011

> ...

v

How can we apply the method of moments to estimate

parameters efficiently for a general model?
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|
tensors. /

» Presented in terms of infinite
data and exact moments.
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Introduction

Setup

» Directed models parameterized G @
by conditional probability @ @ e

tables.

» Undirected models
parameterized as a log-linear

model. Identify modulo A(f). 0

» Focus on directed models, but G @
return to undirected models @ e @ @
later.
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Background: Three-view mixture models aka bottlenecks

Definition (Bottleneck)
A hidden variable h is a bottleneck

if there exist three observed
variables (views) xi, x2, x3 that are G

conditionally independent given h.
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Background: Three-view mixture models aka bottlenecks

Definition (Bottleneck)

A hidden variable h is a bottleneck

if there exist three observed

variables (views) xi, x2, x3 that are 0
conditionally independent given h.

» Anandkumar et al. 2013

provide an algorithm to @ @ e

estimate conditional moments
Ol £ P(x; | hy) based on
tensor eigendecomposition.

> In general, three views are

necessary for identifiability
(Kruskal 1977).
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Introduction

Example: a bridge, take |

v

Each edge has a set of
parameters.

\4

hi1 and hy are bottlenecks.
We can learn

P(Xla‘hl)a ]P)(le|h1)7 .
However, we can't learn
]P)(h2|h1) this way.

\4

v

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 8 /25



Introduction

Example: a bridge, take Il

» Observe the joint distribution / \

Of X1, X2,
P(x2, x3) =Y P(x 2 h)P(x3 | ho)P(hy, o).
N—— %/—/_/—M/—’
Moo huha = iy 0l2) Z1>

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 9 /25



Introduction

Example: a bridge, take Il

» Observe the joint distribution ! !

Of X1, X2,
P(x2, x3) =Y P(x 2 h)P(x3 | ho)P(hy, o).
N—— %/—/%/—’H/—/
Moo huha = iy 0l2) Z1>

» Observed moments P(x{, x3) My | = I) . -

are linear in the hidden
marginals P(hy, hy).

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 9 /25



Introduction

Example: a bridge, take Il

» Observe the joint distribution ! !

Of X1, X2,
P(x,x3) = > P(x{ | h)P(x§ | ho)P(hy, ho).
N——— %,_/_,_M,_/
Moo hushe = oy 0l2) Z1>

» Observed moments P(x{, x3) My | = I) . -

are linear in the hidden
marginals P(hy, hy).

» Solve for P(hy, hy) by . = - My, IT

pseudoinversion.

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 9 /25



Introduction

Example: a bridge, take Il

» Observe the joint distribution ! !

Of X1, X2,
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» Observed moments P(x{, x3) My | = I) . -

are linear in the hidden
marginals P(hy, hy).

» Solve for P(hy, hy) by . = - My, IT

pseudoinversion.

» Normalize for P(hy | hy).
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Estimating Hidden Marginals

Exclusive Views

Definition (Exclusive views)

We say h; € S C h has an
exclusive view x, if

1. There exists some observed
variable x, which is
conditionally independent of
the others (S\{h;}) given h;. @
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1. There exists some observed e Y )
variable x,, which is
conditionally independent of 4
the others (S\{h;}) given h;. @ '~.___-'

2. The conditional moment S
matrix OVI) £ P(x, | h;) has e ’
full column rank k and can be @
recovered.
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view.
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Estimating Hidden Marginals

Exclusive views give parameters

» Given exclusive views, P(x | h), learning cliques is solving a linear
equation!
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Bottlenecked graphs

» When are we assured exclusive
views?
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Estimating Hidden Marginals

Bottlenecked graphs

» When are we assured exclusive
views?

» Theorem: A clique in which
each hidden variable is a

bottleneck has exclusive
views.

» Follows by graph
independence conditions.

» We say that the clique is
“bottlenecked™.
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More Bottlenecked Examples

Hidden Markov models Latent Tree models
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Estimating Hidden Marginals

More Bottlenecked Examples

Hidden Markov models Latent Tree models

$e8 giv

Noisy Or (non-example) (Halpern and Sontag 2013)
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Combining moments with likelihood estimators

Convex marginal likelihoods

» The MLE is statistically most @ 9 @ 9

efficient, but usually
Non-convex.

log P(x) = log Y P(x1|h1) P(x2|h2)P(h1, h2)
h1,h2
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Combining moments with likelihood estimators

Convex marginal likelihoods

efficient, but usually
Non-convex.

» The MLE is statistically most @ 9 @ 9

» |f we fix the conditional
moments, — logP(x) is convex logP(x) = log Y P(x1|h) P(xz|h2)P(hy, ho)
in 9 by, by known

01
— Composite Likelihood
-~ Pseudoinverse Objective
0.0
© 008
2
ht
30
<}
O o4
0.02
to 02 & 0% 08 To

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 17 / 25



Combining moments with likelihood estimators

Convex marginal likelihoods

» The MLE is statistically most
efficient, but usually @ @ 9

non-convex.

> If we fix the conditional
moments, — logP(x) is convex logP(x) = log Y P(x1|h) P(xz|h2)P(hy, ho)
in 0. by b known

» No closed form solution, but a o B
local method like EM is o
guaranteed to converge to the
global optimum.

Objective

0.04

0.02
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Combining moments with likelihood estimators

Composite likelihoods

> In general, the full likelihood is G @ @
still non-convex. @ @ @

log P(x123) =log Y P(x1 | h)P(x2 | h2)P(x3 | h3)
h,h2, h3

known

P(h3 | hy)P(hy, h2)
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is
still non-convex.

» Consider composite likelihood
on a subset of observed

variables. log P(x123) = log > P(x1 | h)P(x2 | h2)P(xs | h3)
hy,h2, hs

known

P(hs | hy)P(hy, h2)
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is
still non-convex.

» Consider composite likelihood

on a subset of observed

variables. log P(x12) = log > P(x1 | h1) P(x2 | hy)
hy,hy

P(h1, h2)

known
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is
still non-convex.

» Consider composite likelihood
on a subset of observed

variables. log P(x12) = log > P(x1 | h1) P(x2 | hy)
hi,h —_—
» Can be shown that estimation n known
P(hy, h2)

with composite likelihoods is
consistent (Lindsay 1988).
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is
still non-convex.

» Consider composite likelihood
on a subset of observed

variables. log P(x12) = log > P(x1 | h1) P(x2 | hy)
hi,h —_—
» Can be shown that estimation n known
P(hy, h2)

with composite likelihoods is
consistent (Lindsay 1988). v

» Asymptotically, the composite
likelihood estimator is more
efficient.

10°

16— 6l

107!

4 Pseudoinverse
4 Composite likelihood

,1 i
10" 107 102 10 10t 107
€

10
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Combining moments with likelihood estimators

Outline

M = P(x) Observed moments
1. Solve bottlenecks

O() £ P(x|h) Conditional moments

2a. Pseudoinverse
2b. Composite likelihood

Y

Z 2 P(h) Hidden marginals

3a. Renormalization
3b. Convex optimization

Y
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Recovering parameters

Recovering parameters in directed models

» Conditional probability tables
are the default for a directed
model.

» Can be recovered by Rt |0 1

normalization: :
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» Conditional probability tables
are the default for a directed
model.

» Can be recovered by Rt |0 1

normalization: :
_— (r)y——(r)
> P(h1, )’ @9 09

» No dependence on tree-width.
Memory, computation and
samples depend linearly on the
size of each clique.

P(h2 | ) =
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Recovering parameters

Recovering parameters in undirected log-linear models

» Assume a log-linear parameterization,

po(x,h) =exp [ Y 6 d(xc,he) — A6)
ceg
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Recovering parameters in undirected log-linear models
» Assume a log-linear parameterization,
po(x,h) = exp | > 0" ¢(xc, he) — A(6)
ceg

» The unsupervised negative log-likelihood is non-convex,

Lunsupl6) 2 Exp[—log 3" po(x. b))
heH

» However, the supervised negative log-likelihood is convex,

Esup(e) £ IE(x,h)NDSLIp [_ |Og pH(X; h)]

= 0" [ > Emna,[¢(xc. he)] | + A(0).
ceg
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Recovering parameters in undirected log-linear models

» Recall, the marginals can typically estimated from supervised data.
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Recovering parameters

Recovering parameters in undirected log-linear models

» Recall, the marginals can typically estimated from supervised data.

Esup(e) =—0" Z E(x,h)NDsup [Cb(va hC)] + A(e)
ceg

He

» However, the marginals can also be consistently estimated by
moments!

pe= Y Plxclhc)  P(hc)  ¢(xc,he).

xc;h . .
CNC cond. moments hidden marginals
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Recovering parameters

Optimizing pseudolikelihood

» Estimating pc: independent of
treewidth.

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 23 /25



Recovering parameters

Optimizing pseudolikelihood

» Estimating pc: independent of
treewidth.

» Computing A(6): dependent
on treewidth.

A(f) £ log > exp <9T¢(x, h)) .

x,h

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 23 /25



Recovering parameters

Optimizing pseudolikelihood

» Estimating pc: independent of
treewidth.

» Computing A(6): dependent
on treewidth.

A(f) £ log > exp <9T¢(x, h)) .

x,h

» Instead, use pseudolikelihood
(Besag 1975) to consistently
estimate distributions over
local neighborhoods.

Apseudo(0; N (a)) £ IogZexp <0T¢)(x/\/, hN)) )
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Recovering parameters

Outline

M = P(x) Observed moments
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» Thank you! Poster: M58
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