
DR
AF
T

Murxla: A Modular and Highly Extensible API

Fuzzer for SMT Solvers

Aina Niemetz, Mathias Preiner and Clark Barrett

CAV, August 8, 2022



Satisfiability Modulo Theories (SMT) Solvers

▶ Tools to solve the SMT Problem

▷ complex and large pieces of software

◦ Bitwuzla: ∼ 90k LOC

◦ cvc5: ∼ 300k LOC

◦ z3: ∼ 500k LOC

▷ back-ends in higher-level tool chains

▶ strong requirements:

▷ performance

▷ robustness

▷ correctness

▶ traditional testing:

▷ unit testing

▷ maintaining a regression test suite

▶ insufficient for achieving high levels of robustness

▶ random stress testing (fuzzing)

1



Fuzz Testing SMT Solvers

SMT solvers provide two interfaces:

▶ textual interface (SMT-LIB) full knowledge of

input structure▶ input fuzzing

▷ generate valid SMT-LIB input

+ significantly less effort

– no solver-specific features

▶ application programming interface (API)

▶ API fuzzing

▷ generate valid sequences of solver API calls

▷ link against solver library

+ solver-specific features

+ subsumes input fuzzing (except parser)

– more involved

2



Murxla

... a model-based API Fuzzer for SMT solvers

▶ lifts grammar-based input fuzzing to API level

▶ Semantic (data) model

▷ defines constructs (theories, sorts, operators, commands)

▷ based on SMT-LIBv2

▶ API model
▷ defines the usage of the solver API itself

▶ Options model
▷ defines solver configuration options and valid combinations

What do we consider a bug?

▶ soundness issues

▷ solver answers unsat when input is sat

▷ solver answers sat when input is unsat

▶ crashes (assertion failures, segmentation faults, ...)

3



Murxla

... a model-based API Fuzzer for SMT solvers

▶ Model-based API fuzzer

▷ generates valid sequences of solver API calls

▷ general enough to support any SMT solver

▷ highly extensible to support all solver-specific features

▶ Tracer

▷ records API call sequences as an API trace

▶ Untracer

▷ replays API traces to reproduce original behavior

▶ Delta Debugger

▷ minimizes API traces while preserving the original behavior

* Provided they allow being integrated into a C++ tool.

4



Murxla

... a model-based API Fuzzer for SMT solvers

▶ translate API traces to SMT-LIBv2

▷ if trace doesn’t contain solver-specific extensions

▷ especially useful for minimized traces

▷ can then be further reduced with ddSMT [4]

▶ generate SMT-LIBv2 input

▷ can be used as SMT-LIB input fuzzer with any solver binary

▶ cross-check two solver instances

▷ two integrated solvers under test

▷ one integrated solvers vs. a solver via the SMT-LIBv2 interface

5



Murxla Architecture

API Fuzzer

Untracer

Trace

Minimizer

Murxla

Actions Tracer

Solver

Manager

G
en
er
ic

S
ol
ve
r
A
P
I

Boolector

w
ra
p
.

Bitwuzla

w
ra
p
.

cvc5

w
ra
p
.

Yices2

w
ra
p
.

...

Solver-specific

Extensions

Core

6



Evaluation

Murxla vs. BtorMBT (Boolector)

Murxla BtorMBT [1]

L [%] F [%] I [#] L [%] F [%] I [#]

81.1 87.5 18 72.3 80.6 0

Murxla vs. Input Fuzzers (cvc5, QF SLIA)

Murxla Storm [2] Murxla-cc TypeFuzz [3]

L [%] F [%] I [#] L [%] F [%] I [#] L [%] F [%] I [#] L [%] F [%] I [#]

37.8 52.5 7 20.2 34.3 0 21.5 36.3 1 17.4 30.8 0

I . . . Number of issues Murxla-cc . . . cross-checking configuration (Z3 vs cvc5)

F . . . Function coverage

L . . . Line coverag

1 hour, with 1 second time limit per round

7



Conclusion

▶ open source

▷ https://github.com/murxla/murxla

▷ implemented in C++

▷ GPL-v3.0 license

▶ comprehensive documentation available at

▷ https://murxla.github.io

Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

8

https://github.com/murxla/murxla
https://murxla.github.io
https://doi.org/10.5281/zenodo.6494381


References

A. Niemetz, M. Preiner and A. Biere. Model-Based API Testing for

SMT Solvers. In Proc. of SMT’17, pages 3–14, 2017.

http://ceur-ws.org/Vol-1889/paper1.pdf

M. N. Mansur, M. Christakis, V. Wüstholz and F. Zhang. Detecting

critical bugs in SMT solvers using blackbox mutational fuzzing. In

Proc. of ESEC/FSE’20, pages 701–712, ACM, 2020.

https://doi.org/10.1145/3368089.3409763

J. Park, D. Winterer, C. Zhang and Z. Su. Generative type-aware

mutation for testing SMT solvers. In Proc. of OOPSLA’21, pages

1–19, ACM, 2021. https://doi.org/10.1145/3485529

G. Kremer, A. Niemetz and M. Preiner. ddSMT 2.0: Better Delta

Debugging for the SMT-LIBv2 Language and Friends. In Proc. of

CAV’21, pages 231–242, Springer, 2021.

http://dx.doi.org/10.1007/978-3-030-81688-9_11

9

http://ceur-ws.org/Vol-1889/paper1.pdf
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3485529
http://dx.doi.org/10.1007/978-3-030-81688-9_11

