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Abstract
We present an adaptive variant of the exponen-
tiated gradient algorithm. Leveraging the opti-
mistic learning framework of Rakhlin & Sridha-
ran (2012), we obtain regret bounds that in the
learning from experts setting depend on the vari-
ance and path length of the best expert, improv-
ing on results by Hazan & Kale (2008) and Chi-
ang et al. (2012), and resolving an open problem
posed by Kale (2012). Our techniques naturally
extend to matrix-valued loss functions, where we
present an adaptive matrix exponentiated gradi-
ent algorithm. To obtain the optimal regret bound
in the matrix case, we generalize the Follow-the-
Regularized-Leader algorithm to vector-valued
payoffs, which may be of independent interest.

1. Introduction
The exponentiated gradient (EG) algorithm is a powerful
tool for performing online learning in the presence of many
irrelevant features (Kivinen & Warmuth, 1997; Littlestone,
1988). EG is often used in the “learning from experts” set-
ting, in which it is also known as the weighted majority
algorithm (Littlestone & Warmuth, 1989). In this setting,
EG entertains regret bounds of the form

Regret ≤ log(n)

η
+ η

T∑
t=1

‖zt‖2∞, (1)

where η is the step size, zt is the vector of losses, and n
is the number of experts. Such bounds (as well as slightly
stronger bounds based on local norms) can be obtained un-
der the mirror descent framework, a general tool that gives
rise to many other online learning algorithms (see Shalev-
Shwartz (2011) for a survey).

In contrast, Cesa-Bianchi et al. (2007) present a vari-
ant of this algorithm based on a multiplicative update of
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Figure 1. Summary of possible regret bounds with references to
algorithms known to achieve these bounds. An arrow A → B
indicates that A is a strictly better bound than B. Our algorithm
simultaneously improves upon several existing results. D repre-
sents the path length, V the variance, and S the second moment;
these quantities are defined formally in Section 3, Equation 24.
Even in situations where Di∗ is Θ(1), both maxiDi and Vi∗
(and hence all other entries in the lattice) can be Θ(T ).

wt+1,i ∝ wt,i(1−ηzt,i) rather than the usual EG update of
wt+1,i ∝ wt,i exp(−ηzt,i). This algorithm cannot be cast
in the mirror descent framework with a fixed regularizer,
yet it achieves an improved regret bound of

Regret ≤ log(n)

η
+ η

T∑
t=1

z2
t,i∗ . (2)

Comparing the regret bounds (2) and (1), note that (2) is in
terms of the best expert i∗ instead of a maximum over all
experts. This latter bound can be much stronger; we show
in Proposition 2.2 that there is in fact a Θ(

√
T ) separation

of the worst-case regret in the setting where the best ex-
pert has loss identically equal to zero. Other differences
between these two types of updates are discussed in Arora
et al. (2012).

The fact that an algorithm achieving a better regret bound
cannot be cast in the mirror descent framework is a bit un-
settling. Does this mean we should abandon mirror descent
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as the gold standard for online learning, despite theorems
asserting its optimality (Srebro et al., 2011)? We answer
this question in the negative: the (1− ηzt,i) update can be
understood as a form of adaptive mirror descent (Orabona
et al., 2013), where the regularizer changes in each round
t in response to previously observed vectors z1:t. We ob-
tain a natural interpretation of the update as performing a
second-order correction to the gradient.

Examining (2) more closely, we see that this corrected up-
date should perform well when the best expert i∗ incurs
losses consistently close to zero; then the second term in
the regret is

∑T
t=1 z

2
t,i∗ ≈ 0. However, this assumption

may be unrealistic, and many authors have recently con-
sidered variance bounds that depend only on the devia-
tion of zt from its average, or path-length bounds in terms
of zt − zt−1 (Hazan & Kale, 2008; Chiang et al., 2012;
Yang et al., 2013). Rakhlin & Sridharan (2012) present
an optimistic learning framework that yields such bounds
for any mirror descent algorithm. However, the updates in
Hazan & Kale (2008) are not mirror descent updates (for
any fixed regularizer), and their bounds are incomparable
to the bounds obtained via optimistic learning.

In the learning from experts setting, we subsume all the pre-
viously mentioned bounds by obtaining a bound in terms of
the path length of the best expert:

Regret ≤ log(n)

η
+ η

T∑
t=1

(zt,i∗ − zt−1,i∗)
2. (3)

Obtaining such a bound is posed as an open problem in
Kale (2012). We achieve such a regret bound (Equation 23)
by applying Rakhlin’s updates in the context of an adaptive
mirror descent algorithm, thus obtaining an adaptive op-
timistic exponentiated gradient algorithm. When the path
length is not known and η must be determined adaptively,
our bounds weaken slightly but are still strong enough to
answer the problem in Kale (2012), as well as to subsume
all of the previously mentioned bounds in the adaptive step
size setting.

Finally, we extend all these results to the matrix setting,
where the learner plays a positive semidefinite matrix Wt

with trace 1 (in analogy with the simplex). This setting has
been extensively studied (Tsuda et al., 2005; Arora & Kale,
2007) and is important in obtaining online and approxima-
tion bounds for various combinatorial optimization prob-
lems (Arora & Kale, 2007; Hazan et al., 2012). As far as
we are aware, the best known results in this setting are of
the form (1). Using the machinery so far developed, all
of our results extend naturally to the matrix setting. How-
ever, for the variance bound we need a new analysis tool:
a variant of FTRL for vector-valued losses ordered relative
to some cone K.

In summary, the main contributions of this paper are:

• An interpretation of the multiplicative weights update
of Cesa-Bianchi et al. (2007) as exponentiated gradi-
ent with an adaptive regularizer (Section 2).

• An improved exponentiated gradient algorithm ob-
taining best-known variance and path-length bounds
(Section 3).

• An adaptive matrix exponentiated gradient algorithm
attaining similar bounds (Section 4).

• A generalization of Follow-the-Regularized-Leader to
vector-valued loss functions (Lemma 4.3).

Related work. There is a rich literature on using adaptive
updates to obtain better regret bounds for online learning.
A common setting is adaptive learning of a quadratic regu-
larizer, as in the AROW (Crammer et al., 2009), AdaGrad
(Duchi et al., 2011), and online preconditioning (Streeter
& McMahan, 2010) algorithms. Other work includes
dimension-free exponentiated gradient (Orabona, 2013),
whitened perceptron (Cesa-Bianchi et al., 2005), and on-
line adaptation of the step size (Hazan et al., 2007). The
non-stationary setting was explored by Vaits et al. (2013),
and McMahan & Streeter (2010) obtain regret bounds rel-
ative to a family of regularizers. More recently, many of
these algorithms have been unified into a single framework
by Orabona et al. (2013). To our knowledge, adaptively
regularized exponentiated gradient has not been explicitly
explored, though many variants on the basic multiplica-
tive updates have been proposed (Cesa-Bianchi et al., 2007;
Hazan & Kale, 2008; Chiang et al., 2012), which can be in-
terpreted in our framework as making implicit use of an
adaptive regularizer.

In addition to the variants on exponentiated gradient dis-
cussed above, Auer & Warmuth (1998) and Herbster &
Warmuth (1998) have studied the case where the best ex-
pert can change over time. Finally, Sabato et al. (2012)
consider a generalization of the Winnow algorithm (Little-
stone, 1988), which corresponds to exponentiated gradient
with a hinge-like loss, and provide a careful analysis of the
regret that is more precise than the mirror descent analysis.

2. A Tale of Two Updates
Our point of departure is the two different types of multi-
plicative updates mentioned in the introduction. For sim-
plicity we will consider the setting of learning from expert
advice.1 In this setting there are n experts, and the learner
maintains a probability distribution wt ∈ ∆n over the ex-
perts. In each round t = 1, . . . , T , the learner plays wt,
a vector zt ∈ [−1, 1]n is revealed, and the learner incurs

1The general setting follows a nearly identical analysis and is
covered in the supplementary material.
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Name Update Prediction Source
EG (MW1) βt+1 = βt − ηzt exp(βt) (Kivinen & Warmuth, 1997)

MW2 βt+1,i = βt,i + log(1− ηzt,i) exp(βt) (Cesa-Bianchi et al., 2007)

Variation-MW βt+1,i = βt,i − ηzt,i − 4η2(zt,i −mt,i)
2

exp(βt) (Hazan & Kale, 2008)
mt = 1

t

∑t−1
s=1 zs

Optimistic MW βt+1,i = βt,i − ηzt,i exp(βt − ηzt−1) (Chiang et al., 2012)
AEG-Path βt+1,i = βt,i − ηzt,i − η2(zt,i − zt−1,i)

2 exp(βt − ηzt−1) this work
AMEG-Path Bt+1 = Bt − ηZt − η2(Zt − Zt−1)2 exp(Bt − ηZt−1) this work

Table 1. An overview of known adaptive exponentiated gradient algorithms. The AEG-Path updates incorporate components of both
the Variation-MW and Optimistic MW algorithms, and are motivated by interpreting MW2 in terms of adaptive mirror descent. The
AMEG-Path updates extend AEG-Path to the matrix case (which had previously only been done for MW1).

loss w>t zt. The learner’s goal is to minimize the regret
supu∈∆n

Regret(u), where

Regret(u)
def
=

T∑
t=1

w>t zt −
T∑
t=1

u>zt. (4)

The learner starts by playing w1, where w1,i = 1
n for 1 ≤

i ≤ n. On subsequent iterations, we consider two types of
updates for the weight vector wt, as shown in (MW1) and
(MW2) below:

wt+1,i ∝ wt,i exp(−ηzt,i) (MW1)
wt+1,i ∝ wt,i(1− ηzt,i), (MW2)

where η is the step size. The regret bounds for each of
(MW1) and (MW2) are well-known (see Shalev-Shwartz
(2011) and Cesa-Bianchi et al. (2007) respectively) but we
include them for completeness.

Theorem 2.1. For any 0 < η ≤ 1
2 and ‖zt‖∞≤ 1, the

updates (MW1) and (MW2) obtain respective regret bounds
of

Regret(u) ≤ log(n)

η
+ η

n∑
i=1

T∑
t=1

wt,iz
2
t,i (5)

Regret(u) ≤ log(n)

η
+ η

n∑
i=1

ui

T∑
t=1

z2
t,i (6)

To understand why (6) may be a better bound than (5), sup-
pose that the best expert has loss identically equal to zero.2

Then the optimal u places all mass on that expert, and (6)
reduces to log(n)

η = 2 log(n) for η = 1
2 .

More formally, define a sequence of losses zt to be quasi-
realizable if one of the experts i∗ has identically zero loss
and all other experts have non-negative cumulative loss, i.e.∑T
t=1 zt,i ≥ 0. It is apparent by the preceding paragraph

2Of course, if we knew that this was the case ahead of time,
there would be far better algorithms; we use this scenario purely
for illustrative purposes.

that (MW2) achieves asymptotically constant (as a function
of T ) regret for any quasi-realizable sequence. In contrast,
(MW1) can suffer Ω(

√
T ) regret:

Proposition 2.2. For any step size η and T , there is a
quasi-realizable loss sequence (zt)

T
t=1 and a vector u ∈

∆n such that the updates (MW1) result in Regret(u) =
Ω(
√
T ).

The proof is given in the supplementary material, but the
main idea is that (MW1) will have trouble distinguishing
between an expert whose loss is always zero and an expert
whose loss alternates between 1 and −1. This establishes
that the apparent separation between (MW1) and (MW2) is
real and not an artifact of the analysis. We remark that this
separation does not exist when all losses are non-negative.
In this case both (MW1) and (MW2) enjoy O(1) regret (as
a function of T ).

Finally, note that (MW2) cannot be realized as mirror de-
scent for any fixed regularizer. This is because, for any mir-
ror descent algorithm, the prediction on round t + 1 must
be a function of

∑t
s=1 zs, which is not the case for (MW2).

Adaptive mirror descent However, not all is lost, as
we will obtain (MW2) in terms of an adaptive regularizer
ψt(w). The mirror descent predictions for an adaptive reg-
ularizer are given by

wt = ∇ψ∗t (θt) , θt
def
= −η

t−1∑
s=1

zs, (7)

where ψ∗(x)
def
= supw{w>x − ψ(w)} is the Fenchel con-

jugate of ψ. We provide general properties of Fenchel
conjugates as well as several calculations of interest in the
supplementary material. See Orabona et al. (2013) for a
more complete exposition on adaptive mirror descent, and
Shalev-Shwartz (2011) for a general survey.

We can cast (MW2) in the adaptive mirror descent frame-
work, as detailed in Proposition 2.3 below. As we will ex-
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plain in the next section, these updates have a natural inter-
pretation as “pushing the regret into the regularizer”.

Proposition 2.3. Define βt,i
def
=
∑t−1
s=1 log(1 − ηzs,i) and

let

ψt(u)
def
=

n∑
i=1

ui log(ui) + u>(θt − βt). (8)

Then adaptive mirror descent with regularizer ψt corre-
sponds exactly to the updates (MW2). The corresponding
regret bound is

Regret(u) ≤ ψ∗1(θ1) + ψT+1(u)

η
(9)

≤ log(n)

η
+ η

n∑
i=1

ui

T∑
t=1

z2
t,i. (10)

Proof. By standard properties of Fenchel conjugates, we
have

∇ψ∗t (θt) = arg min
w∈∆n

ψt(w)− w>θt (11)

= arg min
w∈∆n

n∑
i=1

wi log(wi)− w>βt. (12)

From here we see thatwt,i ∝ exp(βt,i) =
∏t−1
s=1(1−ηzs,i),

so that wt,i does indeed correspond to (MW2).

We omit the proof of the regret bound; it follows straight-
forwardly from the machinery in the next section (see
Proposition 3.3).

Proposition 2.3 says we can obtain bounds that depend on
the the average squared loss z2

t,i∗ of the best expert i∗ (u
places all its mass on i∗). But intuitively, we would like
to not suffer much regret even if zt,i∗ is large so long as
its variation is small. We turn to this issue in the next sec-
tion.

3. Adaptive Optimistic Learning
In the previous section, we saw how to obtain regret bounds
that depend on the best expert i∗, but involve the second
moment. Next, we show how to use the idea of optimistic
learning (Rakhlin & Sridharan, 2012) to obtain results that
depend on variance or path length.

In the optimistic learning framework, we are given a se-
quence of “hints”mt of what zt might be. Then rather than
choosing wt based on the negative cumulative gradients θt,
we choose wt based on a preemptive update θt− ηmt. The
resulting regret bounds thus depend on the error in the hints
(zt−mt) rather than zt. Ifmt = 0, we recover vanilla mir-
ror descent; if mt = zt−1, we obtain path-length bounds;

and if mt = 1
t

∑t−1
s=1 zs, we obtain variance bounds. We

illustrate geometrically in Figure 2 how optimistic updates
can improve the regret bound.

We combine optimistic learning (Rakhlin & Sridharan,
2012) with adaptive regularization (Orabona et al., 2013)
to yield Algorithm 1.

Algorithm 1 Adaptive Optimistic Mirror Descent
Given: convex regularizers ψt and hints mt

Initialize θ1 = 0
for t = 1 to T do

Choose wt = ∇ψ∗t (θt − ηmt)
Observe zt and suffer loss w>t zt
Update θt+1 = θt − ηzt

end for

The regret bound for Algorithm 1 is given in Theorem 3.1:

Theorem 3.1. Suppose that for all t, ψt is convex and sat-
isfies the loss-bounding property:

ψ∗t+1(θt − ηzt) ≤ ψ∗t (θt − ηmt)− ηw>t (zt −mt). (13)

Then

Regret(u) ≤ ψ∗1(θ1) + ψT+1(u)

η
. (14)

Proof. The proof is a relatively straightforward combina-
tion of known results. First note that ψ∗t is convex and that
wt = ∇ψ∗t (θt − ηmt). Thus, ψ∗t (θt) ≥ ψ∗t (θt − ηmt) +
ηw>t mt. Then, by definition of the Fenchel conjugate to-
gether with telescoping sums, we have, for any u,

u>θT+1 − ψT+1(u)

≤ ψ∗T+1(θT+1)

= ψ∗1(θ1) +

T∑
t=1

ψ∗t+1(θt+1)− ψ∗t (θt)

≤ ψ∗1(θ1) +

T∑
t=1

ψ∗t+1(θt+1)− ψ∗t (θt − ηmt)− ηw>t mt.

By the conditions of the theorem, the sum is termwise up-
per bounded by −ηw>t zt and we have

u>θT+1 + η

T∑
t=1

w>t zt ≤ ψ∗1(θ1) + ψT+1(u). (15)

Expanding θT+1 as −η
∑T
t=1 zt completes the proof.

The key intuition, also spelled out by Orabona et al. (2013),
is that, if we make ψt+1 − ψt large enough to “swallow
the regret” on round t, then we obtain bounds that depend
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ψ∗(θt)

ψ∗(θt − ηzt)

ψ∗(θt)− ηw>t zt
ψ∗(θt)

ψ∗(θt − ηzt)

ψ∗(θt − ηmt)− ηw>t (zt −mt)

ψ∗(θt − ηmt)

Figure 2. Illustration of how optimistic updates affect the regret bound. For a fixed regularizer ψ∗, the increase in regret is bounded
above by ψ∗(θt+1)−ψ∗(θt)− ηw>t zt. Normally wt = ∇ψ∗(θt), so that the bound is equal to the gap between ψ∗ and its tangent line,
as illustrated on the left. For optimistic updates we instead take wt = ∇ψ∗(θt − ηmt), which replaces the tangent line by the dashed
line on the right. This dashed line can be bounded by the tangent line at θt − ηmt, depicted as the solid line on the right.

on the regularizer ψT+1(u), rather than typical bounds that
depend on Bregman divergences between θt and θt+1.3

Regularization based on corrections While Theo-
rem 3.1 deals with general sequences of regularizers ψt,
for our purposes we will only need to consider regularizers
of a special form:

ψt(w) = ψ(w)− w>
[
β1 − η2

t−1∑
s=1

as

]
, (16)

where ψ is a fixed regularizer and at is a sequence of cor-
rections. This choice of regularizer yields the more special-
ized Algorithm 2, which can be interpreted as performing
second-order corrections to the typical gradient updates.

Algorithm 2 Adaptive Optimistic Mirror Descent (special-
ized to corrections)

Given: convex regularizer ψ, corrections at and hintsmt

Initialize β1 arbitrarily
for t = 1 to T do

Choose wt = ∇ψ∗(βt − ηmt)
Observe zt and suffer loss w>t zt
Update βt+1 = βt − ηzt − η2at

end for

Corollary 3.2. Suppose ψ is convex and at is such that
ψ∗(βt−ηzt−η2at) ≤ ψ∗(βt−ηmt)− ηw>t (zt−mt). Then

Regret(u) ≤ ψ∗(β1) + ψ(u)− u>β1

η
+ ηu>

T∑
t=1

at.

(17)

Proof. The proof essentially consists of translating into the
language of Theorem 3.1 and making use of the property
that the Fenchel conjugate of w 7→ ψ(w) − w>c is x 7→
ψ∗(x+ c).

3The typical Bregman divergence bound can be recovered by
setting ψt+1(w) to ψt(w) +Dψ∗(θt+1‖θt).

Define ψt(w)
def
= ψ(w)−w>[β1− η2

∑t−1
s=1 as]. Note that

ψt(w) = ψ(w)−w>(βt− θt) and hence ψ∗t (x) = ψ∗(x+
(βt − θt)). Then, looking at the condition of Theorem 3.1,
we have ψ∗t+1(θt − ηzt) = ψ∗t+1(θt+1) = ψ∗(βt+1) and
ψ∗t (θt−ηmt) = ψ∗(βt−ηmt), so that the conditions on ψ
and at in this corollary match those on ψt in Theorem 3.1.
The corresponding regret bound is

Regret(u) ≤ ψ∗1(θ1) + ψT+1(u)

η

=
ψ∗(β1) + ψ(u) + u>[−β1 + η2

∑T
t=1 at]

η

=
ψ∗(β1) + ψ(u)− u>β1

η
+ ηu>

T∑
t=1

at,

as was to be shown.

To give some intuition for the condition in Corollary 3.2,
note that wt = ∇ψ∗(βt − ηmt), and so ψ∗(βt − ηzt) ≈
ψ∗(βt − ηmt) − ηw>t (zt −mt). Since ψ∗ is convex, we
actually have ψ∗(βt − ηzt) ≥ ψ∗(βt − ηmt)− ηw>t (zt −
mt), so we can view the subtraction of η2at as a second-
order correction that flips the sign of the inequality. The η2

coefficient in front of at is motivated by the fact that the
second-order term in the Taylor expansion of ψ∗(βt− ηzt)
is of order η2, and so for the η2at term to cancel this out
we need at to be of constant order.

Adaptive step size. The exposition so far assumes a fixed
step size η, and the subsequent bounds we present will as-
sume that the optimal value of η is known. In practice, it
is rarely the case that we know this optimal value in ad-
vance, and it is thus necessary to choose η adaptively. We
ignore this issue in the main text, but an adaptive scheme
following Cesa-Bianchi et al. (2007) is provided in the sup-
plementary material for the interested reader. We note that,
for the adaptive case, our regret bound is slightly worse and
corresponds to the maxiDi entry in Figure 1.

Application to exponentiated gradient. Using the adap-
tive optimistic mirror descent framework, we can now ob-
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tain an adaptive exponentiated gradient algorithm that in-
corporates hints mt. The algorithm is obtained from Al-
gorithm 2 by setting ψ(w) =

∑n
i=1 wi log(wi) and at,i =

(zt,i −mt,i)
2. This choice of correction at makes intuitive

sense, as it will downweight experts i for whom the hints
mt,i are inaccurate.

Proposition 3.3 (Adaptive Exponentiated Gradient). Con-
sider the updates given by β1,i = 0 and βt+1,i = βt,i −
ηzt,i − η2(zt,i −mt,i)

2, with prediction wt,i ∝ exp(βt,i −
ηmt,i). Then, assuming ‖zt‖∞≤ 1, ‖mt‖∞≤ 1 and
0 < η ≤ 1

4 , we have for all u ∈ ∆n:

Regret(u) ≤ log(n)

η
+ η

n∑
i=1

ui

T∑
t=1

(zt,i −mt,i)
2. (18)

Proof. Corollary 3.2 reduces the proof to straightforward
computation. Note that, for ψ(w) =

∑n
i=1 wi log(wi)

and w constrained to the simplex ∆n, ψ∗(β) =
log(

∑n
i=1 exp(βi)) and ∇ψ∗(βt − ηmt) is equal to wt as

defined in the proposition. The updates above thus corre-
spond to Algorithm 2 and so it suffices to check that the
main condition of Corollary 3.2 is satisfied with at,i =
(zt,i −mt,i)

2. This follows from the calculation:

ψ∗(βt − ηzt − η2at)

= log(

n∑
i=1

exp(βt,i − ηzt,i − η2(zt,i −mt,i)
2))

= log(

n∑
i=1

exp(βt,i − ηmt,i) exp(−η(zt,i −mt,i)

− η2(zt,i −mt,i)
2))

≤ log(

n∑
i=1

exp(βt,i − ηmt,i)(1− η(zt,i −mt,i)))

= log(

n∑
i=1

exp(βt,i − ηmt,i)

− η
n∑
i=1

exp(βt,i − ηmt,i)(zt,i −mt,i))

≤ log(

n∑
i=1

exp(βt,i − ηmt,i))

− η
∑n
i=1 exp(βt,i − ηmt,i)(zt,i −mt,i)∑n

i=1 exp(βt,i − ηmt,i)

= ψ∗(βt − ηmt)− η∇ψ∗(βt − ηmt)
>(zt −mt).

The two inequalities we made use of were exp(−x−x2) ≤
1− x for |x|≤ 1

2 and log(x− y) ≤ log(x)− y/x. Having

verified the condition of Corollary 3.2, we obtain a regret
bound of ψ

∗(0)+ψ(u)
η + η

∑n
i=1 u

>at. Finally, we note that
ψ∗(0) = log(n), ψ(u) =

∑n
i=1 ui log(ui) ≤ 0, and at,i =

(zt,i −mt,i)
2, which completes the proof.

Comparison to (MW2). For mt = 0 we obtain the same
regret bound (6) that was obtained for the update (MW2).
Interestingly, the two updates are essentially the same to
second order:

βt+1,i = βt,i − ηzt,i − η2z2
t,i (19)

versus βt+1,i = βt,i + log(1− ηzt,i). (20)

Since −x − x2 ≤ log(1 − x) when |x|≤ 1
2 , we can

think of the adaptive EG updates as a second-order under-
approximation to (MW2) when mt = 0. The regret bound
(6) for (MW2) can be obtained by a near-identical calcula-
tion to the one in Proposition 3.3.

Variance bound. By settingmt = 1
t

∑t−1
s=1 zs, we obtain

a variance bound

Regret ≤ log(n)

η
+ η(2Vi∗ + 6), (21)

where i∗ is the best expert and

Vi
def
=

T∑
t=1

(zt,i − z̄i)2, z̄
def
=

1

T

T∑
t=1

zt (22)

is the variance of expert i. This improves the result
in Hazan & Kale (2008), who obtain a regret based on
maxni=1 Vi rather than Vi∗ .4

The choice of mt corresponds to running an auxiliary in-
stance of Follow-the-Regularized-Leader (Shalev-Shwartz,
2011) to minimize the regret bound (18), an idea first in-
troduced by Rakhlin & Sridharan (2012). The details are
given in the supplementary material.

Path-length bound. For mt = zt−1 we obtain the algo-
rithm AEG-Path given in Table 1 and achieve the bound

Regret ≤ log(n)

η
+ ηDi∗ , Di

def
=

T∑
t=1

(zt,i − zt−1,i)
2.

(23)
This is called a path-length bound because Di can be
thought of as the path length (squared) of the losses for ex-
pert i. This improves upon the algorithm and bound given
in Chiang et al. (2012), whereDi is replaced with the quan-
tity D∞

def
=
∑T
t=1‖zt − zt−1‖2∞, which is always larger

4Actually, their bound is slightly better than that, but the exact
bound is difficult to state concisely.
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than Di∗ . We note that Di∗ ≤ 4Vi∗ + 2, so path-length
bounds subsume variance bounds.

The path-length bound obtained above resolves a problem
posed by Kale (2012), who asked whether it is possible to
obtain bounds in terms of Di∗ .

Comparison of bounds. Recall the definitions of Di,
D∞, and Vi, and further define V∞, Si, and S∞:

Di
def
=
∑T
t=1(zt,i − zt−1,i)

2 D∞
def
=
∑T
t=1‖zt − zt−1‖2∞

Vi
def
=
∑T
t=1(zt − z̄i)2 V∞

def
=
∑T
t=1‖zt − z̄‖2∞

Si
def
=
∑T
t=1 z

2
t,i S∞

def
=
∑T
t=1‖zt‖2∞

(24)
Figure 1 shows the 3 × 3 grid of potential regret bounds,
summarizing the relevant results. The original exponenti-
ated gradient algorithm has regret in terms of S∞, while the
adaptive algorithm proposed by Cesa-Bianchi et al. (2007)
obtains regret in terms of the smaller quantity Si∗ . Hazan &
Kale (2008) obtain a bound based on maxni=1 Vi, and Chi-
ang et al. (2012) obtain a bound based on D∞. All three
of these latter bounds are incomparable, but our AEG-Path
algorithm obtains a bound in terms ofDi∗ , which is strictly
better than all of the above. We note that in some cases,
slightly better bounds can be obtained in terms of the be-
havior of the learner (see e.g. Section 1.2 of Hazan & Kale
(2008)), but we omit these results for brevity and because
the behavior of the learner is not known ahead of time.

4. Extension to Matrices
We now extend our results to the matrix setting, where
the learner chooses a positive semidefinite matrix W with
tr(W ) = 1. The flexibility of Corollary 3.2 makes the
extension to this case straightforward; essentially the only
change is replacing the regularizer

∑n
i=1 wi log(wi) with

tr(W log(W )) =
∑n
i=1 λi log(λi), where (λi)

n
i=1 are the

eigenvalues of W .

Setup. On each round the learner chooses a matrix Wt

with Wt � 0 and tr(Wt) = 1, and a matrix of losses Zt
is revealed; Zt is assumed to be symmetric and to satisfy
‖Zt‖op≤ 1, where ‖·‖op is the operator norm (maximum
singular value). The loss in round t is tr(WtZt). Note
that we can embed the vector setting in the matrix setting
via wt 7→ diag(wt), zt 7→ diag(zt), where diag(v) is the
diagonal matrix V with Vii = vi.

To give some intuition, the constraint that tr(W ) = 1
means that W can be written as a convex combination∑n
i=1 piviv

>
i of unit vectors. The inner product tr(WZ)

can then be written as
∑n
i=1 pi · (v>i Zvi). Thus an equiv-

alent game would be for the learner to (stochastically) pick
a vector v and receive payoff v>Zv. Here the stochasticity
of the choices is crucial because v>Zv is not convex (since

Z can have negative eigenvalues). See Warmuth & Kuzmin
(2006) for more on this interpretation.

We start by extending the adaptive EG algorithm (Proposi-
tion 3.3) to the matrix setting:

Proposition 4.1 (Adaptive matrix exponentiated gradient).
For any sequence of matrices Mt, consider the updates
given by B1 = 0 and Bt+1 = Bt − ηZt − η2(Zt −Mt)

2,
with prediction Wt = exp(Bt−ηMt)

tr(exp(Bt−ηMt))
. For 0 < η ≤ 1

4 ,
‖Zt‖op≤ 1, and ‖Mt‖op≤ 1, we have

Regret(U) ≤ log(n)

η
+ η

n∑
i=1

tr(U(Zt −Mt)
2) (25)

for all U � 0 with tr(U) = 1.

The main additional tool we need is the Golden-Thompson
inequality tr(exp(A+B)) ≤ tr(exp(A) exp(B)) (Golden,
1965; Thompson, 1965). Otherwise, the proof proceeds as
in Proposition 3.3, so we leave the details for the supple-
mentary material.

Path-length and variance bounds. By setting Mt to
Zt−1 as before, we obtain the algorithm AMEG-Path in
Table 1 and achieve the following path-length bound:

Regret(U) ≤ log(n)

η
+ η

T∑
t=1

tr(U(Zt − Zt−1)2). (26)

We now turn our attention to the variance bound. The
path length bound already implies a variance bound, but
deriving a variance bound directly provides additional in-
sight as well as better constants. Mimicking Rakhlin &
Sridharan (2012), we would like to set Mt to 1

t

∑t−1
s=1 Zs

and then interpret this choice of Mt as playing Follow-
the-Regularized-Leader (FTRL) to minimize the sum in
(25). In previous applications this has been straightfor-
ward, but here, due to the adaptivity of the regularizer, the
sum (25) is a function of U , which is not known in ad-
vance. We address this issue with Lemmas 4.2 and 4.3 be-
low. Lemma 4.3 establishes that there is an optimal value
M∗ for Mt that is independent of U . Lemma 4.3 provides
a way of attaining the optimum; the lemma is fairly general
and may be useful in obtaining variance bounds for other
adaptive regularizers.

Lemma 4.2. For any δ ≥ 0, define M∗ def
= 1

T+δ

∑T
t=1 Zt.

Then, for any symmetric matrix M ′, we have

δ(M∗)2 +

T∑
t=1

(Zt −M∗)2 � δ(M ′)2 +

T∑
t=1

(Zt −M ′)2.

The proof is in the supplementary material. We remark that
the proof is almost purely algebraic, and only relies on the
property that D2 � 0 for any symmetric matrix D.
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Setting δ to 0, we see that Z̄ = 1
T

∑T
t=1 Zt is the opti-

mal (fixed) value of Mt for any U � 0. We now have a
target value Z̄ for the Mt, but we cannot simply apply the
standard FTRL Lemma, since we need a result of the form

T∑
t=1

(Zt −Mt)
2 �

T∑
t=1

(Zt − Z̄)2 + αI, (27)

which cannot be straightforwardly expressed as a regret
bound (the αI term is meant to be the matrix equivalent
of a small constant α). We deal with this by deriving a gen-
eralization of the FTRL algorithm, which we call FTRL-K.
This algorithm has vector-valued losses and obtains regret
relative to a partial ordering defined by a cone K.5

An important notion is that of a global minimizer. For a
function f : X → V where V is a vector space and a cone
K ⊂ V , we say that x is a global minimizer of f relative to
K if f(x) ≤K f(y) for all y ∈ X ; that is, x+K contains the
image of f . Intuitively, K must contain all the directions in
which f can vary relative to f(x).
Lemma 4.3 (FTRL-K). Suppose that for all 1 ≤ t ≤
T + 1, there exists a global minimizer Mt of ψ(M) +∑t−1
s=1 fs(M). Then for all M ,

(28)

T∑
t =1

ft(Mt)− ft(M) ≤K ψ(M)− ψ(M1)

+

T∑
t=1

ft(Mt)− ft(Mt+1).

Taking ψ(M) = M2, ft(M) = (Zt − M)2, and K the
cone of PSD matrices, we obtain the following corollary:
Corollary 4.4. Suppose that we choose Mt = 1

t

∑t−1
s=1 Zs.

Then, assuming ‖Zt‖op≤ 1 for all t, we have

T∑
t=1

(Zt −Mt)
2 � 2

T∑
t=1

(Zt − Z̄)2 + 6I, (29)

for Z̄ def
= 1

T

∑T
t=1 Zt.

Both proofs can be found in the supplementary material.
Combining Proposition 4.1 with Corollary 4.4 gives the de-
sired variance bound:
Corollary 4.5. For 0 < η ≤ 1

4 and ‖Zt‖op≤ 1, setting
Mt = 1

t

∑t−1
s=1 Zs achieves a bound of

Regret(U) ≤ log(n)

η
+ η

[
2

T∑
t=1

tr(U(Zt − Z̄)2) + 6

]
.

We remark that by optimizing the proof of Corollary 4.4,
we can replace the constants 2 with 1 + ε for any ε > 0.

5Recall that for a cone K satisfying K ∩ (−K) = {0}, we
define the partial order x ≤K y iff y − x ∈ K. Common choices
of K are the positive orthant and the positive semidefinite cone.

5. Discussion
We have presented an adaptive exponentiated gradient al-
gorithm, which attains regret bounded by the variance and
path length of the best expert in hindsight. To achieve these
bounds, we relied on the synergy of adaptivity and opti-
mism, allowing us to use “hints” for immediate prediction,
and adaptively performing a second-order correction to the
gradient updates based on the accuracy of the hints. A re-
maining open problem is to adaptively tune the step size to
achieve asymptotically optimal regret.

Recently, Duchi et al. (2011) proposed AdaGrad, an adap-
tive subgradient algorithm. A major difference is that they
update their regularizer by a large multiplicative amount
in each round, whereas our regularizer changes by a small
additive second-order term η2ut. We also obtain different
regret bounds; at a high level, AdaGrad can be expected to
perform well when the optimal predictor is dense but the
gradient updates are sparse. In contrast, our algorithm will
perform well when the optimal predictor is sparse but the
gradient updates are dense.

Our FTRL-K lemma (Lemma 4.3) is closely related to
Blackwell approachability (Blackwell, 1956); see Perchet
(2013) for a recent survey. As far as we can tell, the con-
ditions in Lemma 4.3 are not equivalent to Blackwell ap-
proachability; they are (intuitively) stronger but have the
advantage of offering a potentially tighter analysis, as in
Corollary 4.4. Abernethy et al. (2011) recently provided
a very elegant connection between Blackwell approacha-
bility and regret minimization; our algorithm is, however,
different from theirs. We note that the global minimizer cri-
terion is essentially a lower bound on the curvature of the
cumulative regularized loss near its optimum. We could
thus imagine adding to the regularizer term until the crite-
rion held, if necessary.

Finally, we think the general idea of “pushing the regret
into the regularizer”, as in Theorem 3.1 and in earlier work
(Orabona, 2013; Orabona et al., 2013), is quite interest-
ing, as it allows us to obtain regret bounds in terms of the
best expert rather than the learner. It should be the case
that any time our regret involves a sum

∑T
t=1‖zt−mt‖2wt

,
where ‖·‖wt

is a local norm, we can instead obtain a bound
on Regret(u) involving

∑T
t=1‖zt − mt‖2u, as long as ψ∗

is well-behaved (perhaps having a bounded third deriva-
tive). Precisely characterizing these conditions, and obtain-
ing such local norm results for cases beyond the entropy
and von-Neumann (matrix) entropy, is an interesting direc-
tion of future work.
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Appendix
This appendix contains several pieces of exposition that were removed from the main text due to space constraints. First,
in Appendix A, we provide several properties of Fenchel conjugates, which we hope will serve as a useful reference. In
Appendix B, we provide proofs for results that were stated without proof in the main text. In Appendix C, we re-prove one
of these results in the vector case for the convenience of readers who do not wish to read through matrix manipulations. In
Appendix D, we generalize the exponentiated gradient results from the simplex case to the unconstrained case. Finally, in
Appendix E, we show how to adaptively control the step size η in our algorithms to obtain regret almost as good as if the
optimal η were known in advance.

A. Properties of Fenchel Conjugates
Throughout this paper we make extensive use of properties of Fenchel conjugates. We provide them here for reference. In
all cases we assume that ψ is a convex function. We assume that the argument w to ψ is constrained to lie in some convex
set S.

A.1. General Properties

Definition. The Fenchel conjugate ψ∗(β) of a function ψ(w) is defined as ψ∗(β)
def
= supw∈S w

>β − ψ(w).

Gradient. Let w be the maximizing vector in the preceding definition. Then w is a subgradient of ψ∗ at β. If ψ∗ is
differentiable then

∇ψ∗(β) = arg max
w∈S

w>β − ψ(w), (30)

and in particular∇ψ∗(β) ∈ S for all β.

Translations. For any vector c, define ψc(w) to be ψ(w)− w>c. Then ψ∗c (β) = ψ∗(β + c).

A.2. Calculations (vector case)

Simplex. Let S = ∆n and ψ(w) =
∑
i=1 wi log(wi). This choice of ψ is also called the negative entropy (as well as,

somewhat confusingly, an entropic regularizer). Then we have ψ∗(β) = log(
∑n
i=1 exp(βi)) and∇ψ∗(β)i = exp(βi)∑n

j=1 exp(βj) .

To see the latter, we note that applying the KKT conditions to w>β − ψ(w) implies that the maximizer (and hence the
gradient ∇ψ∗(β)) satisfies βi = log(wi) + 1 + λ for some scalar λ, hence wi ∝ exp(βi), and so ∇ψ∗(βi) = wi =

exp(βi)∑
j exp(βj) . Computing ψ∗(β) now only involves evaluating w>β − ψ(w) at its maximizing value, yielding (where we

define Zβ as
∑
j exp(βj))

ψ∗(β) =

n∑
i=1

[
βi

exp(βi)

Zβ
− log(exp(βi)/Zβ)

exp(βi)

Zβ

]
(31)

=

n∑
i=1

exp(βi)

Zβ
log(Zβ) (32)

= log(Zβ), (33)

which completes the calculation.

Non-negative orthant. If instead S is the non-negative orthant and we now take ψ(w) =
∑n
i=1 wi log(wi), we will have

ψ∗(β) =
∑n
i=1 exp(βi) and ∇ψ∗(β)i = exp(βi).

To see this, again apply the KKT conditions to w>β − ψ(w), which imply that the maximizing value of w satisfies
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βi = log(wi), and hence∇ψ∗(β)i = wi = exp(βi). Evaluating w>β − ψ(w) at this point yields

ψ∗(β) =

n∑
i=1

[βi exp(βi)− βi exp(βi) + exp(βi)] (34)

=

n∑
i=1

exp(βi), (35)

thus completing the calculation.

A.3. Calculations (matrix case)

Trace constrained. Let S = {W | W � 0, tr(W ) = 1} and let ψ(W ) = tr(W log(W )). This choice of ψ is called the
von-Neumann entropy. We have ψ∗(B) = log(tr(exp(B))) and ∇ψ∗(B) = exp(B)

tr(exp(B)) . Note that in this case ψ∗(B) is
defined as supW∈S tr(WB)− tr(W log(W )).

To calculate ∇ψ∗, note that the KKT conditions yield B = log(W ) + (1 + λ)I for the maximizing value of W . Thus
W ∝ exp(B) and hence ∇ψ∗(B) = W = exp(B)

tr(exp(B)) . Defining ZB to be tr(exp(B)) and plugging back in yields

ψ∗(B) = tr(B exp(B))/ZB − tr(exp(B)[B − log(ZB)I])/ZB (36)
= tr(exp(B)) log(ZB)/ZB (37)
= log(ZB), (38)

which completes the calculations for the trace-constrained case.

Trace unconstrained. Let S = {W | W � 0} and let ψ(W ) = tr(W log(W ) −W ). We have ψ∗(B) = tr(exp(B))
and ∇ψ∗(B) = exp(B).

To calculate ∇ψ∗, note that the KKT conditions yield B = log(W ) and hence ∇ψ∗(B) = W = exp(B). Plugging back
in to ψ∗ yields

ψ∗(B) = tr(B exp(B))− tr(exp(B) log(exp(B))− exp(B)) (39)
= tr(exp(B)), (40)

which completes the calculations for the unconstrained case.

B. Deferred Proofs
In this section we prove all results stated in the main text that were deferred to the supplementary material.

Proof of Proposition 2.2. We will construct two sequences (zt)
T
t=1 such that exponentiated gradient with any fixed step

size η will perform poorly (Ω(
√
T )) on at least one of them. Our constructed sequences will involve n = 2 experts. In

both sequences, the first expert has zt,1 = 0 for all t, and zt,2 will satisfy
∑T
t=1 zt,2 ≥ 0 to ensure quasi-realizability.

Sequence 1. The second expert has loss zt,2 = (−1)t−1. Then
∑T
t=1 zt,2 is either 0 or 1 depending on the parity

of T , and in particular is non-negative. On odd-numbered rounds, wt =
[

1
2

1
2

]>
, and on even-numbered rounds,

wt =
[

1
1+exp(−η)

1
1+exp(η)

]>
. Assume that η ≤ 1. The total loss (and hence regret) of the learner is then at least

bT
2 c∑

k=1

1

2
− 1

1 + exp(η)
=

⌊
T

2

⌋(
1

2
− 1

1 + exp(η)

)
(41)

≥
⌊
T

2

⌋(
1

2
− 1

2 + 2η

)
(42)

≥ 1

4

⌊
T

2

⌋
η. (43)



Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

So, for any η ≤ 1, there is a quasi-realizable sequence with regret at least 1
4

⌊
T
2

⌋
η. Since (41) can be seen to be an

increasing function of η, we have a lower bound of 1
4

⌊
T
2

⌋
min(η, 1). The point is that for large η, the learner will pay

heavily because it switches around too much.

Sequence 2. On the other hand, we consider the sequence given by zt,2 = 1 for all t. Then wt,2 = 1
1+exp((t−1)η) , which

for t ≤
⌈

1
η

⌉
is at least 1

1+e . Therefore, the regret of the learner on this sequence is at least 1
1+e min

(
T, 1

η

)
. The point is

that for small η, the learner will pay heavily because it can’t decrease the weight on expert 2 fast enough.

Combining these together, we see that the first sequence inflicts a regret of Ω(
√
T ) whenever η ≥ 1/

√
T , whereas the

second sequence inflicts a regret of Ω(1/
√
T ) whenever η ≤ 1/

√
T . Since one of these two conditions on η must always

be satisfied, one of these sequences will always inflict regret Ω(1/
√
T ), thus proving the proposition.

Proof of Proposition 4.1. As noted in the main text, the proof parallels Proposition 3.3, with the main new tool being the
Golden-Thompson inequality, which says that tr(exp(A+B)) ≤ tr(exp(A) exp(B)) (Golden, 1965; Thompson, 1965).

When ψ(W ) = tr(W log(W )) and W is constrained to have trace 1, we have ψ∗(B) = log(tr(exp(B))) and ∇ψ∗(B) =
exp(B)

tr(exp(B)) , so that ∇ψ∗(Bt − ηMt) matches Wt as given in the proposition. So, again, we are performing an instance of
Algorithm 2 and it suffices to check that the condition of Corollary 3.2 is satisfied for At = (Zt −Mt)

2. To do so, we use
the Golden-Thompson inequality together with the fact that −X −X2 � log(I −X) for − 1

2I � X �
1
2I . We have

ψ∗(Bt − ηZt − η2At)

= log(tr(exp(Bt − ηZt − η2(Zt −Mt)
2)))

≤ log(tr(exp(Bt − ηMt) exp(−η(Zt −Mt)− η2(Zt −Mt)
2)))

≤ log(tr(exp(Bt − ηMt)(I − η(Zt −Mt))))

= log(tr(exp(Bt − ηMt))− η tr(exp(Bt − ηMt)(Zt −Mt)))

≤ log(tr(exp(Bt − ηMt)))− η
tr(exp(Bt − ηMt)(Zt −Mt))

tr(exp(Bt − ηMt))

= ψ∗(Bt − ηMt)− η〈∇ψ∗(Bt − ηMt), Zt −Mt〉.

This verifies the condition of Corollary 3.2, so that we have a regret bound of ψ∗(0)+ψ(U)
η + η

∑T
t=1 tr(UAt). Finally,

noting that ψ∗(0) = log(n), ψ(U) = tr(U log(U)) ≤ 0, and At = (Zt −Mt)
2 completes the proof.

Proof of Lemma 4.2. Write M ′ = M∗ +D. Then we have

(44)δ(M ′)2 +

T∑
t =1

(Zt −M ′)2

(45)= δ(M∗ +D)2 +

T∑
t=1

(Zt −M∗ −D)2

(46)= δ(M∗)2 +

T∑
t=1

(Zt −M∗)2 +

[
δM∗ +

T∑
t=1

(M∗ − Zt)

]
D +D

[
δM∗ +

T∑
t=1

(M∗ − Zt)

]
+ (T + δ)D2

(47)= δ(M∗)2 +

T∑
t=1

(Zt −M∗)2 + (T + δ)D2

(48)� δ(M∗)2 +

T∑
t=1

(Zt −M∗)2,
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which completes the lemma.

Proof of Lemma 4.3. The proof is structurally identical to the vector case (see Hazan (2011) for a proof of the vector case).
We will prove the lemma by induction on T . Note that the lemma is equivalent to showing that

ψ(M1) +

T∑
t=1

ft(Mt+1) ≤K ψ(M) +

T∑
t=1

ft(M) (49)

for all M . In the base case T = 0, we have

ψ(M1) ≤K ψ(M), (50)

which follows from the fact that M1 is a global minimizer of ψ and hence ψ(M1) ≤K ψ(M) for all M . For the inductive
step, suppose that

T−1∑
t=1

ft(Mt+1) ≤K ψ(M) +

T−1∑
t=1

ft(M) (51)

for all M , and invoke this for the particular choice M = MT+1. Then we have

ψ(M1) +

T∑
t=1

ft(Mt+1) = ψ(M1) +

[
T−1∑
t=1

ft(Mt+1)

]
+ fT (MT+1) (52)

≤K ψ(MT+1) +

[
T−1∑
t=1

ft(MT+1)

]
+ fT (MT+1) (53)

= ψ(MT+1) +

T∑
t=1

ft(MT+1) (54)

≤K ψ(M) +

T∑
t=1

ft(M) (55)

for all M , where we use the fact that MT+1 is a global minimizer of ψ(M) +
∑T
t=1 ft(M) for the last inequality. This

completes the induction and hence the proof.

Proof of Corollary 4.4. The key tool is the matrix Young’s inequality: AB + BA � 1
γA

2 + γB2 for all symmetric A, B
and all γ > 0. (This follows immediately upon expanding (A/

√
γ −√γB)2 � 0.) We then note that, by Lemma 4.2, Mt

obeys Lemma 4.3 with ψ(M) = M2, ft(M) = (M − Zt)2, and K the cone of positive semidefinite matrices. Therefore:

(56)
T∑
t =1

(Zt −Mt)
2 − (Zt − Z̄)2 � Z̄2 +

T∑
t=1

(Zt −Mt)
2 − (Zt −Mt+1)2

(57)= Z̄2+

T∑
t=1

[
Zt(Mt+1−Mt) + (Mt+1−Mt)Zt +M2

t −M2
t+1

]

(58)= Z̄2 +M2
1 −M2

T+1 +

T∑
t=1

[Zt(Mt+1 −Mt) + (Mt+1 −Mt)Zt]

(59)= Z̄2 +M2
1 −M2

T+1 +

T∑
t=1

1

t+ 1
[Zt(Zt −Mt) + (Zt −Mt)Zt]

(since Mt+1 = 1
t+1Zt + t

t+1Mt)
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(60)� I +

T∑
t=1

Z2
t

γ(t+ 1)2
+ γ(Zt −Mt)

2

(61)� I +
I

γ
+ γ

T∑
t=1

(Zt −Mt)
2.

(For the second-to-last inequality, note that M1 = 0 and hence M2
1 −M2

T+1 � 0.) Re-arranging yields

T∑
t=1

(Zt −Mt)
2 ≤ 1

1− γ

(
1 + γ

γ
I +

T∑
t=1

(Zt − Z̄)2

)
. (62)

Setting γ to 1
2 gives the desired result. Note that by instead setting γ to ε

2 , we can replace the constants 2 and 6 by 1 + ε
and 6

ε for any ε ≤ 1.

C. Improved Variance Bound
We claimed in Section 3 that we could obtain a regret bound in terms of 2Vi + 6 by using the optimistic prediction based
on mt = 1

t

∑t−1
s=1 zs. The following proposition establishes this. Its proof is essentially the same as that of Corollary 4.5,

and in fact is implied by Corollary 4.5. The only purpose of this section is to keep proofs accessible to readers who prefer
not to read through algebraic manipulations of matrices.

Proposition C.1. Suppose that we choose mt,i = 1
t

∑t−1
s=1 zs,i and that ‖zs‖∞≤ 1. Then for all i and all 0 < ε ≤ 1 we

have

T∑
t=1

(zt,i −mt,i)
2 ≤ 2

T∑
t=1

(zt,i −m∗i )2 + 6. (63)

Proof. Note that mt,i is the minimizer of m2
i +

∑t−1
s=1(zs,i −mi)

2. Therefore, by the FTRL Lemma (Hazan, 2011), we
have

T∑
t=1

(zt,i −mt,i)
2 − (zt,i −m∗i )2 ≤ (m∗i )

2 +

T∑
t=1

(zt,i −mt,i)
2 − (zt,i −mt+1,i)

2 (64)

= (m∗i )
2 +

T∑
t=1

2zt,i(mt+1,i −mt,i) +m2
t,i −m2

t+1,i (65)

= (m∗i )
2 +m2

1,i −m2
T+1,i +

T∑
t=1

2

t+ 1
zt,i(zt,i −mt,i) (66)

≤ 1 +

T∑
t=1

z2
t,i

γ(t+ 1)2
+ γ(zt,i −mt,i)

2 (67)

≤ 1 +
1

γ
+ γ

T∑
t=1

(zt,i −mt,i)
2. (68)

Re-arranging yields
T∑
t=1

(zt,i −mt,i)
2 ≤ 1

1− γ

(
1 + γ

γ
+

T∑
t=1

(zt,i −m∗i )2

)
. (69)

Setting γ to 1
2 then yields the desired result.
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D. Bounds for Exponentiated Gradient in the Unconstrained Case
The main text contained an analysis of adaptive versions of the exponentiated gradient and matrix exponentiated gradient
algorithms. However, this analysis was for the case that the weights were constrained to the simplex (or that tr(W ) = 1 in
the case of matrices). In Section 2 we promised to include an analysis of these algorithms in the unconstrained case, and
we do so here. Note that this “unconstrained case” still has the constraint w ≥ 0 (or W � 0 for matrices), although this is
not a serious limitation since we can split w into its positive and negative components (see Kivinen & Warmuth (1997) for
details).

The updates and proofs are almost identical. The major difference is in the initialization, where to obtain good bounds we
need to initialize β1,i to − log(n) rather than 0 (in the matrix case, we need to initialize B1 to − log(n)I). The complete
algorithms are shown below:

Exponentiated Gradient:

β1,i = − log(n) (70)
wt,i = exp(βt,i − ηmt,i)

βt+1,i = βt,i − ηzt,i − η2(zt,i −mt,i)
2

Matrix Exponentiated Gradient:

B1 = − log(n)I (71)
Wt = exp(Bt − ηMt)

Bt+1 = Bt − ηZt − η2(Zt −Mt)
2

We have the following regret bounds in the vector and matrix cases:

Proposition D.1. For ‖zt‖∞≤ 1, ‖mt‖∞≤ 1, and 0 < η ≤ 1
4 , the unconstrained exponentiated gradient updates (70)

achieve the bound

(72)Regret(u) ≤
1 + (log(n)− 1)‖u‖1 +

∑n
i=1 ui log(ui)

η
+ η

n∑
i=1

ui

T∑
t=1

(zt,i −mt,i)
2.

Proposition D.2. For ‖Zt‖op≤ 1, ‖Mt‖op≤ 1, and 0 < η ≤ 1
4 , the unconstrained matrix exponentiated gradient updates

(71) achieve the bound

(73)Regret(U) ≤ 1 + (log(n)−1) tr(U) + tr(U log(U))

η
+ η

T∑
t=1

tr(U(Zt −Mt)
2).

The proofs are basically identical to the proofs of Propositions 3.3 and 4.1, but we include them for completeness.

Proof of Proposition D.1. We note that, for ψ(w) =
∑n
i=1 wi log(wi)−wi andw constrained to be non-negative, ψ∗(β) =∑n

i=1 exp(βi) and ∇ψ∗(βt − ηmt) is equal to wt as defined in the proposition. It therefore suffices to check that the
condition of Corollary 3.2 is satisfied with at,i = (zt,i −mt,i)

2. We have

(74)ψ∗(βt − ηzt − η2at) =

n∑
i=1

exp(βt,i − ηzt,i − η2(zt,i −mt,i)
2)

(75)=

n∑
i=1

exp(βt,i − ηmt,i) exp(−η(zt,i −mt,i)− η2(zt,i −mt,i)
2)

(76)≤
n∑
i=1

exp(βt,i − ηmt,i)(1− η(zt,i −mt,i))
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(77)=

n∑
i=1

exp(βt,i − ηmt,i)− η
n∑
i=1

exp(βt,i − ηmt,i)(zt,i −mt,i)

(78)= ψ∗(βt − ηmt)− η∇ψ∗(βt − ηmt)
>(zt −mt).

The one inequality we made use of was exp(−x − x2) ≤ 1 − x for |x|< 1
2 . This verifies the condition of Corollary 3.2,

yielding a regret bound of ψ
∗(β1)+ψ(u)−u>β1

η + η
∑n
i=1 u

>at. Finally, we note that ψ∗(β1) =
∑n
i=1 exp(− log(n)) = 1,

ψ(u)− u>β1 =
∑n
i=1 ui log(ui) + (log(n)− 1)ui, and at,i = (zt,i −mt,i)

2, which completes the proof.

Proof of Proposition D.2. When ψ(W ) = tr(W log(W )−W ) and W is constrained to be positive semidefinite, we have
ψ∗(B) = log(tr(exp(B))) and ∇ψ∗(B) = exp(B), so that ∇ψ∗(Bt − ηMt) matches Wt as given in the proposition.
So, again, it suffices to check that the condition of Corollary 3.2 is satisfied for At = (Zt −Mt)

2. To do so, we need to
make use of the Golden-Thompson inequality tr(exp(A + B)) � tr(exp(A) exp(B)) (Golden, 1965; Thompson, 1965),
together with the fact that −X −X2 � log(I −X) for − 1

2I � X �
1
2I . We then have

ψ∗(Bt − ηZt − η2At) = tr(exp(Bt − ηZt − η2(Zt −Mt)
2)) (79)

≤ tr(exp(Bt − ηMt) exp(−η(Zt −Mt)− η2(Zt −Mt)
2)) (80)

≤ tr(exp(Bt − ηMt)(I − η(Zt −Mt))) (81)
= tr(exp(Bt − ηMt))− η tr(exp(Bt − ηMt)(Zt −Mt)) (82)
= ψ∗(Bt − ηMt)− η〈∇ψ∗(Bt − ηMt), Zt −Mt〉. (83)

This verifies the condition of Corollary 3.2, so that we have a regret bound of ψ∗(B1)+ψ(U)−tr(B1U)
η + η

∑T
t=1 tr(UAt).

Finally, noting that ψ∗(B1) = tr( 1
nI) = 1, ψ(U)− tr(B1U) = tr(U log(U)) + (log(n)−1) tr(U), and At = (Zt−Mt)

2

completes the proof.

E. Adaptive Step Size
In this section we show how to obtain an adaptive version of Algorithm 2, which relies on the standard doubling trick. The
adaptive algorithm is given as Algorithm 3. The regret bound of this procedure when applied to learning from experts is
worse than in the non-adaptive case, depending (in the language of Figure 1 and (24)) on maxiDi rather thanDi∗ (in other
words, the maximum path length of any expert rather than the path length of the best expert).

The algorithm basically calls Algorithm 2 repeatedly with different step sizes, halving the step size every time the regret
exceeds a certain bound. For this algorithm we require a bound B on the inner product term u>zt and a bound C on the
regularizer term in the regret bound. Cesa-Bianchi et al. (2007) proposed an adaptive step size scheme in the learning from
experts setting that does not require knowledge of B. It would be interesting to apply the same ideas here, but we have not
tried to do so, although the exposition given below follows Section 3.1 of the same paper.

The regret of Algorithm 3 is bounded in the following theorem:

Theorem E.1. Let ut ∈ arg minu u
>∑t

s=1 zs and let Qt = u>t
∑t
s=1 as. Let Q = max

(
B,maxTt=1Qt

)
. Then the

regret of Algorithm 3 is bounded as

Regret ≤ B
⌈

1 + log

(
Q

B

)⌉
+ 10

√
CQ. (84)

Proof. First note η is monotonically non-increasing across rounds, and decays by a factor of 2 every time it changes. We
can group the rounds based on what value of η was used in that round; in this way, Algorithm 3 is equivalent to running
several sub-algorithms, each of which is an instance of Algorithm 2. The total regret is then bounded above by the sum of
the regrets of these individual algorithms.

Now consider the rounds when η is equal to 2−j
√

C
B . Let tj be the final such round. By construction, we must have

u>t−1

∑t−1
s=1 as ≤ 4j+1B, or else we would have already decreased η by the next factor of 2. Let Regretj denote the regret
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Algorithm 3 Adaptive Step Size Mirror Descent
Given: convex regularizer ψ, corrections at, hints mt, and β
Let B be any bound on maxTt=1 u

>zt
Let C be any upper bound on ψ∗(β1) + ψ(u)− u>β1

Q, η, t← B,
√

C
B , 1

while there are rounds remaining do
βt ← β

while
√

C
Q ≥

η
2 do

Choose wt = ∇ψ∗(βt − ηtmt)
Observe zt and suffer loss w>t zt
Update βt+1 = βt − ηtzt − η2

t at
Let ut ∈ arg minu u

>∑t
s=1 zs

Q← max(Q, u>t
∑t
s=1 as)

t← t+ 1
end while
η ← η

2
end while

of the sub-algorithm on this set of rounds. Note that it is bounded above by B plus the regret on all but the last of these
rounds. Then we have

Regretj ≤ B +
C

η
+ ηu>t−1

t−1∑
s=1

as (85)

= B + 2j
√
CB + 2−j4j+1

√
CB (86)

= B + 5 · 2j
√
CB (87)

≤ B + 5
√
CQtj . (88)

Note that
√
Qtj ≥ 2

√
Qtj−1

by construction. Then we have

Regret ≤
∑
j

Regretj (89)

≤
∑
j

B + 5
√
CQtj (90)

≤ B
⌈

1 + log

(
Q

B

)⌉
+ 10

√
CQ, (91)

as was to be shown.


