Reasoning with Language Models and Knowledge Graphs

Michihiro Yasunaga
Stanford University

Joint work with H. Ren, A. Bosselut, X. Zhang, C.D. Manning, P. Liang, J. Leskovec
Reasoning with Knowledge

Q: If it is not used for hair, a round brush is an example of what?
A. hair brush B. bathroom C. art supplies* D. shower

Q: How many of Warsaw’s inhabitants spoke Polish in 1933?

Q: Who are the current presidents of European countries that never held a world cup?

Q: Predict which drugs interact with proteins that are predicted to associate with a given disease?
Reasoning with Knowledge

Question: where is the bowling hall of fame located?

Short Answer: Arlington, Texas

Long Answer: The World Bowling Writers (WBW) International Bowling Hall of Fame was established in 1993 and is located in the International Bowling Museum and Hall of Fame, on the International Bowling Campus in Arlington, Texas.

Passage Segment

...The European Parliament and the Council of the European Union have powers of amendment and veto during the legislative process...

Question

Which governing bodies have veto power?
Where is Knowledge?

Knowledge can be stored in:

Text & Pretrained Language Model (LM)

Knowledge Graph (KG)

WIKIPEDIA

[Devlin+2019; Liu+2019; Brown+2020; ...]

[Bollacker+2008; Speer+2016]
(1) Knowledge Graphs

[Diagram showing relationships between hair, hair brush, round brush, art supply, and painting, with relationships labeled AtLocation, RelatedTo, and UsedFor]

[References: Bollacker+2008; Speer+2016]
Knowledge Graphs (KGs)

Knowledge Graphs are heterogenous graphs
 • Multiple types of entities and relations exist

Facts are represented as triples \((h, r, t)\)
 • (‘Paris’, ‘is_a’, ‘City’)
 • (‘Paris’, ‘population’, ‘2.1m’)
 • ...
Structured Query

Approach:

- Translate the question into a structured query (e.g. SQL)
- Execute the query on the knowledge graph
 - Match grounded entities
 - “Traverse” the knowledge graph
Strengths of KGS

- Explicitly stores knowledge
 - Provides interpretability and provenance
- Easy to update knowledge
- Specifies structure and rules
 - Easy to model multi-hop knowledge and logical reasoning
- (some are) Curated by humans
 - Covers knowledge not commonly stated in text, e.g. commonsense KG
 - Annotates true and accepted facts, e.g. scientific KG
Challenges with KGs

- **Incomplete**
 - Missing entities and relations
 - Not all facts can be expressed as (h, r, t)

- **Brittle**
 - Hard to encode real-world complexity and context
 - Not all questions can be expressed as formal queries over KGs

- **Need entity linking / retrieval**
(2) Language Models

[Devlin+2019; Liu+2019; Brown+2020;]
Language Models (LMs)

Trained over collections of text
- Wikipedia, books, news, PubMed, GitHub, ...

Trained with self-supervised tasks
- (Causal) language model: predict the next word
- Masked language model: predict masked words

Store knowledge in the parameters of the neural network
(1) Strengths of LMs

- Broad coverage of knowledge
 - Self-supervised over massive amounts of text

- Can **encode** and **decode** anything that can be expressed as words
 - Can take in any question, and decode some textual answer or use the hidden representation to do classification

- Captures context
Challenges with LMs

- **Hard to interpret or trust**
 - Unclear why LM produces this answer \leftrightarrow KG has provenance
 - LM may produce a realistic but incorrect answer \leftrightarrow KG either returns the correct answer or returns no answer

- **Hard to modify**
 - Hard to update knowledge in LM \leftrightarrow KG is directly editable

- **Unclear if it can truly reason**
 - e.g. LM fails to handle negation correctly [Kassner+2020]
Goal: Combine strengths of both for reasoning

Broad Coverage
Text & Pretrained Language Model (LM)

Structured & Interpretable
Knowledge Graph (KG)

WIKIPEDIA

Complete Wikipedia and 11,038 books

GPT-3

[Devlin+2019; Liu+2019; Brown+2020; ...]

ConceptNet

Freebase

[Bollacker+2008; Speer+2016]
Outline

How to combine LM and KG for reasoning?
- QAGNN: Reasoning with Language Models and Knowledge Graphs for Question Answering [NAACL’21]

How to perform more expressive reasoning?
- GreaseLM: Graph Reasoning Enhanced Language Model for Question Answering [ICLR’22]
Goal: Combine language and KG

Broad Coverage

Structured & Interpretable

Text & Pretrained Language Model (LM)

Knowledge Graph (KG)

WIKIPEDIA

GPT-3

[Devlin+2019; Liu+2019; Brown+2020; …]

[Bollacker+2008; Speer+2016]
Why Is It Hard?

If it is **not** used for **hair**, a **round brush** is an example of what?
A. **hair brush** B. **bathroom** C. **art supplies*** D. shower

QA Context + LM

Knowledge Graph

- How to identify relevant KG subset?
- How to **jointly reason** over the text and KG?
Our Idea: QA-GNN

(1) Language-conditioned KG node relevance scoring

(2) Joint Reasoning:
- Connect text and KG to form a joint graph (working graph)
- Mutually update their representations via Graph Neural Net (GNN)
Existing KG Retrieval Method

QA Context
A revolving door is convenient for two direction travel, but also serves as a security measure at what?
A. bank* B. library C. department store
D. mall E. new york

Retrieve k-hop neighbors/paths in KG

Identify topic entities in the text: travel, door, security, bank

Some entities are irrelevant to the given QA context
- Off-topic - e.g. holiday
- Polysemy - e.g. river_bank
- Generic - e.g. human, place
Ours: Score KG nodes by LM

QA Context

A **revolving door** is convenient for two direction travel, but also serves as a **security measure** at what?

A. **bank** B. **library** C. **department store**
D. **mall** E. **new york**

Retrieved KG

Some entities are irrelevant to the given QA context!

KG node scored

Entity relevance estimated by LM. **Darker** color indicates higher score.
How to Use the KG Node Scores?

- **Option 1.** Prune KG nodes
 - Reduces noise in KG. Improves model efficiency (time/space)

- **Option 2.** Incorporate as auxiliary feature of KG node
 - General way to weight information on KG
Our Idea: QA-GNN

(1) Language-conditioned KG node relevance scoring

(2) Joint Reasoning:
- Connect text and KG to form a joint graph (working graph)
- Mutually update their representations via Graph Neural Net (GNN)
If it is **not** used for **hair**, a **round brush** is an example of what?

A. **hair brush**
B. **bathroom**
C. **art supplies**
D. **shower**

QA Context + LM

Knowledge Graph
Build Joint Graph (Working Graph)

If it is not used for hair, a round brush is an example of what?
A. hair brush B. bathroom C. art supplies* D. shower

QA Context + LM

Joint graph that provides a fused reasoning space for QA context and KG

Knowledge Graph
QA-GNN Message Passing

Message Passing

\[
h^{(l+1)}_t = f_n \left(\sum_{s \in N_t \cup \{t\}} \alpha_{st} m_{st} \right) + h^{(l)}_t
\]

- **Attention** \((s \rightarrow t)\)
- **Message** \((s \rightarrow t)\)

Node type & relation-aware message

\[
m_{st} = f_m(h^{(l)}_s, u_s, r_{st})
\]

Node type, relation, & score-aware attention

\[
\alpha_{st} = \frac{\exp(\gamma_{st})}{\sum_{t' \in N_s \cup \{s\}} \exp(\gamma_{st'})}, \quad \gamma_{st} = \frac{q_s^T k_t}{\sqrt{D}}
\]

Node types
- QA Context
- Question entity
- Answer entity
- Other entity
Our Idea: QA-GNN

(1) Language-conditioned KG node relevance scoring

(2) Joint Reasoning:
- Connect text and KG to form a joint graph (working graph)
- Mutually update their representations via Graph Neural Net (GNN)
Experiments

QA datasets

- **CommonsenseQA** (reasoning with commonsense knowledge)
 - Train / Dev / Test: 8,500 / 1,221 / 1,241
- **OpenBookQA** (reasoning with elementary science knowledge)
 - Train / Dev / Test: 4,957 / 500 / 500

CommonsenseQA [Talmor+2018]
What do people typically do while playing guitar?

(A) cry
(B) hear sounds
(C) singing
(D) arthritis
(E) making music

OpenBookQA [Mihaylov+2018]
Which of these would let the most heat travel through?

(A) a new pair of jeans
(B) a steel spoon in a cafeteria
(C) a cotton candy at a store
(D) a calvi klein cotton hat
Experiments

KG

- **ConceptNet (English)**
 - ~800,000 nodes
 - 17 relation types
Experiments

Baselines

- Fine-tuned LM
 - RoBERTa [Liu+2019]
- LM+KG
 - KagNet [Lin+2019]
 - MHGRN [Feng+2020]

Innovations of QA-GNN:
1. Use KG node score (relevance of a node given the question)
2. Mutually update the LM and KG representations via a Graph Neural Network
Performance

Improved performance on two QA tasks

CommonsenseQA

<table>
<thead>
<tr>
<th>Model</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoBERTa (Liu+19)</td>
<td>68.7%</td>
</tr>
<tr>
<td>KagNet (Lin+19)</td>
<td>69.0%</td>
</tr>
<tr>
<td>RelNet (Santoro+17)</td>
<td>69.1%</td>
</tr>
<tr>
<td>MHGRN (Feng+20)</td>
<td>71.1%</td>
</tr>
<tr>
<td>QA-GNN (Ours)</td>
<td>73.4%</td>
</tr>
</tbody>
</table>

OpenBookQA

<table>
<thead>
<tr>
<th>Model</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoBERTa (Clark+19)</td>
<td>78.4%</td>
</tr>
<tr>
<td>RelNet (Santoro+17)</td>
<td>75.4%</td>
</tr>
<tr>
<td>MHGRN (Feng+20)</td>
<td>80.6%</td>
</tr>
<tr>
<td>QA-GNN (Ours)</td>
<td>82.7%</td>
</tr>
</tbody>
</table>
Ablation study

Performance drops to the score of previous LM+KG models

<table>
<thead>
<tr>
<th>Graph Connection</th>
<th>Dev Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No edge between Z and KG nodes</td>
<td>74.81</td>
</tr>
<tr>
<td>Connect Z to all KG nodes</td>
<td>76.38</td>
</tr>
<tr>
<td>Connect Z to QA entity nodes (final)</td>
<td>76.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevance scoring</th>
<th>Dev Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing</td>
<td>75.56</td>
</tr>
<tr>
<td>w/ contextual embedding</td>
<td>76.31</td>
</tr>
<tr>
<td>w/ relevance score (final)</td>
<td>76.54</td>
</tr>
<tr>
<td>w/ both</td>
<td>76.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GNN Attention & Message (§3.3)</th>
<th>Dev Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node type, relation, score-aware (final)</td>
<td>76.54</td>
</tr>
<tr>
<td>- type-aware</td>
<td>75.41</td>
</tr>
<tr>
<td>- relation-aware</td>
<td>75.61</td>
</tr>
<tr>
<td>- score-aware</td>
<td>75.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GNN Layers (§3.3)</th>
<th>Dev Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = 3$</td>
<td>75.53</td>
</tr>
<tr>
<td>$L = 4$</td>
<td>76.34</td>
</tr>
<tr>
<td>$L = 5$ (final)</td>
<td>76.54</td>
</tr>
<tr>
<td>$L = 6$</td>
<td>76.21</td>
</tr>
<tr>
<td>$L = 7$</td>
<td>75.96</td>
</tr>
</tbody>
</table>
Analysis

- Node scoring helps when retrieved KG is big

- Joint graph helps when question has negation

![Graph showing performance comparisons](attachment:image.png)
Benefit 1: Interpretability

Attention visualization direction: BFS from Q

Where would you find a **basement** that can be accessed with an **elevator**?
A. closet
B. church
C. office building*

* office building

...
Benefit 1: Interpretability

Attention visualization direction: \(Q \rightarrow O \) and \(A \rightarrow O \)

Crabs live in what sort of environment?
A. saltwater* B. galapagos C. fish market
Benefit 2: Structured Reasoning

Motivation: Existing LMs struggle with negation [Kassner+2020]
Benefit 2: Structured Reasoning

Original Question

If it is not used for hair, a round brush is an example of what?
A. hair brush B. art supplies

A. hair brush (#1) B. art supplies (#2)
RoBERTa Prediction

A. hair brush (#2) B. art supplies (#1)
QA-GNN Prediction
Benefit 2: Structured Reasoning

Original Question

If it is **not** used for **hair**, a **round brush** is an example of what?

A. hair brush B. art supplies

GNN 1st Layer

- round brush
- hair brush
- art supply
- painting

GNN Final Layer

- round brush
- hair brush
- art supply
- painting

QA-GNN Prediction

A. hair brush (not used)
B. art supplies (used)

RoBERTa Prediction

A. hair brush (not used)
B. art supplies (used)

After several layers of GNN, attention weight from **text** over **hair** decreases, but attention weight over **round brush** and **painting** increases, adjusting for the negation in text.
Benefit 2: Structured Reasoning

Original Question

If it is not used for hair, a round brush is an example of what?
A. hair brush B. art supplies

Negation Flipped

If it is used for hair, a round brush is an example of what?
A. hair brush B. art supplies

GNN 1st Layer
GNN Final Layer
QA-GNN Prediction

A. hair brush (#2)
B. art supplies (#1)

A. hair brush (#1)
B. art supplies (#2)
RoBERTa Prediction

After several layers of GNN, attention weight from text over hair decreases, but attention weight over round brush and painting increases, adjusting for the negation in text.

Attention weight from text over hair now increases in the final layer of GNN.
Benefit 2: Structured Reasoning

Original Question
If it is **not** used for **hair**, a **round brush** is an example of what?
A. hair brush B. art supplies*

Entity Changed (hair → art)
If it is **not** used for **art**, a **round brush** is an example of what?
A. hair brush B. art supplies

GNN 1st Layer GNN Final Layer QA-GNN Prediction

Attention weight from **text** over **round brush** and from **round brush** to **hair brush** is high.
Benefit 2: Structured Reasoning

Original Question
If it is not used for hair, a round brush is an example of what?
A. hair brush B. art supplies*

Entity Changed (hair → art)
If it is not used for art, a round brush is an example of what?
A. hair brush B. art supplies

GNN 1st Layer
- round brush
- hair brush
- art supply
- painting

GNN Final Layer
- round brush
- hair brush
- art supply
- painting

QA-GNN Prediction
- A. hair brush (#1)
- B. art supplies (#2)

RoBERTa Prediction
- A. hair brush (#1)
- B. art supplies (#2)

KG provides a scaffold for structured reasoning!
Benefit 2: Structured Reasoning

<table>
<thead>
<tr>
<th>Example (Original taken from CommonsenseQA Dev)</th>
<th>RoBERTa Prediction</th>
<th>Our Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Original] If it is not used for hair, a round brush is an example of what? A. hair brush B. art supply</td>
<td>A. hair brush (✗)</td>
<td>B. art supply (✓)</td>
</tr>
<tr>
<td>[Negation flip] If it is used for hair, a round brush is an example of what?</td>
<td>A. hair brush (✓ just no change?)</td>
<td>A. hair brush (✓)</td>
</tr>
<tr>
<td>[Entity change] If it is not used for art a round brush is an example of what?</td>
<td>A. hair brush (✓ just no change?)</td>
<td>A. hair brush (✓)</td>
</tr>
<tr>
<td>[Original] If you have to read a book that is very dry you may become what? A. interested B. bored</td>
<td>B. bored (✓)</td>
<td>B. bored (✓)</td>
</tr>
<tr>
<td>[Negation ver 1] If you have to read a book that is very dry you may not become what?</td>
<td>B. bored (✗)</td>
<td>A. interested (✓)</td>
</tr>
<tr>
<td>[Negation ver 2] If you have to read a book that is not dry you may become what?</td>
<td>B. bored (✗)</td>
<td>A. interested (✓)</td>
</tr>
<tr>
<td>[Double negation] If you have to read a book that is not dry you may not become what?</td>
<td>B. bored (✓ just no change?)</td>
<td>A. interested (✗)</td>
</tr>
</tbody>
</table>
Takeaways

QA-GNN: combine KG and LM for general question answering
- Use LM to score and identify the relevant part of KG
- Jointly reason over LM and KG by using a GNN on text+KG joint graph

Ability to perform interpretable and structured reasoning
Outline

How to combine LM and KG for reasoning?
- QAGNN: Reasoning with Language Models and Knowledge Graphs for Question Answering [NAACL’21]

How to perform more expressive reasoning?
- GreaseLM: Graph Reasoning Enhanced Language Model for Question Answering [ICLR’22]
Limitation of QA-GNN

- QA-GNN uses a single pooled representation for the text
 - Cannot use KG information to update individual word representations in the text

- How to perform more expressive reasoning?
Our new model: GreaseLM
Our new model: GreaseLM

Key innovations

- Treat LM layer (over text) and GNN layer (over KG) at the equal level
- Modality interaction (MInt): Fuse and exchange information from LM and GNN for multiple layers
- Representations of all tokens in text and all nodes in KG are mutually updated
Improved performance on two QA tasks

Performance

CommonsenseQA

- RoBERTa (Liu+19) 68.7%
- KagNet (Lin+19) 69.0%
- RelNet (Santoro+17) 69.1%
- MHGRN (Feng+20) 71.1%
- QA-GNN (Yasunaga+21) 73.4%
- **GreaseLM (Ours)** 74.2%

OpenBookQA

- RoBERTa (Clark+19) 78.4%
- RelNet (Santoro+17) 75.4%
- MHGRN (Feng+20) 80.6%
- QA-GNN (Yasunaga+21) 82.7%
- **GreaseLM (Ours)** 84.6%
Ablation study

<table>
<thead>
<tr>
<th>Ablation Type</th>
<th>Ablation</th>
<th>Dev Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREASELM</td>
<td>-</td>
<td>78.5</td>
</tr>
<tr>
<td>Modality Interaction</td>
<td>No interaction</td>
<td>76.5</td>
</tr>
<tr>
<td></td>
<td>Interaction in every other layer</td>
<td>76.3</td>
</tr>
<tr>
<td>Interaction Layer Parameter Sharing</td>
<td>No parameter sharing</td>
<td>77.1</td>
</tr>
<tr>
<td>Graph Connectivity</td>
<td>Context node connected to all nodes in $\mathcal{V}{\text{sub}}$, not only $\mathcal{V}{\text{linked}}$</td>
<td>77.6</td>
</tr>
<tr>
<td>Node Initialization</td>
<td>Random TransE (Bordes et al., 2013)</td>
<td>60.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77.7</td>
</tr>
</tbody>
</table>
Strength: Complex Reasoning

Questions requiring complex reasoning:

Prepositional phrases

Where on a river can you hold a cup upright to catch water on a sunny day?
👍 waterfall, 👎 bridge, 👎 valley, 👎 pebble, 👎 mountain

Where can I stand on a river to see water falling without getting wet?
👍 waterfall, 👎 bridge, 👎 valley, 👎 stream, 👎 bottom

Negation terms

Where would I not want a fox?
👍 hen house, 👎 england, 👎 mountains, 👎 english hunt, 👎 california

Hedging terms

What is a place that usually does not have an elevator and that sometimes has a telephone book?
👍 hotel, 👎 kitchen, 👎 library, 👎 telephone booth, 👍 house
Strength: Complex Reasoning

GreaseLM solves various complex reasoning

<table>
<thead>
<tr>
<th>Model</th>
<th># Prepositional Phrases</th>
<th>Negation Term</th>
<th>Hedge Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RoBERTa-Large</td>
<td>66.7</td>
<td>72.3</td>
<td>76.3</td>
</tr>
<tr>
<td>QA-GNN</td>
<td>76.7</td>
<td>76.2</td>
<td>79.1</td>
</tr>
<tr>
<td>GreaseLM (Ours)</td>
<td>75.7</td>
<td>79.3</td>
<td>80.4</td>
</tr>
</tbody>
</table>
Strength: Complex Reasoning

GreaseLM

What is unlikely to get bugs on its windshield due to bugs’ inability to reach it when moving?

A. airplane ✓ B. motor vehicle

QAGNN

What is unlikely to get bugs on its windshield due to bugs’ inability to reach it when moving?

A. airplane B. motor vehicle ✗

Attention weight from text over bug decreases, but attention weight over windshield and airplane increases, adjusting for hedging (“unlikely”) in text.
Extension to Biomedical Reasoning

QA dataset: US Medical License Exam (USMLE)

A 45-year-old woman presents to the emergency department with acute onset of severe right upper quadrant abdominal pain that radiates to the infrascapular region. Her medical history is significant for obesity, hypertension, obstructive sleep apnea, and gastric bypass surgery 2 years ago after which she lost 79 kg (150 lb). The patient complains of nausea and vomiting that accompanies the pain. Her temperature is 38.9°C (101.2°F), blood pressure is 144/88 mm Hg, heart rate is 76/min, and respiratory rate is 14/min (fever). Abdominal examination is significant for right upper quadrant tenderness along with guarding and cessation of inspired breath on deep palpation of the right upper quadrant. Which test should be ordered first for this patient?

A) Abdominal ultrasound
B) CT scan of the abdomen
C) Hepato-iminodiacetic acid scan
D) MRI of the abdomen
E) X-ray film of the abdomen
Extension to Biomedical Reasoning

Biomedical KG: DiseaseDatabase, DrugBank, UMLS

- **Atopy**
 - Is a risk factor for **Asthma**
 - **Conjunctivitis**
 - May cause **Red eyes**
 - **Watering eyes**
 - May cause **Conjunctivitis**

- **Cetuximab**
 - **Red eyes**
 - Is a subtype of **Conjunctivitis**
 - **Watering eyes**
 - May cause **Conjunctivitis**

- **Allergic rhinitis**
 - Is associated with **Asthma**
 - May cause **Conjunctivitis**
Extension to Biomedical Reasoning

Improved performance over LM and previous LM+KG

<table>
<thead>
<tr>
<th>Methods</th>
<th>Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baselines (Jin et al., 2021)</td>
<td></td>
</tr>
<tr>
<td>Chance</td>
<td>25.0</td>
</tr>
<tr>
<td>PMI</td>
<td>31.1</td>
</tr>
<tr>
<td>IR-ES</td>
<td>35.5</td>
</tr>
<tr>
<td>IR-Custom</td>
<td>36.1</td>
</tr>
<tr>
<td>CLINICALBERT-BASE</td>
<td>32.4</td>
</tr>
<tr>
<td>BIOBERTA-BASE</td>
<td>36.1</td>
</tr>
<tr>
<td>BIOBERT-BASE</td>
<td>34.1</td>
</tr>
<tr>
<td>BIOBERT-LARGE</td>
<td>36.7</td>
</tr>
<tr>
<td>Baselines (Our implementation)</td>
<td></td>
</tr>
<tr>
<td>SapBERT-Base (w/o KG)</td>
<td>37.2</td>
</tr>
<tr>
<td>QA-GNN</td>
<td>38.0</td>
</tr>
<tr>
<td>GREASELM (Ours)</td>
<td>38.5</td>
</tr>
</tbody>
</table>
Takeaways

GreaseLM: improved architecture to perform expressive reasoning
- Treat **LM (over text)** and **GNN (over KG)** at the equal level
- **Modality interaction (MInt)**: Fuse information from **LM** and **GNN** for multiple layers
- Representations of **all tokens in text** and **all nodes in KG** are mutually updated

Ability to perform complex reasoning that requires both language understanding and knowledge (e.g. prepositional phrases, negation, hedging)
Outline

How to combine LM and KG for reasoning?
- QAGNN: Reasoning with Language Models and Knowledge Graphs for Question Answering [NAACL’21]

How to perform more expressive reasoning?
- GreaseLM: Graph Reasoning Enhanced Language Model for Question Answering [ICLR’22]
Thanks!

Thank you to the members of the Stanford SNAP / NLP / P-Lambda groups, and the project MOWGLI team, as well as our anonymous reviewers. Funded in part by DARPA MCS.

Papers

Website: https://snap.stanford.edu/QAGNN