Estimating Latent Variable Graphical Models with Moments and Likelihoods

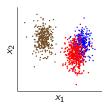
Arun Tejasvi Chaganty Percy Liang

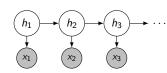
Stanford University

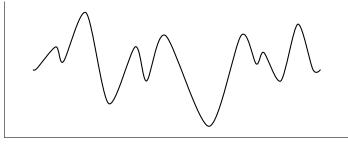
June 22, 2014

Latent Variable Graphical Models

- Gaussian Mixture Models
- ► Latent Dirichlet Allocation
- Hidden Markov Models
- PCFGs
- **.** . . .

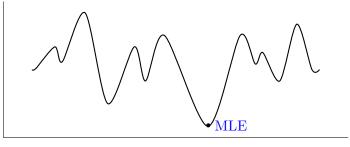






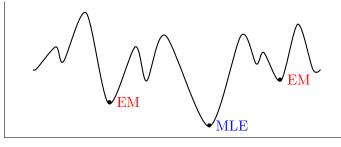
parameters

▶ Log-likelihood function is non-convex.



parameters

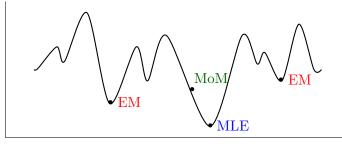
- Log-likelihood function is non-convex.
- MLE is consistent but intractable.



parameters

- Log-likelihood function is non-convex.
- MLE is consistent but intractable.
- ► Local methods (EM, gradient descent, ...) are tractable but inconsistent.

3 / 25



parameters

- Log-likelihood function is non-convex.
- MLE is consistent but intractable.
- Local methods (EM, gradient descent, ...) are tractable but inconsistent.
- Method of moments estimators can be consistent and computationally-efficient, but require more data.

- Several estimators based on the method of moments.
 - Phylogenetic trees: Mossel and Roch 2005.
 - ▶ Hidden Markov models: Hsu, Kakade, and Zhang 2009
 - Latent trees: Anandkumar et al. 2011
 - ▶ Latent Dirichlet Allocation: Anandkumar et al. 2012
 - PCFGs: Hsu, Kakade, and Liang 2012
 - Mixtures of linear regressors Chaganty and Liang 2013

- Several estimators based on the method of moments.
 - Phylogenetic trees: Mossel and Roch 2005.
 - ▶ Hidden Markov models: Hsu, Kakade, and Zhang 2009
 - ▶ Latent trees: Anandkumar et al. 2011
 - ▶ Latent Dirichlet Allocation: Anandkumar et al. 2012
 - ▶ PCFGs: Hsu, Kakade, and Liang 2012
 - Mixtures of linear regressors Chaganty and Liang 2013
 - **>**
- ▶ These estimators are applicable only to a specific type of model.

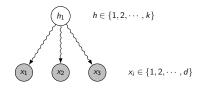
4 / 25

- Several estimators based on the method of moments.
 - Phylogenetic trees: Mossel and Roch 2005.
 - ▶ Hidden Markov models: Hsu, Kakade, and Zhang 2009
 - ▶ Latent trees: Anandkumar et al. 2011
 - ▶ Latent Dirichlet Allocation: Anandkumar et al. 2012
 - PCFGs: Hsu, Kakade, and Liang 2012
 - Mixtures of linear regressors Chaganty and Liang 2013
- ▶ These estimators are applicable only to a specific type of model.
- In contrast, EM and gradient descent apply for almost any model.

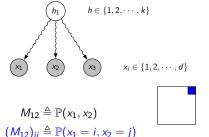
- Several estimators based on the method of moments.
 - Phylogenetic trees: Mossel and Roch 2005.
 - ► Hidden Markov models: Hsu, Kakade, and Zhang 2009
 - ▶ Latent trees: Anandkumar et al. 2011
 - ▶ Latent Dirichlet Allocation: Anandkumar et al. 2012
 - PCFGs: Hsu, Kakade, and Liang 2012
 - ▶ Mixtures of linear regressors Chaganty and Liang 2013
 - **>** . . .
- ▶ These estimators are applicable only to a specific type of model.
- In contrast, EM and gradient descent apply for almost any model.
- Note: some work in the observable operator framework does apply to a more general model class.
 - ▶ Weighted automata: Balle and Mohri 2012.
 - Junction trees: Song, Xing, and Parikh 2011
 - **.** . . .

- Several estimators based on the method of moments.
 - Phylogenetic trees: Mossel and Roch 2005.
 - ▶ Hidden Markov models: Hsu, Kakade, and Zhang 2009
 - Latent trees: Anandkumar et al. 2011
 - ▶ Latent Dirichlet Allocation: Anandkumar et al. 2012
 - PCFGs: Hsu, Kakade, and Liang 2012
 - Mixtures of linear regressors Chaganty and Liang 2013
 - **.** . . .
- These estimators are applicable only to a specific type of model.
- In contrast, EM and gradient descent apply for almost any model.
- ▶ Note: some work in the observable operator framework does apply to a more general model class.
 - ▶ Weighted automata: Balle and Mohri 2012.
 - Junction trees: Song, Xing, and Parikh 2011
 - **.** . . .
- ▶ How can we apply the method of moments to estimate parameters efficiently for a general model?

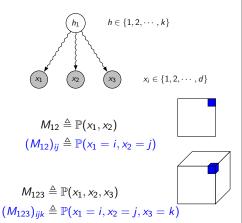
▶ Discrete models with k hidden and $d \ge k$ observed values.



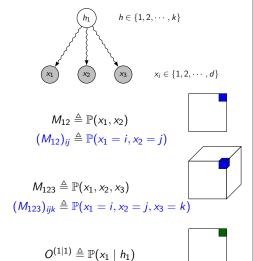
- ▶ Discrete models with k hidden and d > k observed values.
- Parameters and marginals can be represented as matrices and tensors.



- ▶ Discrete models with k hidden and d > k observed values.
- Parameters and marginals can be represented as matrices and tensors.

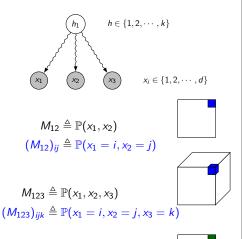


- ▶ Discrete models with k hidden and d > k observed values.
- Parameters and marginals can be represented as matrices and tensors.



 $(O^{(1|1)})_{ii} \triangleq \mathbb{P}(x_1 = i \mid h_1 = i)$

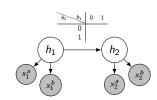
- ▶ Discrete models with k hidden and d > k observed values.
- Parameters and marginals can be represented as matrices and tensors.
- Presented in terms of infinite data and exact moments.



$$O^{(1|1)} \triangleq \mathbb{P}(x_1 \mid h_1)$$

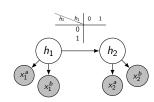
 $(O^{(1|1)})_{ij} \triangleq \mathbb{P}(x_1 = i \mid h_1 = j)$

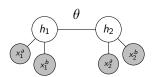
 Directed models parameterized by conditional probability tables.



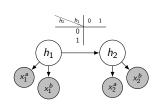
 θ

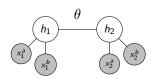
- Directed models parameterized by conditional probability tables.
- Undirected models parameterized as a log-linear model. Identify modulo $A(\theta)$.





- Directed models parameterized by conditional probability tables.
- ▶ Undirected models parameterized as a log-linear model. Identify modulo $A(\theta)$.
- Focus on directed models, but return to undirected models later.

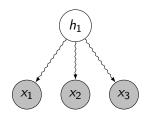




Background: Three-view mixture models aka bottlenecks

Definition (Bottleneck)

A hidden variable h is a **bottleneck** if there exist three observed variables (**views**) x_1, x_2, x_3 that are conditionally independent given h.

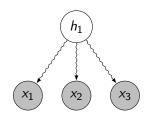


Background: Three-view mixture models aka bottlenecks

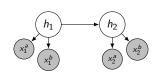
Definition (Bottleneck)

A hidden variable h is a **bottleneck** if there exist three observed variables (**views**) x_1, x_2, x_3 that are conditionally independent given h.

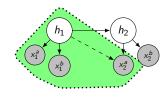
- Anandkumar et al. 2013 provide an algorithm to estimate conditional moments $O^{(i|1)} \triangleq \mathbb{P}(x_i \mid h_1)$ based on tensor eigendecomposition.
- In general, three views are necessary for identifiability (Kruskal 1977).



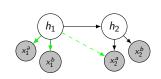
Each edge has a set of parameters.



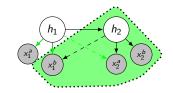
- ► Each edge has a set of parameters.
- ▶ h_1 and h_2 are bottlenecks.



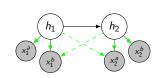
- Each edge has a set of parameters.
- \blacktriangleright h_1 and h_2 are bottlenecks.
- We can learn $\mathbb{P}(x_1^a|h_1), \mathbb{P}(x_1^b|h_1), \cdots$



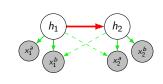
- Each edge has a set of parameters.
- ▶ h_1 and h_2 are bottlenecks.
- We can learn $\mathbb{P}(x_1^a|h_1), \mathbb{P}(x_1^b|h_1), \cdots$.



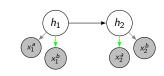
- Each edge has a set of parameters.
- \blacktriangleright h_1 and h_2 are bottlenecks.
- We can learn $\mathbb{P}(x_1^a|h_1), \mathbb{P}(x_1^b|h_1), \cdots$



- Each edge has a set of parameters.
- ▶ h_1 and h_2 are bottlenecks.
- We can learn $\mathbb{P}(x_1^a|h_1), \mathbb{P}(x_1^b|h_1), \cdots$
- ► However, we can't learn $\mathbb{P}(h_2|h_1)$ this way.

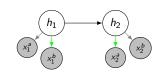


► Observe the joint distribution of x_1, x_2 ,



$$\underbrace{\mathbb{P}(x_1^b, x_2^a)}_{M_{12}} = \sum_{h_1, h_2} \underbrace{\mathbb{P}(x_1^b \mid h_1) \mathbb{P}(x_2^a \mid h_2) \mathbb{P}(h_1, h_2)}_{O^{(2|2)}}.$$

• Observe the joint distribution of x_1, x_2 ,

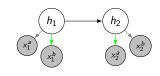


$$\underbrace{\mathbb{P}(x_1^b, x_2^a)}_{M_{12}} = \sum_{h_1, h_2} \underbrace{\mathbb{P}(x_1^b \mid h_1) \mathbb{P}(x_2^a \mid h_2) \mathbb{P}(h_1, h_2)}_{O^{(2|2)}}.$$

▶ Observed moments $\mathbb{P}(x_1^b, x_2^a)$ are *linear* in the **hidden** marginals $\mathbb{P}(h_1, h_2)$.

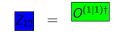
$$M_{12} = O^{(1|1)}$$

• Observe the joint distribution of x_1, x_2 ,

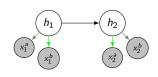


$$\underbrace{\mathbb{P}(x_1^b, x_2^a)}_{M_{12}} = \sum_{h_1, h_2} \underbrace{\mathbb{P}(x_1^b \mid h_1) \mathbb{P}(x_2^a \mid h_2)}_{O^{(1|1)}} \underbrace{\mathbb{P}(h_1, h_2)}_{O^{(2|2)}}.$$

- ▶ Observed moments $\mathbb{P}(x_1^b, x_2^a)$ are *linear* in the **hidden** marginals $\mathbb{P}(h_1, h_2)$.
- ▶ Solve for $\mathbb{P}(h_1, h_2)$ by pseudoinversion.

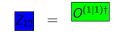


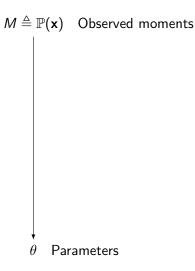
• Observe the joint distribution of x_1, x_2 ,

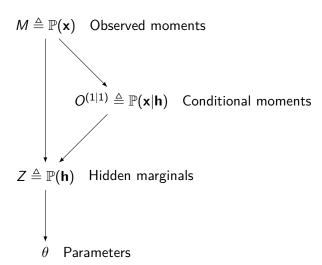


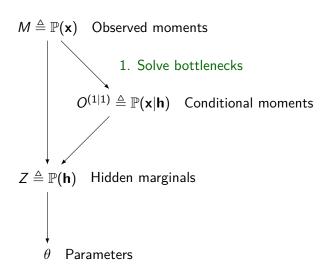
$$\underbrace{\mathbb{P}(x_1^b, x_2^a)}_{M_{12}} = \sum_{h_1, h_2} \underbrace{\mathbb{P}(x_1^b \mid h_1) \mathbb{P}(x_2^a \mid h_2) \mathbb{P}(h_1, h_2)}_{O^{(2|2)}}.$$

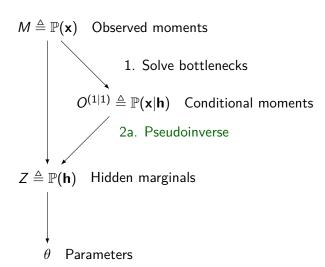
- ▶ Observed moments $\mathbb{P}(x_1^b, x_2^a)$ are *linear* in the **hidden** marginals $\mathbb{P}(h_1, h_2)$.
- Solve for $\mathbb{P}(h_1, h_2)$ by pseudoinversion.
- ▶ Normalize for $\mathbb{P}(h_2 \mid h_1)$.









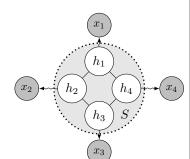


Exclusive Views

Definition (Exclusive views)

We say $h_i \in S \subseteq \mathbf{h}$ has an **exclusive view** x_v if

1. There exists some observed variable x_v which is conditionally independent of the others $(S \setminus \{h_i\})$ given h_i .

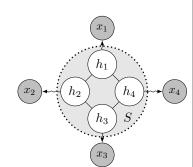


Exclusive Views

Definition (Exclusive views)

We say $h_i \in S \subseteq \mathbf{h}$ has an **exclusive view** x_v if

- 1. There exists some observed variable x_v which is conditionally independent of the others $(S \setminus \{h_i\})$ given h_i .
- 2. The conditional moment matrix $O^{(v|i)} \triangleq \mathbb{P}(x_v \mid h_i)$ has full column rank k and can be recovered.

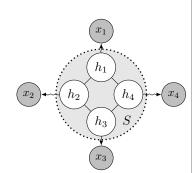


Exclusive Views

Definition (Exclusive views)

We say $h_i \in S \subseteq \mathbf{h}$ has an **exclusive view** x_v if

- 1. There exists some observed variable x_v which is conditionally independent of the others $(S \setminus \{h_i\})$ given h_i .
- 2. The conditional moment matrix $O^{(v|i)} \triangleq \mathbb{P}(x_v \mid h_i)$ has full column rank k and can be recovered.
- 3. A set has exclusive views if each $h_i \in S$ has an exclusive view.



Exclusive views give parameters

▶ Given exclusive views, $\mathbb{P}(x \mid h)$, learning cliques is solving a linear equation!

$$\underbrace{\mathbb{P}(x_1,\ldots,x_m)}_{M} = \sum_{h_1,\ldots,h_m} \underbrace{P(x_1|h_1)}_{O^{(1|1)}} \cdots \underbrace{P(h_1,\cdots,h_m)}_{Z}$$

Exclusive views give parameters

▶ Given exclusive views, $\mathbb{P}(x \mid h)$, learning cliques is solving a linear equation!

$$\underbrace{\mathbb{P}(x_1,\ldots,x_m)}_{M} = \sum_{h_1,\ldots,h_m} \underbrace{P(x_1|h_1)}_{O^{(1|1)}} \cdots \underbrace{P(h_1,\cdots,h_m)}_{Z}$$

$$\underbrace{O^{(3|3)}}_{M}$$

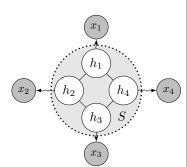
$$= \underbrace{O^{(2|2)}}_{O^{(2|2)}}$$

Exclusive views give parameters

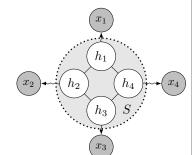
▶ Given exclusive views, $\mathbb{P}(x \mid h)$, learning cliques is solving a linear equation!

$$\underbrace{\mathbb{P}(x_{1},\ldots,x_{m})}_{M} = \sum_{h_{1},\ldots,h_{m}} \underbrace{P(x_{1}|h_{1})\cdots P(h_{1},\cdots,h_{m})}_{O^{(1|1)}} \\
\underbrace{O^{(3|3)}}_{D^{(2|2)}} \rightarrow \underbrace{Z} = \underbrace{O^{(1|1)\dagger}}_{M} \qquad \underbrace{O^{(2|2)\dagger}}_{D^{(2|2)}}$$

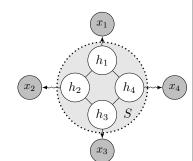
When are we assured exclusive views?



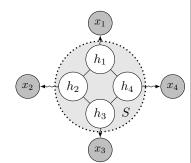
- When are we assured exclusive views?
- Theorem: A clique in which each hidden variable is a bottleneck has exclusive views.

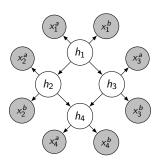


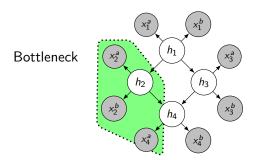
- When are we assured exclusive views?
- Theorem: A clique in which each hidden variable is a bottleneck has exclusive views.
 - Follows by graph independence conditions.

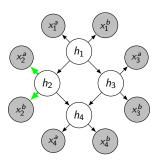


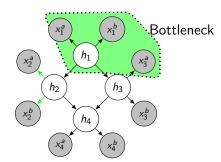
- When are we assured exclusive views?
- Theorem: A clique in which each hidden variable is a bottleneck has exclusive views.
 - Follows by graph independence conditions.
 - We say that the clique is "bottlenecked".

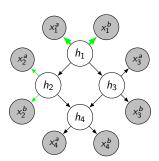


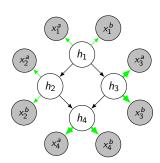


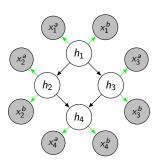


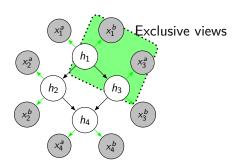


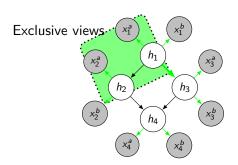


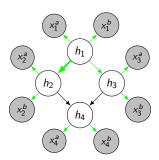


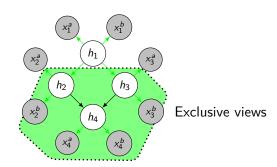


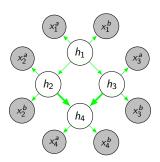


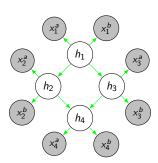






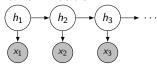




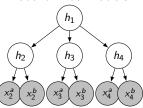


More Bottlenecked Examples

Hidden Markov models

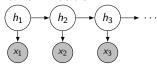


Latent Tree models

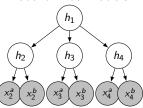


More Bottlenecked Examples

Hidden Markov models

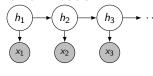


Latent Tree models

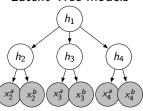


More Bottlenecked Examples

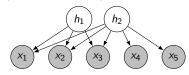
Hidden Markov models



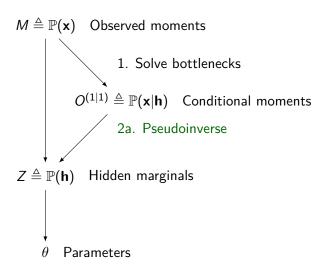
Latent Tree models



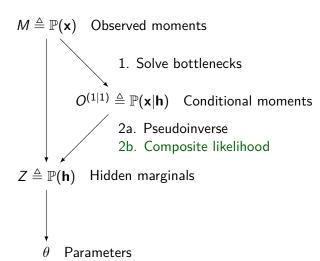
Noisy Or (non-example) (Halpern and Sontag 2013)



Outline

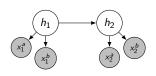


Outline



Convex marginal likelihoods

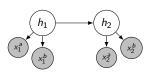
The MLE is statistically most efficient, but usually non-convex.

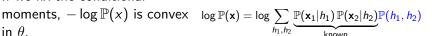


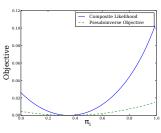
$$\log \mathbb{P}(\mathbf{x}) = \log \sum_{h_1,h_2} \mathbb{P}(\mathbf{x}_1|h_1) \mathbb{P}(\mathbf{x}_2|h_2) \mathbb{P}(h_1,h_2)$$

Convex marginal likelihoods

- ▶ The MLE is statistically most efficient, but usually non-convex.
- If we fix the conditional in θ .

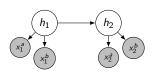




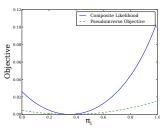


Convex marginal likelihoods

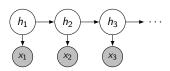
- ▶ The MLE is statistically most efficient, but usually non-convex.
- If we fix the conditional in θ .
- No closed form solution, but a local method like EM is guaranteed to converge to the global optimum.



moments,
$$-\log \mathbb{P}(x)$$
 is convex $\log \mathbb{P}(x) = \log \sum_{h_1,h_2} \underbrace{\mathbb{P}(x_1|h_1)\mathbb{P}(x_2|h_2)}_{\text{known}} \mathbb{P}(h_1,h_2)$

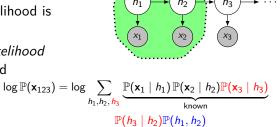


► In general, the full likelihood is still non-convex.

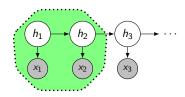


$$\log \mathbb{P}(\mathbf{x}_{123}) = \log \sum_{h_1, h_2, h_3} \underbrace{\mathbb{P}(\mathbf{x}_1 \mid h_1) \mathbb{P}(\mathbf{x}_2 \mid h_2) \mathbb{P}(\mathbf{x}_3 \mid h_3)}_{\text{known}}$$
$$\mathbb{P}(h_3 \mid h_2) \mathbb{P}(h_1, h_2)$$

- ► In general, the full likelihood is still non-convex.
- ► Consider composite likelihood on a subset of observed variables. $\log \mathbb{P}(\mathbf{x}_{12})$

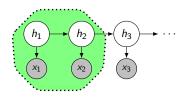


- ► In general, the full likelihood is still non-convex.
- Consider composite likelihood on a subset of observed variables.



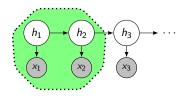
$$\log \mathbb{P}(\mathbf{x}_{12}) = \log \sum_{h_1,h_2} \underbrace{\mathbb{P}(\mathbf{x}_1 \mid h_1) \mathbb{P}(\mathbf{x}_2 \mid h_2)}_{\text{known}}$$
$$\mathbb{P}(h_1,h_2)$$

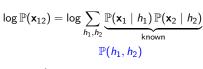
- ► In general, the full likelihood is still non-convex.
- Consider composite likelihood on a subset of observed variables.
- Can be shown that estimation with composite likelihoods is consistent (Lindsay 1988).

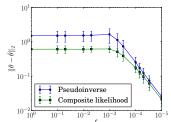


$$\log \mathbb{P}(\mathbf{x}_{12}) = \log \sum_{h_1,h_2} \underbrace{\mathbb{P}(\mathbf{x}_1 \mid h_1) \mathbb{P}(\mathbf{x}_2 \mid h_2)}_{\text{known}}$$
$$\mathbb{P}(h_1,h_2)$$

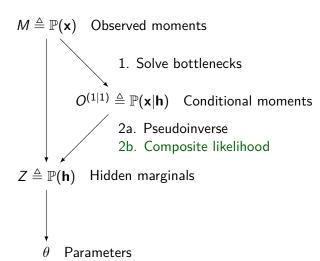
- ► In general, the full likelihood is still non-convex.
- Consider composite likelihood on a subset of observed variables.
- Can be shown that estimation with composite likelihoods is consistent (Lindsay 1988).
- Asymptotically, the composite likelihood estimator is more efficient.



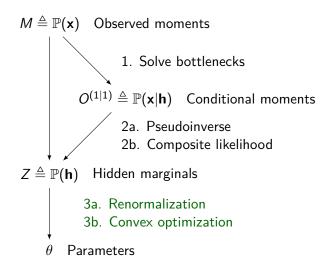




Outline



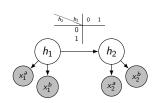
Outline



Recovering parameters in directed models

- Conditional probability tables are the default for a directed model.
- Can be recovered by normalization:

$$\mathbb{P}(h_2 \mid h_1) = \frac{\mathbb{P}(h_1, h_2)}{\sum_{h_2} \mathbb{P}(h_1, h_2)}.$$

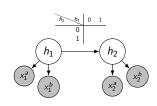


Recovering parameters in directed models

- Conditional probability tables are the default for a directed model.
- Can be recovered by normalization:

$$\mathbb{P}(h_2 \mid h_1) = \frac{\mathbb{P}(h_1, h_2)}{\sum_{h_2} \mathbb{P}(h_1, h_2)}.$$

No dependence on tree-width. Memory, computation and samples depend linearly on the size of each clique.



Assume a log-linear parameterization,

$$p_{ heta}(\mathbf{x}, \mathbf{h}) = \exp\left(\sum_{\mathcal{C} \in \mathcal{G}} \mathbf{\theta}^{ op} \phi(\mathbf{x}_{\mathcal{C}}, \mathbf{h}_{\mathcal{C}}) - A(\mathbf{\theta})\right).$$

Assume a log-linear parameterization,

$$p_{ heta}(\mathbf{x}, \mathbf{h}) = \exp\left(\sum_{\mathcal{C} \in \mathcal{G}} \theta^{\top} \phi(\mathbf{x}_{\mathcal{C}}, \mathbf{h}_{\mathcal{C}}) - A(\theta)\right).$$

The *unsupervised* negative log-likelihood is non-convex,

$$\mathcal{L}_{\mathsf{unsup}}(\theta) \triangleq \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[-\log \sum_{\mathbf{h} \in \mathcal{H}} p_{\theta}(\mathbf{x}, \mathbf{h})].$$

Assume a log-linear parameterization,

$$p_{ heta}(\mathbf{x},\mathbf{h}) = \exp\left(\sum_{\mathcal{C} \in \mathcal{G}} heta^ op \phi(\mathbf{x}_{\mathcal{C}},\mathbf{h}_{\mathcal{C}}) - A(heta)
ight).$$

► The *unsupervised* negative log-likelihood is non-convex,

$$\mathcal{L}_{\mathsf{unsup}}(\theta) \triangleq \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[-\log \sum_{\mathbf{h} \in \mathcal{H}} p_{\theta}(\mathbf{x}, \mathbf{h})].$$

▶ However, the *supervised* negative log-likelihood is convex,

$$\begin{split} \mathcal{L}_{\mathsf{sup}}(\theta) &\triangleq \mathbb{E}_{(\mathbf{x}, \mathbf{h}) \sim \mathcal{D}_{\mathsf{sup}}} \left[-\log p_{\theta}(\mathbf{x}, \mathbf{h}) \right] \\ &= -\theta^{\top} \left(\sum_{\mathcal{C} \in \mathcal{G}} \mathbb{E}_{(\mathbf{x}, \mathbf{h}) \sim \mathcal{D}_{\mathsf{sup}}} [\phi(\mathbf{x}_{\mathcal{C}}, \mathbf{h}_{\mathcal{C}})] \right) + A(\theta). \end{split}$$

Recall, the marginals can typically estimated from supervised data.

$$\mathcal{L}_{\mathsf{sup}}(\theta) = -\theta^{\top} \underbrace{\left(\sum_{\mathcal{C} \in \mathcal{G}} \mathbb{E}_{(\mathbf{x},\mathbf{h}) \sim \mathcal{D}_{\mathsf{sup}}} [\phi(\mathbf{x}_{\mathcal{C}},\mathbf{h}_{\mathcal{C}})] \right)}_{\mu_{\mathcal{C}}} + \textit{A}(\theta).$$

Recall, the marginals can typically estimated from supervised data.

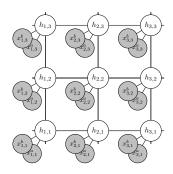
$$\mathcal{L}_{\mathsf{sup}}(\theta) = -\theta^{\top} \underbrace{\left(\sum_{\mathcal{C} \in \mathcal{G}} \mathbb{E}_{(\mathbf{x},\mathbf{h}) \sim \mathcal{D}_{\mathsf{sup}}} [\phi(\mathbf{x}_{\mathcal{C}},\mathbf{h}_{\mathcal{C}})] \right)}_{\mu_{\mathcal{C}}} + A(\theta).$$

However, the marginals can also be *consistently* estimated by moments!

$$\mu_{\mathcal{C}} = \sum_{\mathbf{x}_{\mathcal{C}}, \mathbf{h}_{\mathcal{C}}} \underbrace{\mathbb{P}(\mathbf{x}_{\mathcal{C}} \mid \mathbf{h}_{\mathcal{C}})}_{\text{moments hidden marginals}} \phi(\mathbf{x}_{\mathcal{C}}, \mathbf{h}_{\mathcal{C}}).$$

Optimizing pseudolikelihood

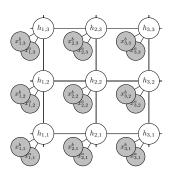
▶ Estimating μ_C : independent of treewidth.



Optimizing pseudolikelihood

- ▶ Estimating μ_C : independent of treewidth.
- ► Computing $A(\theta)$: dependent on treewidth.

$$A(\theta) \triangleq \log \sum_{\mathbf{x}, \mathbf{h}} \exp \left(\theta^{\top} \phi(\mathbf{x}, \mathbf{h}) \right).$$



Optimizing pseudolikelihood

- Estimating $\mu_{\mathcal{C}}$: independent of treewidth.
- ► Computing $A(\theta)$: dependent on treewidth.

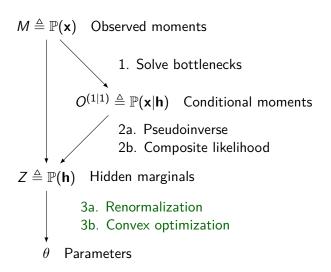
$$A(\theta) \triangleq \log \sum_{\mathbf{x}, \mathbf{h}} \exp \left(\theta^{\top} \phi(\mathbf{x}, \mathbf{h}) \right).$$

Instead, use pseudolikelihood (Besag 1975) to consistently estimate distributions over local neighborhoods.

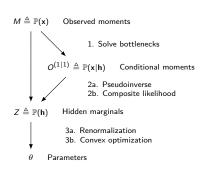
$$\begin{pmatrix} h_{1,3} & h_{2,3} & h_{3,3} \\ x_{1,3}^b & x_{2,3}^b & x_{3,2}^b \\ h_{1,2} & h_{2,2} & h_{3,2} \\ x_{1,2}^b & x_{2,2}^b & x_{3,2}^b \\ h_{1,1} & x_{2,1}^b & x_{3,2}^b \\ x_{1,1}^b & x_{2,1}^b & x_{3,1}^b \\ x_{1,1}^b & x_{2,1}^b & x_{3,2}^b \\ x_{1,2}^b & x_{2,2}^b & x_{2,2}^b \\ x_{1$$

$$A_{\mathsf{pseudo}}(\theta; \mathcal{N}(\textit{a})) \triangleq \log \sum \exp \left(\theta^\top \phi(\mathbf{x}_{\mathcal{N}}, \mathbf{h}_{\mathcal{N}}) \right).$$

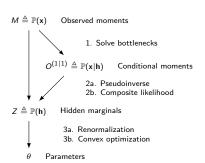
Outline



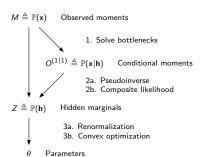
An algorithm for any bottlenecked discrete graphical model.



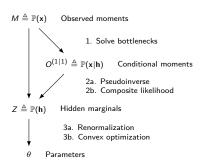
- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.



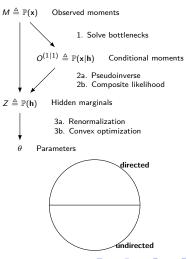
- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.



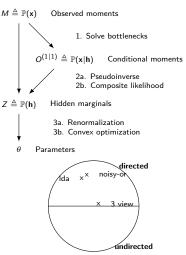
- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.
- Efficiently learns models with high-treewidth.



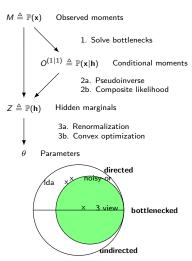
- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.
- Efficiently learns models with high-treewidth.



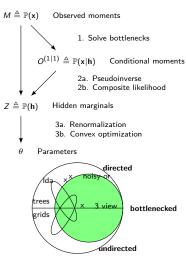
- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.
- Efficiently learns models with high-treewidth.



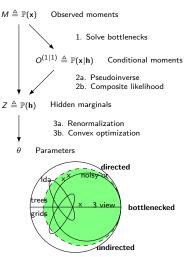
- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.
- Efficiently learns models with high-treewidth.



- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.
- Efficiently learns models with high-treewidth.



- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.
- Efficiently learns models with high-treewidth.



- An algorithm for any bottlenecked discrete graphical model.
- Combine moment estimators with likelihood estimators.
- Extends to log-linear models.
- Efficiently learns models with high-treewidth.
- Thank you! Poster: M58

