
IPASIR-UP: User Propagators for CDCL

A CaDiCaL Integration into CDCL(T )

Katalin Fazekas1, Aina Niemetz2, Mathias Preiner2,

Markus Kirchweger1, Stefan Szeider1, Armin Biere3

Centaur Annual Meeting, August 17, 2023

1 TU Wien 2 Stanford University 3 University of Freiburg



IPASIR-UP in a Nutshell

IPASIR-UP = IPASIR + User Propagators

∠ a SAT solver interface for

∠ interactive incremental SAT solving

Problem

Propositional

Formula

Incremental

SAT Solver

Solution /

Refutation

Answer

Partially

Encode
Decode

Inspect &

Influence

∠ Our focus here: Integration as CDCL(T ) SAT solver

1



The CDCL(T ) Lazy SMT Framework

∠ propositional abstraction of the input formula

∠ iteratively refined until abstraction is T -consistent or unsat

∠ theory layer guides the search of the SAT solver

∠ online, tight integration of SAT solver

∠ theory layer interacts with SAT solver during the search

∠ backward communication channel to notify theory layer about

variable assignments, decisions, backtracks

∠ theory layer derives conflicts, propagates theory literals, suggests

decisions based on theory-guided heuristics

2



CDCL(T ) SAT solver: Current State-of-the-Art

∠ no standardized SAT solver interface

for interactive incremental SAT solving

∠ solver-specific workarounds and modifications to the SAT solver

∠ error prone, high potential for unintentional performance hits

∠ difficult to replace

∠ missed opportunities to take advantage of improvements in SAT

3



IPASIR-UP: A New Interface for Interactive CDCL

∠ interface to support standardized interactions

with the SAT solver during solving

∠ extends the standardized IPASIR interface

− Needs to be implemented in SAT solvers (only once)

+ Easy to use

+ Solver independent application development

+ No more black-box SAT solving → new potentials

+ Standardized and clean interactions

4



IPASIR Model of Incremental SAT Solvers

∠ Re-entrant Incremental Satisfiability API (IPASIR)

∠ Supports interactions between solve calls

UNKNOWN SOLVING

SAT

UNSAT

solve

interrupted

add
assume

add
assume

solve

solve

val

failed

add
assume

init

5



IPASIR Model of Incremental SAT Solvers

∠ Re-entrant Incremental Satisfiability API (IPASIR)

∠ Supports interactions between solve calls

UNKNOWN SOLVING

SAT

UNSAT

solve

interrupted

add
assume

add
assume

solve

solve

val

failed

add
assume

init

5



IPASIR Model of Incremental SAT Solvers

∠ Supports interactions between solve calls

∠ Inspect search

• notify (all trail changes)

◦ assignment, decision

◦ backtrack

∠ Influence search

1. overrule found solutions

2. decide decisions and phases

3. add propagations (without

adding clauses)

4. add new clauses anytime

5. explain propagations

Solving

BCP Learning

Decide

UNSAT

SAT

Conflict

Analysis

backtracking

6



IPASIR-UP: IPASIR with User Propagators

∠ Supports interactions during solve calls

∠ Inspect search

• notify (all trail changes)

◦ assignment, decision

◦ backtrack

∠ Influence search

1. overrule found solutions

2. decide decisions and phases

3. add propagations (without

adding clauses)

4. add new clauses anytime

5. explain propagations

Solving

BCP Learning

Decide

UNSAT

SAT

Conflict

Analysis

Solution

Analysis

backtracking

6



IPASIR-UP: IPASIR with User Propagators

∠ Supports interactions during solve calls

∠ Inspect search

• notify (all trail changes)

◦ assignment, decision

◦ backtrack

∠ Influence search

1. overrule found solutions

2. decide decisions and phases

3. add propagations (without

adding clauses)

4. add new clauses anytime

5. explain propagations

Solving

Learning UNSAT

SAT

Conflict

Analysis

BCP

Decide

Solution

Analysis

backtracking

6



IPASIR-UP: IPASIR with User Propagators

∠ Supports interactions during solve calls

∠ Inspect search

• notify (all trail changes)

◦ assignment, decision

◦ backtrack

∠ Influence search

1. overrule found solutions

2. decide decisions and phases

3. add propagations (without

adding clauses)

4. add new clauses anytime

5. explain propagations
Solving

Learning UNSAT

SAT

Conflict

Analysis

BCP

Decide

Solution

Analysis

backtracking

cb check found model

cb decide

cb propagate
cb add external

cb add reason

6



IPASIR-UP in cvc5

∠ state-of-the-art SMT solver

∠ based on CDCL(T ) framework

∠ integrates highly customized version of MiniSat

◦ supports production of resolution proofs

◦ push/pop of assertion levels

◦ custom theory-guided decision heuristics

∠ difficult to replace

With CaDiCaL via IPASIR-UP

∠ ∼700 C++ LOC for integration via IPASIR-UP

∠ easily replaced with any SAT solver implementing IPASIR-UP

7



IPASIR-UP in cvc5

∠ Full utilization of interface

◦ notify assignment

∠ construct partial assignment for observed theory literals

◦ notify new decision level and notify backtrack

∠ manage incremental solver state

◦ cb propagate

∠ theory propagations

◦ cb add reason clause lit

∠ theory explanations

◦ cb decide

∠ implementation of custom decision heuristics

◦ cb add external clause lit

∠ add lemmas and conflict clauses

◦ cb check found model

∠ check if current assignment is T -satisfiable

8



Evaluation

∠ non-incremental benchmarks of SMT-LIB 2022

∠ 300s time limit, 8GB memory limit

∠ compare against cvc5 1.0.5 with customized MiniSat

∠ promising performance without much tuning or optimizations

∠ +1080 solved instances

∠ ∼ 2× faster in several logics

∠ 13 of 19 SMT-COMP divisions improved

∠ solid baseline for future tuning with IPASIR-UP interface

9



Evaluation: SMT-COMP Divisions

cvc5 cvc5-ipasirup
Division solved time [s] solved time [s]

Arith (6,865) 6,303 173,628 6,299 176,278

BitVec (6,045) 5,552 153,899 5,529 161,482

Equality (12,159) 5,320 2,062,804 5,322 2,061,758

Equality+LinearArith (53,453) 45,902 2,288,230 45,906 2,288,352

Equality+MachineArith (6,071) 983 1,533,646 987 1,532,782

Equality+NonLinearArith (21,104) 13,314 2,419,535 13,053 2,486,588

FPArith (3,965) 3,145 268,628 3,155 266,245

QF Bitvec (42,472) 40,321 984,880 40,320 985,946

QF Datatypes (8,403) 8,077 110,704 8,168 82,878

QF Equality (8,054) 8,044 9,394 8,047 7,169

QF Equality+Bitvec (16,585) 15,817 307,558 16,015 234,369

QF Equality+LinearArith (3,442) 3,388 23,041 3,381 23,465

QF Equality+NonLinearArith (709) 627 27,428 629 27,598

QF FPArith (76,238) 76,054 94,487 76,081 76,700

QF LinearIntArith (16,387) 11,670 1,575,635 12,004 1,512,696

QF LinearRealArith (2,008) 1,721 130,408 1,766 113,919

QF NonLinearIntArith (25,361) 13,037 4,094,712 13,682 3,840,933

QF NonLinearRealArith (12,134) 11,166 333,933 11,238 316,728

QF Strings (69,908) 69,357 203,677 69,296 230,918

Total (391,363) 339,798 16,796,234 340,878 16,426,813

10



Conclusion

∠ Generic interface to inspect and influence CDCL search

◦ Simple & Flexible ∠ relatively easy to implement

◦ Sufficient to simplify several use cases

∠ Implemented in a complex, modern SAT solver

◦ Allows inprocessing of non-changing parts

∠ Evaluated in representative use cases (SMS, SMT)

◦ Captures the necessary interactions of a very wide range of use cases

◦ promising results

Future Work

∠ SAT: more inprocessing, external proofs of external clauses

∠ cvc5: DRAT proof integration

11



Appendix: Example C++ Implementation

12



Appendix: Additional Functions

13



Appendix: Evaluation: Logics

14


