Local Search for Bit-Precise Reasoning and Beyond

Aina Niemetz and Mathias Preiner

Shonan Meeting 180, October 2–5, 2023
A new, specialized SMT Solver

- for the **quantified** and **quantifier-free** theories of
 - fixed-size bit-vectors, floating-point arithmetic, arrays, and uninterpreted functions
 - **Focus**: theories primarily used in **hardware verification**

Selected Features:
- **Full incremental** support
- Seamless interaction between **multiple solver instances**
- Models, unsat cores/assumptions
- Comprehensive and easy-to-use **APIs** (C++, C, Python, OCaml)
- **Input Formats**: SMT-LIBv2, BTOR2

Pronounced as “bitvootslah”
- Derived from an Austrian dialect expression for **someone who tinkers with bits**.

- Bitwuzla considered **superior successor** of Boolector
History

Boolector

- An award-winning SMT solver, but . . .
 - Specialized, tight integration of **bit-vectors with arrays**
 - **Monolithic** C code base, **rigid** architecture

- **Cumbersome** to maintain, adding new features **difficult**

Bitwuzla

- Started as an **improved and extended** fork of Boolector in 2018
 - Floating-point arithmetic, local search procedure, unsat cores, . . .
 - **No** official release, limitations of Boolector remained

- In 2022, code base discarded and **rewritten from scratch**

- Written in C++, **inspired** by techniques in Boolector
Maintains a theory solver for each supported theory

- **Quantifiers module** implemented as theory solver
- **Distributes relevant terms** to theory solvers
- **Processes lemmas** generated by theory solvers
- **Model-based** theory combination

- Implements lazy SMT paradigm **lemmas on demand**

- **Bit-vector abstraction** of formula (instead of **propositional**)
 - **Bit-vector** solver at its core
 - BV solver reasons about **Boolean and bit-vector terms**
 - Non-BV theory atoms abstracted as **Boolean constant**
 - BV terms with non-BV operator abstracted as **bit-vector constant**
Bit-Vector Solver

Bit-Blast Solver

- BV terms \rightarrow AIG circuits (+rewriting [?]) \rightarrow CNF
- CaDiCaL (default), Kissat (non-incremental)
- SAT solver used as a black box (no IPASIR-UP)

Propagation-Based Local Search Solver (sat only)

- Ternary propagation-based local search [FMCAD’20]
- extension with bound tightening
- no SAT solver

Three Configuration Modes

- Bit-blasting only
- Local search only
- Combination of both approaches (challenge: how to share information)
Theory of Fixed-Size Bit-Vectors

\[(x \ll 001) \geq_s 000 \land x <_u 100 \land (x \cdot 010) \mod 011 = x + 001\]

sat: \(x = 001\)

- constants, variables: \(010, 2^{[3]}, x^{[3]}\)
- bit-vector operators: \(<_u, >_s, \sim, \&, \gg, \gg_a, \circ, [:], +, :, \div, \ldots\)
- arithmetic operators modulo \(2^n\) (overflow semantics!)
Bit-Blasting

- current state-of-the-art for **quantifier-free**
 bit-vector formulas
- rewriting + simplifications + eager
 reduction to SAT
 \[\text{circuit} \implies \text{CNF}\]
- efficient in practice
- may suffer from an **exponential** blow-up in
 the formula size
- may not scale well with increasing
 bit-width

Example
Bit-Blasting

- current state-of-the-art for **quantifier-free** bit-vector formulas
- rewriting + simplifications + **eager** reduction to SAT

 \[\text{circuit} \Longrightarrow \text{CNF} \]

- efficient in practice
- may suffer from an **exponential** blow-up in the formula size

- may not scale well with increasing bit-width

Example

Bit-Blasting

- current state-of-the-art for quantifier-free bit-vector formulas
- rewriting + simplifications + eager reduction to SAT
 circuit \Rightarrow CNF

- efficient in practice
- may suffer from an exponential blow-up in the formula size

- may not scale well with increasing bit-width

Example $x[32] \times y[32] = z[32]$
Propagation-Based Local Search

- **without** bit-blasting (*orthogonal* approach)
- lifts concept of backtracing from ATPG to the **word-level**

- **not able** to determine **unsatisfiability**
- Probabilistically Approximately Complete (PAC) [Hoos, AAAI'99]
 - guaranteed to find a solution if there is one
Propagation-Based Local Search

- assume satisfiability, start with **initial assignment**
- **propagate** target values towards inputs
 - invertibility conditions
 - inverse value computation
 - weaker notion: consistency condition, consistent value computation
- iteratively improve current state until **solution** is found
Propagation-Based Local Search

Main Weaknesses:

- oblivious to constant bits
 - propagates target values that can never be assumed
 - redundant work

- too many possible candidates for value selection
 - blindly picking a candidate is bad
 - disrespects bounds implied from top-level constraints
Propagation-Based Local Search

Main Weaknesses:

- oblivious to constant bits
 - propagates target values that *can never be assumed*
 - redundant work
- too many possible candidates for value selection
 - blindly picking a candidate is bad
 - disrespects bounds implied from top-level constraints
Non-deterministic algorithm

- propagation path and value selection
 - multiple possible paths and values

Down-propagation of values wrt. constant bits

- constant bits are precomputed upfront
- represented as ternary bit-vectors \(x = (x^{lo}, x^{hi}) \)
 - \(x^{lo} \) ... minimum (unsigned) value of \(x \)
 - \(x^{hi} \) ... maximum (unsigned) value of \(x \)
 - with \((\sim x^{lo} | x^{hi}) \approx \) ones (validity condition)

Example: \(x[4] = \bullet\bullet\bullet 0 = (0000, 1110) \)
\(x[4] = \bullet\bullet 1\bullet = (0010, 1111) \)
Example. $v_4 \cdot (v_4 \& 1010) \approx 0100 \land (v_4 \& 1010) <_u 0011$
Example. $v_4 \cdot (v_4 \& 1010) \approx 0100 \land (v_4 \& 1010) <_u 0011$
Example. $v_4 \cdot (v_4 \& 1010) \approx 0100 \land (v_4 \& 1010) \prec_u 0011$
Example. $v_{[4]} \cdot (v_{[4]} \& 1010) \approx 0100 \land (v_{[4]} \& 1010) <_u 0011$
Example. \(v_{[4]} \cdot (v_{[4]} \& 1010) \approx 0100 \land (v_{[4]} \& 1010) <_u 0011 \)
Example. $v_{[4]} \cdot (v_{[4]} \& 1010) \approx 0100 \land (v_{[4]} \& 1010) <_u 0011$
Example. \(v_4 \cdot (v_4 \& 1010) \approx 0100 \land (v_4 \& 1010) <_u 0011 \)
Bound Tightening

- too many possible candidates for value selection
 - especially for disequality, inequalities, bit-wise operators
 - especially for large(r) bit-widths

- compute bounds
 - for x in $x \diamond s$ ($s \diamond x$)
 - implied by satisfied top-level inequalities $\{<, \geq, <, \geq\}$

- define invertibility conditions wrt. to min/max bounds
 - $IC(x, x < u s \approx t) =$
 - $t \approx 1 \Rightarrow (s \not\approx 0 \land x^{lo} < u s) \land t \approx 0 \Rightarrow (x^{hi} \geq u s)$
 - $t \approx 1 \Rightarrow (\min_u(x) < u s \land x^{lo} < u s) \land t \approx 0 \Rightarrow (x^{hi} \geq u s) \land \max_u(x) \geq u s$
 - affects path selection (essential input condition)

- consistency conditions remain unchanged
 - IC with respect to current assignment
 - CC independent of the current assignment
Example. $y[3] \leq_s z[3] \land z[3] <_s (x[2] + 01) \langle 1 \rangle \land (x[2] + 01) \leq_s 00$
Bound Tightening: Why not always select essential paths?

Example. $y[3] \leq_s z[3] \land z[3] <_s (x[2] + 01) \langle 1 \rangle \land (x[2] + 01) \leq_s 00$
Bound Tightening: Why not always select essential paths?

Example. $y[3] \leq_s z[3] \land z[3] <_s (x[2] + 01) \langle 1 \rangle \land (x[2] + 01) \leq_s 00$
Bound Tightening: Why **not always select essential paths?**

Example. $y[3] \leq_s z[3] \land z[3] <_s (x[2] + 01\langle 1 \rangle) \land (x[2] + 01) \leq_s 00$
- with bounds incomplete with only essential paths selected
- no bounds path sel bad, essential check does not match with relatively
- future:
 - cc modulo const bits in x?
 - ic modulo const bits in s!
Results

- implemented in our **new** LS library, integrated in **Bitwuzla**

- **base** Prop.-based LS [CAV'16]
- **constbits** Ternary prop.-based LS [FMCAD'20]
 - + 188 (median) instances vs. **base**
- **bounds** **constbits** with bound tightening
 - for operators $<_s$, $<_u$, &
 - + 626 (median) instances vs. **constbits**

- 14,639 QF_BV sat instances in SMT-LIB
- 20 runs with different seeds for RNG
- 60s time limit, 8GB memory limit
Results

Lingeling SAT back end

CryptoMiniSat SAT back end

Kissat SAT back end

CaDiCaL SAT back end

- **sequential portfolio** (first run LS, then fall back to bit-blasting)
- **all** 41,713 benchmarks in SMT-LIB QF.BV
- **1200s time limit, 8GB memory limit**
- **winner** of division QF.BV in the SMT-COMP 2020
Conclusion

▶ great complementary technique to bit-blasting
 ▷ constant bits information helps avoid redundant work
 ▷ bound tightening extremely promising
 ◦ work in progress
 ◦ current (limited) support yields significant improvement

▶ new local search library (under development)
 ▷ allows solver-independent integration

▶ Future work: Hybrid approach
 ▷ share information between bit-blasting and local search
Beyond Local Search

- **symbolic invertibility** and **consistency conditions**
 - synthesized manually and with SyGuS
 - w/o const bits: 50% with SyGuS (only IC)
 - with const bits: 5% with SyGuS (IC + CC)
 - for a representative set of bit-vector operators
 - verified up to size 65
 - **Future work**: proofs of correctness

- **invertibility conditions** for **quantifier instantiation** [CAV’18]
 - default approach for BV in CVC4/cvc5
 - SMT-COMP winner 2018, 2020, 2021

- **invertibility conditions** for **FP** [CAV’19]
 - **Future Work**: propagation-based LS for FP
A. Niemetz and M. Preiner. *Ternary Propagation-Based Local Search for more Bit-Precise Reasoning*.

Given $x \diamond s \approx t$ with $x = \langle x^{lo}, x^{hi} \rangle$ ternary, and s, t binary bit-vectors.

Invertibility Condition (IC)

$$\forall x, s, t. (IC(x, x \diamond s \approx t) \iff \exists y. (y \diamond s \approx t \land mcb(x, y)))$$

$$IC(x, x & s \approx t) = t \land s \approx t$$

$$\land((s \& x^{hi}) \land \sim(x^{lo} \oplus x^{hi})) \approx (t \land \sim(x^{lo} \oplus x^{hi}))$$

$mcb(x, y) \ldots$ **true** if constant bits in x match corresponding bits in y (x ternary, y binary)
Given $x \diamond s \approx t$ with $x = \langle x^{lo}, x^{hi} \rangle$ ternary, and s, t binary bit-vectors.

Invertibility Condition (IC)

$$\forall x, s, t. (IC(x, x \diamond s \approx t) \iff \exists y. (y \diamond s \approx t \land mcb(x, y)))$$

$$IC(x, x \& s \approx t) = t \& s \approx t$$

$$\land ((s \& x^{hi}) \& \sim(x^{lo} \oplus x^{hi})) \approx (t \& \sim(x^{lo} \oplus x^{hi}))$$

$mcb(x, y) \ldots \text{true}$ if constant bits in x match corresponding bits in y (x ternary, y binary)
Given $x \odot s \approx t$ with $x = \langle x^{lo}, x^{hi} \rangle$ ternary, and s, t binary bit-vectors.

Invertibility Condition (*IC*)

$$\forall x, s, t. (IC(x, x \odot s \approx t) \iff \exists y. (y \odot s \approx t \land mcb(x, y)))$$

$$IC(x, x & s \approx t) = t & s \approx t$$

$$\land ((s & x^{hi}) \land \neg(x^{lo} \oplus x^{hi})) \approx (t \land \neg(x^{lo} \oplus x^{hi}))$$

Consistency Condition (*CC*)

$$\forall x, t. (CC(x, x \odot s \approx t) \iff \exists y, s. (y \odot s \approx t \land mcb(x, y)))$$

$$CC(x, x & s \approx t) = t & x^{hi} \approx t$$

$mcb(x, y)$. . . true if constant bits in x match corresponding bits in y (x ternary, y binary)
Propagation Value Selection

Given $x \diamond s \approx t$ with $x = \langle x^{lo}, x^{hi} \rangle$ ternary, and s, t binary bit-vectors.

Invertibility Condition (IC)
\[
\forall x, s, t. \ (IC(x, x \diamond s \approx t) \iff \exists y. \ (y \diamond s \approx t \land mcb(x, y)))
\]
\[
IC(x, x & s \approx t) = t \land s \approx t
\]
\[
\land ((s \land x^{hi}) \land \lnot(x^{lo} \lor x^{hi})) \approx (t \land \lnot(x^{lo} \lor x^{hi}))
\]

Consistency Condition (CC)
\[
\forall x, t. \ (CC(x, x \diamond s \approx t) \iff \exists y, s. \ (y \diamond s \approx t \land mcb(x, y)))
\]
\[
CC(x, x & s \approx t) = t \land x^{hi} \approx t
\]

$mcb(x, y)$. . . true if constant bits in x match corresponding bits in y (x ternary, y binary)
Value Selection: Why not always select inverse values?

Example. \(v_2 + (v_3 + 10) \approx 00 \)
Value Selection: Why not always select inverse values?

\[0 \sim 1\]
\[10 \sim 00\]
\[10 \sim 00\]
\[2\sim 0\]

Propagation Value Selection

- **inverse and consistent value not always possible**
- **symbolic invertibility/consistency conditions**
 - **IC**: $t \& s \approx t \land ((s \& x^{hi}) \& \neg (x^{lo} \oplus x^{hi})) \approx (t \& \neg (x^{lo} \oplus x^{hi}))$
 - $10 \& 10 \approx 10 \land ((10 \& 01) \& \neg (00 \oplus 01)) \approx (10 \& \neg (00 \oplus 01)) = \bot$
 - **CC**: $t \& x^{hi} \approx t$
 - $10 \& 01 \approx 10 = \bot$

- **break and restart** propagation if consistency condition **false**
Propagation Path Selection

Bit-Level

\[0 \sim 1 \]

\[\wedge \]

0 \quad 1

controlling input

Word-Level

\[00 \sim 10 \]

\[\& \]

\[\sim 0 \quad \sim 1 \]

\[00 \quad 10 \]

essential input

\[s_0 \text{ is essential if } IC(s_1, s_0 \diamond s_1 \approx t) = \perp \]

\[s_1 \text{ is essential if } IC(s_0, s_0 \diamond s_1 \approx t) = \perp \]

\[\text{always select essential input (if any)} \]