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Introduction

Latent Variable Graphical Models

I Gaussian Mixture Models
I Latent Dirichlet Allocation
I Hidden Markov Models
I PCFGs
I . . .

x1

x 2

h1 h2 h3 . . .

x1 x2 x3

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 2 / 25



Introduction

Parameter Estimation is Hard
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I Log-likelihood function is non-convex.

I MLE is consistent but intractable.
I Local methods (EM, gradient descent, . . . ) are tractable but

inconsistent.
I Method of moments estimators can be consistent and

computationally-efficient, but require more data.
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Introduction

Consistent estimation for general models
I Several estimators based on the method of moments.

I Phylogenetic trees: Mossel and Roch 2005.
I Hidden Markov models: Hsu, Kakade, and Zhang 2009
I Latent trees: Anandkumar et al. 2011
I Latent Dirichlet Allocation: Anandkumar et al. 2012
I PCFGs: Hsu, Kakade, and Liang 2012
I Mixtures of linear regressors Chaganty and Liang 2013
I . . .

I These estimators are applicable only to a specific type of model.
I In contrast, EM and gradient descent apply for almost any model.
I Note: some work in the observable operator framework does apply to

a more general model class.
I Weighted automata: Balle and Mohri 2012.
I Junction trees: Song, Xing, and Parikh 2011
I . . .

I How can we apply the method of moments to estimate
parameters efficiently for a general model?
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Introduction

Setup

I Discrete models with k hidden
and d ≥ k observed values.

I Parameters and marginals can
be represented as matrices and
tensors.

I Presented in terms of infinite
data and exact moments.

h1

x2x1 x3

h ∈ {1, 2, · · · , k}

xi ∈ {1, 2, · · · , d}

M12 , P(x1, x2)

(M12)ij , P(x1 = i , x2 = j)

M123 , P(x1, x2, x3)

(M123)ijk , P(x1 = i , x2 = j , x3 = k)

O(1|1) , P(x1 | h1)

(O(1|1))ij , P(x1 = i | h1 = j)
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Introduction

Setup

I Directed models parameterized
by conditional probability
tables.

I Undirected models
parameterized as a log-linear
model. Identify modulo A(θ).

I Focus on directed models, but
return to undirected models
later.

h1 h2
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1

xb
1 xa

2
xb

2
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h2 h1 0 1

0
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1 xa
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θ
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Introduction

Background: Three-view mixture models aka bottlenecks

Definition (Bottleneck)
A hidden variable h is a bottleneck
if there exist three observed
variables (views) x1, x2, x3 that are
conditionally independent given h.

I Anandkumar et al. 2013
provide an algorithm to
estimate conditional moments
O(i |1) , P(xi | h1) based on
tensor eigendecomposition.

I In general, three views are
necessary for identifiability
(Kruskal 1977).

h1

x2x1 x3
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Introduction

Example: a bridge, take I

I Each edge has a set of
parameters.

I h1 and h2 are bottlenecks.
I We can learn

P(xa
1 |h1),P(xb

1 |h1), · · · .
I However, we can’t learn

P(h2|h1) this way.
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1 xa

2
xb
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Introduction

Example: a bridge, take II

I Observe the joint distribution
of x1, x2,

P(xb
1 , xa

2 )︸ ︷︷ ︸
M12

=
∑
h1,h2

P(xb
1 | h1)︸ ︷︷ ︸

O(1|1)

P(xa
2 | h2)︸ ︷︷ ︸

O(2|2)

P(h1, h2)︸ ︷︷ ︸
Z12

.

I Observed moments P(xb
1 , xa

2 )
are linear in the hidden
marginals P(h1, h2).

I Solve for P(h1, h2) by
pseudoinversion.

I Normalize for P(h2 | h1).

h1 h2

xa
1

xb
1 xa

2
xb

2

=M12 O(1|1) O(2|2)Z12

=Z12 M12
O(1|1)†

O(2|2)†
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Introduction

Outline

M , P(x)

θ

Observed moments

Parameters

M , P(x)

O(1|1) , P(x|h)

Z , P(h)

θ

Observed moments

Conditional moments

Hidden marginals

Parameters

1. Solve bottlenecks

2a. Pseudoinverse
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Estimating Hidden Marginals

Exclusive Views

Definition (Exclusive views)
We say hi ∈ S ⊆ h has an
exclusive view xv if

1. There exists some observed
variable xv which is
conditionally independent of
the others (S\{hi}) given hi .

2. The conditional moment
matrix O(v |i) , P(xv | hi) has
full column rank k and can be
recovered.

3. A set has exclusive views if
each hi ∈ S has an exclusive
view.

h1

h2

h3

h4

x1

x2

x3

x4

S
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Estimating Hidden Marginals

Exclusive views give parameters

I Given exclusive views, P(x | h), learning cliques is solving a linear
equation!

P(x1, . . . , xm)︸ ︷︷ ︸
M

=
∑

h1,...,hm

P(x1|h1)︸ ︷︷ ︸
O(1|1)

· · ·P(h1, · · · , hm)︸ ︷︷ ︸
Z

=M
O(1|1)

O(2|2)

O(3|3)

Z
→

= MO(1|1)† O(2|2)†

O(3|3)†

Z
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Estimating Hidden Marginals

Bottlenecked graphs

I When are we assured exclusive
views?

I Theorem: A clique in which
each hidden variable is a
bottleneck has exclusive
views.

I Follows by graph
independence conditions.

I We say that the clique is
“bottlenecked”.
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Estimating Hidden Marginals

Example
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Estimating Hidden Marginals

Example
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Estimating Hidden Marginals

More Bottlenecked Examples

h1 h2 h3 . . .

x1 x2 x3

Hidden Markov models
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Combining moments with likelihood estimators

Outline

M , P(x)

O(1|1) , P(x|h)

Z , P(h)

θ

Observed moments

Conditional moments

Hidden marginals

Parameters

1. Solve bottlenecks

2a. Pseudoinverse

2b. Composite likelihood
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Combining moments with likelihood estimators

Convex marginal likelihoods

I The MLE is statistically most
efficient, but usually
non-convex.

I If we fix the conditional
moments, − logP(x) is convex
in θ.

I No closed form solution, but a
local method like EM is
guaranteed to converge to the
global optimum.

h1 h2
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1

xb
1 xa

2
xb

2

logP(x) = log
∑
h1,h2

P(x1|h1)P(x2|h2)P(h1, h2)

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 17 / 25



Combining moments with likelihood estimators

Convex marginal likelihoods

I The MLE is statistically most
efficient, but usually
non-convex.

I If we fix the conditional
moments, − logP(x) is convex
in θ.

I No closed form solution, but a
local method like EM is
guaranteed to converge to the
global optimum.

h1 h2

xa
1

xb
1 xa

2
xb

2

logP(x) = log
∑
h1,h2

P(x1|h1)P(x2|h2)︸ ︷︷ ︸
known

P(h1, h2)

0.0 0.2 0.4 0.6 0.8 1.0
π1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
b

je
ct

iv
e

Composite Likelihood
Pseudoinverse Objective

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 17 / 25



Combining moments with likelihood estimators

Convex marginal likelihoods

I The MLE is statistically most
efficient, but usually
non-convex.

I If we fix the conditional
moments, − logP(x) is convex
in θ.

I No closed form solution, but a
local method like EM is
guaranteed to converge to the
global optimum.

h1 h2

xa
1

xb
1 xa

2
xb

2

logP(x) = log
∑
h1,h2

P(x1|h1)P(x2|h2)︸ ︷︷ ︸
known

P(h1, h2)

0.0 0.2 0.4 0.6 0.8 1.0
π1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
b

je
ct

iv
e

Composite Likelihood
Pseudoinverse Objective

Chaganty, Liang (Stanford University) Moments and Likelihoods (M58) June 22, 2014 17 / 25



Combining moments with likelihood estimators

Composite likelihoods

I In general, the full likelihood is
still non-convex.

I Consider composite likelihood
on a subset of observed
variables.

I Can be shown that estimation
with composite likelihoods is
consistent (Lindsay 1988).

I Asymptotically, the composite
likelihood estimator is more
efficient.

h1 h2 h3 . . .

x1 x2 x3

logP(x123) = log
∑

h1,h2,h3

P(x1 | h1)P(x2 | h2)P(x3 | h3)︸ ︷︷ ︸
known

P(h3 | h2)P(h1, h2)
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Recovering parameters

Recovering parameters in directed models

I Conditional probability tables
are the default for a directed
model.

I Can be recovered by
normalization:

P(h2 | h1) =
P(h1, h2)∑
h2 P(h1, h2)

.

I No dependence on tree-width.
Memory, computation and
samples depend linearly on the
size of each clique.
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xb
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2
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h2 h1 0 1

0
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Recovering parameters

Recovering parameters in undirected log-linear models
I Assume a log-linear parameterization,

pθ(x,h) = exp

∑
C∈G

θ>φ(xC ,hC)− A(θ)

 .

I The unsupervised negative log-likelihood is non-convex,

Lunsup(θ) , Ex∼D[− log
∑
h∈H

pθ(x,h)].

I However, the supervised negative log-likelihood is convex,

Lsup(θ) , E(x,h)∼Dsup [− log pθ(x,h)]

= −θ>
∑
C∈G

E(x,h)∼Dsup [φ(xC ,hC)]

+ A(θ).
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Recovering parameters

Recovering parameters in undirected log-linear models

I Recall, the marginals can typically estimated from supervised data.

Lsup(θ) = −θ>
∑
C∈G

E(x,h)∼Dsup [φ(xC ,hC)]


︸ ︷︷ ︸

µC

+ A(θ).

I However, the marginals can also be consistently estimated by
moments!

µC =
∑

xC ,hC

P(xC | hC)︸ ︷︷ ︸
cond. moments

P(hC)︸ ︷︷ ︸
hidden marginals

φ(xC ,hC).
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Recovering parameters

Optimizing pseudolikelihood
I Estimating µC : independent of

treewidth.

I Computing A(θ): dependent
on treewidth.

A(θ) , log
∑
x,h

exp
(
θ>φ(x,h)

)
.

I Instead, use pseudolikelihood
(Besag 1975) to consistently
estimate distributions over
local neighborhoods.

Apseudo(θ;N (a)) , log
∑

a
exp

(
θ>φ(xN ,hN )

)
.
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Recovering parameters

Outline
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Conclusions

Conclusions

I An algorithm for any
bottlenecked discrete
graphical model.

I Combine moment estimators
with likelihood estimators.

I Extends to log-linear models.
I Efficiently learns models with

high-treewidth.
I Thank you! Poster: M58
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