Min Wu PhD

minwu_pic.jpg

I am a Postdoctoral Scholar with Prof. Clark Barrett in the Department of Computer Science at Stanford University. I am also affiliated with the Stanford Center for AI Safety and the Stanford Center for Automated Reasoning.

Previously, I completed my PhD (DPhil) in Computer Science under the supervision of Prof. Marta Kwiatkowska at the University of Oxford.

My research focuses on safe and trustworthy AI with verifiable guarantees, situated at the intersection of AI and formal methods. The overarching goal of my work is to develop AI systems—particularly those deployed in high-stakes applications—that are provably reliable and transparent.

Email: minwu[at]stanford.edu
Office: CoDa W312

Research Highlights

Formal Explainable AI to Promote Trustworthiness
  1. NeurIPS
    VeriX: Towards Verified Explainability of Deep Neural Networks
    Min Wu, Haoze Wu, and Clark Barrett
    In Proceedings of the 37th International Conference on Neural Information Processing Systems (NeurIPS), 2023
    Keynote at Stanford Center for AI Safety 2023 Annual Meeting
  2. AAAI
    Efficiently Computing Compact Formal Explanations
    Min Wu, Xiaofu Li, Haoze Wu, and Clark Barrett
    In The 40th AAAI Conference on Artificial Intelligence (AAAI), 2025
    Oral (4.6%) Presentation
Robustness Guarantees to Ensure AI Safety
  1. CVPR
    Robustness Guarantees for Deep Neural Networks on Videos
    Min Wu, and Marta Kwiatkowska
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020
    Oral (5.7%) Presentation
  2. AISTATS
    Convex Bounds on the Softmax Function with Applications to Robustness Verification
    Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, and Eitan Farchi
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
  3. EMNLP
    Assessing Robustness of Text Classification through Maximal Safe Radius Computation
    Emanuele La Malfa, Min Wu, Luca Laurenti, Benjie Wang, Anthony Hartshorn, and Marta Kwiatkowska
    In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP): Findings, 2020
  4. IROS
    Gaze-based Intention Anticipation over Driving Manoeuvres in Semi-Autonomous Vehicles
    Min Wu, Tyron Louw, Morteza Lahijanian, Wenjie Ruan, Xiaowei Huang, Natasha Merat, and Marta Kwiatkowska
    In Proceedings of the 32nd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019
    Oral Presentation
  5. IJCAI
    Global Robustness Evaluation of Deep Neural Networks with Provable Guarantees for the Hamming Distance
    Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta Kwiatkowska
    In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019
    Oral Presentation
Deep Neural Network Verification
  1. Theor. Comput. Sci.
    A Game-based Approximate Verification of Deep Neural Networks with Provable Guarantees
    Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska
    Theoretical Computer Science, 2020
    Invited Paper
  2. CAV
    Safety Verification of Deep Neural Networks
    Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu*
    In Proceedings of the 29th International Conference on Computer Aided Verification (CAV), 2017
    Keynote Paper
  3. CAV
    Marabou 2.0: A Versatile Formal Analyzer of Neural Networks
    Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Ekaterina Komendantskaya, Guy Katz, and Clark Barrett
    In Proceedings of the 36th International Conference on Computer Aided Verification (CAV), 2024
  4. AAAI
    Towards Efficient Verification of Quantized Neural Networks
    Pei Huang, Haoze Wu, Yuting Yang, Ieva Daukantas, Min Wu, Yedi Zhang, and Clark Barrett
    In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2024
    Oral Presentation in the Safe, Robust and Responsible AI Track
  5. AAAI
    Parameterized Abstract Interpretation for Transformer Verification
    Pei Huang, Dennis Wei, Omri Isac, Haoze Wu, Min Wu, and Clark Barrett
    In The 40th AAAI Conference on Artificial Intelligence (AAAI), 2025

Teaching Highlights

Stanford University
University of Oxford