publications

Also see Google Scholar.

2025

  1. Preprint
    Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling
    Meihua Dang, Jiaqi Han, Minkai Xu, Kai Xu, Akash Srivastava, and Stefano Ermon
    preprint, 2025
  2. ICML 2025
    Scaling Probabilistic Circuits via Monarch Matrices
    Honghua Zhang*, Meihua Dang*, Benjie Wang*, Stefano Ermon, Nanyun Peng, and Guy Van Broeck
    In Proceedings of the 42nd International Conference on Machine Learnin (ICML), 2025
  3. CVPR 2025
    Personalized Preference Fine-tuning of Diffusion Models
    Meihua Dang, Anikait Singh, Linqi Zhou, Stefano Ermon, and Jiaming Song
    In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), Jun 2025

2024

  1. CVPR 2024
    Diffusion Model Alignment Using Direct Preference Optimization
    Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2024

2023

  1. ICML 2023
    Tractable Control for Auto-regressive Language Generation
    Honghua Zhang*, Meihua Dang*, Nanyun Peng, and Guy Van den Broeck
    In Proceedings of the 40th International Conference on Machine Learning (ICML), Jun 2023
    Oral full presentation, acceptance rate 155/6538 = 2.4%
  2. ICLR 2023
    Scaling Pareto-Efficient Decision Making via Offline Multi-Objective RL
    Baiting Zhu, Meihua Dang, and Aditya Grover
    In International Conference on Learning Representations, Jun 2023

2022

  1. NeurIPS 2022
    Sparse Probabilistic Circuits via Pruning and Growing
    Meihua Dang, Anji Liu, and Guy Van den Broeck
    In Advances in Neural Information Processing Systems 35 (NeurIPS), Dec 2022
    Oral full presentation, acceptance rate 201/10411 = 1.9%
  2. RECOMB 2022
    Tractable and Expressive Generative Models of Genetic Variation Data
    Meihua Dang, Anji Liu, Xinzhu Wei, Sriram Sankararaman*, and Guy Van den Broeck*
    In Proceedings of the International Conference on Research in Computational Molecular Biology (RECOMB), May 2022
  3. IJAR 2022
    Strudel: A Fast and Accurate Learner of Structured-Decomposable Probabilistic Circuits
    Meihua Dang, Antonio Vergari, and Guy Van den Broeck
    International Journal of Approximate Reasoning, Jan 2022

2021

  1. AAAI 2021
    Group Fairness by Probabilistic Modeling with Latent Fair Decisions
    YooJung Choi, Meihua Dang, and Guy Van den Broeck
    In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2021
  2. AAAI 2021
    Juice: A Julia Package for Logic and Probabilistic Circuits
    Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck
    In Proceedings of the 35th AAAI Conference on Artificial Intelligence (Demo Track), Feb 2021

2020

  1. PGM 2020
    Strudel: Learning Structured-Decomposable Probabilistic Circuits
    Meihua Dang, Antonio Vergari, and Guy Van den Broeck
    In Proceedings of the 10th International Conference on Probabilistic Graphical Models (PGM), Sep 2020