
Optimizing Video Analytics with Declarative Model Relationships
Francisco Romero∗
Stanford University

faromero@stanford.edu

Johann Hauswald∗
Stanford University &
Sutter Hill Ventures

johannh@stanford.edu

Aditi Partap
Stanford University

aditi712@stanford.edu

Daniel Kang
Stanford University

ddkang@cs.stanford.edu

Matei Zaharia
Stanford University

matei@cs.stanford.edu

Christos Kozyrakis
Stanford University

christos@cs.stanford.edu

ABSTRACT

The availability of vast video collections and the accuracy of ML
models has generated significant interest in video analytics sys-
tems. Since naively processing all frames using expensive models
is impractical, researchers have proposed optimizations such as
selectively using faster but less accurate models to replace or filter
frames for expensive models. However, these optimizations are
difficult to apply on queries with multiple predicates and models, as
users must manually explore a large optimization space. Without
significant systems expertise or time investment, an analyst may
manually create an execution plan that is unnecessarily expensive
and/or terribly inaccurate.

We propose Relational Hints, a declarative interface that allows
users to suggest ML model relationships based on domain knowl-
edge. Users can express two key relationships: when a model can
replace another (CAN REPLACE) and when a model can be used
to filter frames for another (CAN FILTER). We aim to design an
interface to express model relationships informed by domain specific

knowledge and define the constraints by which these relationships
hold. We then present the VIVA video analytics system that uses
relational hints to optimize SQL queries on video datasets. VIVA
automatically selects and validates the hints applicable to the query,
generates possible query plans using a formal set of transformations,
and finds the best performance plan that meets a user’s accuracy
requirements. VIVA relieves users from rewriting and manually
optimizing video queries as new models become available and exe-
cution environments evolve. We evaluate VIVA implemented on
top of Spark and show that hints improve performance up to 16.6×
without sacrificing accuracy.
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1 INTRODUCTION

Video analytics, the ability to extract insights from video, is enabled
by increasingly accurate machine learning (ML) models and ac-
cess to large archives of professionally produced content or videos
captured by devices like cellphones, security cameras, and video-
conference systems. While we can already answer queries over
videos like “have any cars passed this intersection that match an
AMBER alert?”, several challenges remain before video analytics
are as practical and as performant over analytics on structured data.
For complex video analytics queries with multiple predicates or ML
models, users must manually optimize their queries to avoid the
high cost of naively executing large models on every frame using
expensive hardware. For example, it takes over 14 GPU-months to
process 100 camera-months of video using a very accurate YOLOv5
model for object detection [55].

Consider an analyst studying political coverage of major ca-
ble news channels that writes a query to find instances of Bernie
Sanders, a politician, reacting angrily to Jake Tapper, a TV news
host [20]. Their query may use object detection to find scenes with
two people, face recognition to find instances of Jake Tapper and
Bernie Sanders, and emotion detection to detect angry reactions.
This query can take minutes to execute using unnecessarily ac-
curate models, even on small video inputs, making it challenging
for the analyst to interactively explore their dataset. To improve
performance, the analyst may use domain knowledge to explore
the following model optimizations:
• Replacement: use a different model for a task, such as a cheaper

but less accurate object detector [25, 27, 28, 47].
• Input Filtering: use a fast model to filter inputs to an expensive

model [26, 36, 63]. For example, insert a binary classifier to detect
faces before recognizing Tapper or Sanders in frames.

• Predicate Reordering: run emotion detection before face detection
because it is more selective.

The domain knowledge needed to consider such optimizations may
come from (1) historical or similar queries using alternate models,
(2) insights about the training data or query dataset like knowing
angry emotions are less prevalent than neutral or happy ones, or
(3) knowledge about a general area of expertise (e.g., news, traffic,
or sports analysis) suggesting a particular fine-tuned model would
be better suited for the domain.

Unfortunately, systems today do not provide an interface for
users to specify optimizations based on domain knowledge. Users
must manually explore the performance-accuracy tradeoff across
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numerous combinations of optimizations in queries with multiple
predicates. We found that, for the news analysis query in which
there are nearly 100 plan options, performance can vary by up to
11.7× across different query plans with an accuracy requirement
of 80%. Systems today provide no easy way to validate potential
optimizations either. Hence, in order to optimize video analysis
queries, users must build significant expertise in ML models and
systems, taking away valuable time and money from their primary
task of gleaning insights from video data.

The first goal of this work is to design a user interface to express
model relationships informed by domain specific knowledge and de-
fine the constraints by which these relationships hold. Our second
goal is to develop a video query engine that automatically validates

relationships and optimizes complex queries. The engine explores
alternate query plans and handles performance-accuracy tradeoffs,
relieving users from manual exploration and optimization.

We propose a declarative SQL interface for model relationships
called relational hints. We capture the semantics of two relationships
between a model M and model H considered for optimization:
• H CAN REPLACE M denotes H and M are interchangeable in

the query plan. For example, H may be a faster object detection
model the user wants to consider instead of the current one.

• H CAN FILTER M denotes H can be used to filter inputs to M.
For example, H could be a fast binary classifier for detecting the
presence of a face prior to recognizing a specific person.

Hints capture high-level relationships based on the models’ output
signatures and their class labels. Hence, they can often be reused
across queries similar to an index. They remove the need for users
to manually rewrite queries when a new model becomes available
and reason about how the probabilistic nature of models impact
their query’s end-to-end accuracy goal.

We develop VIVA a video analytics system that optimizes com-
plex SQL queries using relational hints. VIVA’s hint validator first
determines what hints are applicable for the query. VIVA’s planner
uses the validated hints to generate alternate plans using model
replacements, data filtering, and predicate reordering while pruning
and limiting the search space for fast query optimization. VIVA’s
optimizer enumerates plans enabled by hints and automatically
navigates the performance-accuracy tradeoff to select the best per-
formance plan meeting the user’s accuracy requirements.

In summary, we make the following contributions:
• We highlight the difficulty of manually optimizing complex video

queries, showing that performance on the same query applying
different optimizations can vary by up to 11.7× (Section 2).

• We formalize a declarative SQL interface for users to specify in-
tuitive relationships between ML models used in video analytics
based on domain knowledge (Sections 3 and 4).

• We detail the design of VIVA that incorporates relational hints
in query planning and optimization given the user’s accuracy
requirements (Section 5).

• We implement VIVA of Spark [64] (Section 6) and show that
across four real-world queries with different video inputs, hints
improve performance up to 16.6× while meeting user accuracy
requirements (Section 7).

2 THE COMPLEXITY OF VIDEO QUERIES

Recent work on video analytics optimization focuses primarily on
optimizing a single predicate that uses an ML model, implemented
as a user-defined function (UDF) in a query execution engine. Cur-
rent proposed techniques explore the performance-accuracy trade-
off using fast proxy models to replace more expensive ones [25, 63],
cheap filters to reduce the amount of processing needed [26, 36]
and indexing for video data [28]. In contrast, we focus on complex
queries composed of multiple compute-intensive ML models and
predicates. These queries are typically applied on large datasets
using scale-out execution engines [42, 48]. Unfortunately, executing
these complex queries with multiple ML models is prohibitively
expensive and slow. Prior work estimates that a similar query to
the TV News analysis query previously mentioned over one year
of CNN videos would, at time of writing, take over 4 hours and cost
more than $300 using cloud GPUs [31].

While it is possible to optimize in isolation each model and
predicate in a complex query, this approach is unlikely to lead to
best overall performance (lowest latency) and makes it difficult
to achieve an overall accuracy goal. We use the TV News analy-
sis query to illustrate the difficulty of manual optimization. We
consider the impact of predicate reordering and two optimizations:
• Model Replacement – replace the original model with one that

has the same input/output specification but a different perfor-
mance accuracy profile. BlazeIt [25] and TASTI [28] are tech-
niques that can generate very fast, purpose-built models but still
require a user to manually specify the use of these fast models.

• Data Filter Model – run a cheap classifier ahead of a more
expensive model to filter frames that are unlikely to satisfy the
predicate. Systems like PP [36] and CORE [63] automate the
insertion of filter models but do not take into account the effects
of other optimizations from an end-to-end query perspective.

In the TV News analysis query, the analyst is looking for instances
of the politician Bernie Sanders reacting angrily to a news anchor
Jake Tapper. The analyst uses object detection to find frames with
two people, face recognition to find frames with both Sanders and
Tapper, and emotion detection to find the angry emotion. Figure 1
shows the accuracies and latencies of different plans for this query
after applying the optimizations discussed above. Accuracy is cal-
culated using F1 score [3, 5, 63] with respect to the original plan.
The analyst sets an accuracy requirement of 80%.

Figure 1 shows that selecting the best of the 6 possible reorder-
ings of the 3 predicates in the query leads to 5× latency improve-
ment. Execution engines today treat UDFs as black-boxes that are
not optimized by the execution engine [64]; the analyst must ex-
plore the impact of all possible orders. Next, we show the impact
of manually considering model replacements. If the analyst uses
a faster emotion detection (ED) model, latency improves by 1.01×
but accuracy drops to 79%. In contrast, replacing object detection
(OD) with a faster person detection model to label people in frames
reduces latency by 1.2× over the best reordering without affecting
accuracy (Best). Finally, we investigate the impact of using fast
filter models, such as a cheap face detection (Haar) model to filter
frames without faces [56] and a similarity detector (Sim) to remove
frames that are not similar to a reference frame [4]. The Haar filter
does not degrade accuracy but increases the latency by 1.5× over
OD as its selectivity is low and acts as a poor filter. The Sim filter



Table 1: Model Relationship Matrix: dimensions to evaluate how to

relate ML models. The result is the relationship in a query plan.
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Figure 1: Manually Optimizing a TV News Analysis Query. PR: Pred-

icate Reordering, RP: Replacing models, FT: Filters, dashed line

denotes the user’s accuracy requirement of 80%.

reduces latency by 2× over OD: it skips the expensive face recog-
nition model for 94% of the frames without impacting accuracy.
The key difference between the Haar and Sim filters is the former
supports general face detection while the latter finds similarities to
a reference frame.

The process of exploring the performance-accuracy tradeoffs
and the interactions between these optimizations is long and cum-
bersome. Users must exhaustively study all options or use some
ad-hoc trial and error process to find a good plan. For this query
where the are 6 permutations, 2 replacements, and 2 filters, there
are almost 100 plans to consider. The details to derive the number
of plans using these optimizations are described Section 5.2. As
new models and optimization opportunities arise, the number of
plans for complex queries will only grow. Even for expert users,
it is challenging to manually reason about this large number of
query plans. It requires users to not only have an intuition about the
potential of an optimization but also have deep knowledge of the
performance-accuracy tradeoffs and selectivity of models within a
large space of query plans.

3 DOMAIN SPECIFIC MODEL RELATIONSHIPS

There is potential for multiple models and predicates to improve
the execution of a query. However, there is no framework to reason
about the relationship between models. In this section, we propose
a framework to define model relationships.

Suppose we have two models, M and H, that we use to process a
set of frames F. The models emit a labeled frame with high confi-
dence that satisfies a predicate or produce no output and the frame
is dropped. The label is the output of the model assigned to the
frame given its trained classes while the predicate is part of a user’s
query that filters by a specific label(s). For example, for an object
detection model, the trained classes can be bus, car, person, etc.
while the predicate can be to only return frames where the label
is a person. This is a common scenario where a user runs a model
that generates class labels and only wants to keep frames from a

certain class. There are multiple execution plans that, with a given
probability, can produce the same set of frames and labels on F:
• Plan A: Run M on F
• Plan B: Run H on F
• Plan C: Run H on F, then M on H’s output
• Plan D: Run M on F, then H on M’s output
We then ask the question: under what conditions do the above
plans produce approximately the same results? For plans A and B
to produce the same results, M and H must be interchangeable: H
can replace M in the execution plan (or vice-versa). For Plans C and
D to produce the same results as A and B, H can only drop frames
M would also have dropped; H is a filter for M. We can characterize
a model by its signature and output classes. The signature is the
model’s input and output specification. This is similar to terminol-
ogy used by TensorFlow [54]. To compare two models, we ask the
following questions:
• Are the model signatures equal or not?
• Do themodels have equal, overlapping, or disjoint output classes?
Table 1 captures the different options along these dimensions. If
H and M have equal signatures and equal or overlapping classes,
then H can replace M. While two models can produce equivalent
outputs, they may still differ in performance (execution latency)
and/or accuracy. This type of model is referred to as a variant [46–
48] or a proxy model [25]. The model architecture, dataset, and
training parameters affect a model’s performance and accuracy.

If H and M have equal signatures and disjoint classes, or their
signatures are different, H can potentially filter frames for M. For
example, consider an image classifier that outputs animal labels per
image. Now consider an object detector that can produce the same
class labels but the class is attributed to a bounding box. These two
model signatures are not equal but there is overlap in the classes.
The image classifier can be predicated on whether an animal was
found. This only passes frames to the object detector that are highly
likely to have an animal. The image classifier acts as a filter. The
setup is similar for disjoint labels except a user specifies under what
conditions the predicate for the image classifier is true. This can be
specified based on a user’s domain knowledge.

4 RELATIONAL HINTS

We next propose a declarative interface called Relational Hints

(hints for short) that formalizes the model relationships defined in
Table 1. Hints allow users to declaratively express domain specific
knowledge about model relationships. The goal is to provide a query
planner with information that enables alternate query plans. A
planner can select among these plans to improve query performance
or reduce the price while meeting a user’s accuracy requirements.
We first describe the different types of hints and their syntax. Next,
we walk through a workflow of how hints are used in SQL queries.
Finally, we describe sources informing the design of relational hints
and relate them to well-known optimizations and domain intuition.

4.1 Relational Hint Types

A hint takes as input two models and a type, CAN REPLACE or
CAN FILTER, that establishes a relationship between the models.
We map Table 1 to our declarative hint interface.



Definition 1 A relational hint is a user defined model relation-

ship informed by domain knowledge for the purpose of suggesting

alternate query plans to an optimizer.

Similar to MicrosoftSQL hints [37] or MySQL hints [39], hints are
options specified to the query optimizer to consider alternate query
plans. Unlike the aforementioned hints, relational hints are not en-
forced. Users set a minimum query accuracy requirement and the
optimizer chooses which hint(s) (if any) meet that requirement. The
accuracy is in reference to the unmodified query plan where the
labels produced by the original models represent the ground-truth.
The accuracy is calculated on a video supplied by the user called a
canary input. A canary input is a shorter clip that represents the
type of events the user is looking for. A hint associates a hint model
H to an original model M using model specific domain knowledge.

Definition 2 Domain knowledge is external information about

a model’s signature and class labels in relation to another model.

CAN REPLACE Hint. If a model H’s signature and classes are

equal or overlap with model M’s signature and classes, a user can
define a CAN REPLACE hint to suggest H can replace M in a plan:
CREATE HINT H CAN REPLACE M

[ FALLBACK DISABLED | ENABLED ]

A CAN REPLACE hint is optionally parameterized by a FALLBACK
argument. When disabled (the default), this expresses to the system
that model H should completely replace M when processing frames.
If enabled, the processing will fallback to the original model M if
H does not produce a label because its confidence is too low. We
assume confidence thresholds are pre-tuned and set for each model
as is commonly done with existing optimizations [25]. In effect,
this threshold arbitrates whether the model will generate a label
or not. This can also be exposed to the user as a parameter to tune.
Setting FALLBACK ENABLED may result in M having to process the
same inputs that did not satisfy H’s confidence threshold. This may
negate some of the performance benefits of using H. However, it
gives finer control to the user of the relationship and how much
they want to trade-off performance and accuracy.

CAN FILTERHint. If model H’s signature is equal and its classes
are disjoint from model M, or if model H’s signature is not equal
to model M’s signature, a user can define a CAN FILTER hint to
suggest that model H can filter frames for model M. Specifically,
frames are only processed by M if they satisfy H’s predicate with
high confidence using the model’s pre-set threshold:
CREATE HINT H CAN FILTER M

[ CONDITIONED ON ANY | <list -of -classes > ]

A CAN FILTER hint is optionally parameterized by a CONDITIONED
ON parameter which specifies the relationship between the model
classes. By default, this parameter is set to ANY: any class in H can
satisfy the condition. A user can optionally specify a list of classes.
The list of classes means a user can condition M’s input on the
results of H’s predicate as defined by the condition.

Prior work investigates automatically inferring relationships
using historical data [36, 63]. Our interface could be extended

to support automatic inference of these relationships by setting
CONDITIONED ON to AUTO. In this work, we focus on the overall
interface of expressing model relationships and leave it to future
work to investigate inferring these relationships.

4.2 Example Workflow with Relational Hints

We now walk through a workflow using three relational hints for
the TV News analysis query searching for Bernie Sanders reacting
angrily to Jake Tapper Hints are registered once and automatically
used on future queries when applicable. The first hint expresses
knowledge that two object detection models have the same signa-
ture (labeled bounding boxes of objects) and generate the same
number of classes but vary in performance and accuracy. These
models can be related using a CAN REPLACE hint:
CREATE HINT ObjectDetectFast CAN REPLACE ObjectDetect

The second hint uses a tuned face recognition model trained on
journalists and personalities. This is similar to a BlazeIt trained
model to represent a more expensive model [18]. This model has
the same signature (labeled bounding boxes of faces) as a general
face recognition model, with some overlap in classes, including
labels for Bernie Sanders and Jake Tapper. These models are again
related using a CAN REPLACE:
CREATE HINT FaceRecogNews CAN REPLACE FaceRecognition

FALLBACK ENABLED

The CAN REPLACE hint is parameterized with FALLBACK ENABLED
to indicate the original FaceRecognition model should be used if
FaceRecogNews does not emit a label due to low confidence.

The third hint considers a binary detector with labels face/no
face. This binary detector can be trained using optimizations like
Probabilistic Predicates [36]. Since frames with a face detected
typically imply that a face is recognized, a user can express the
following hint:
CREATE HINT FaceDetect CAN FILTER FaceRecognition

CONDITIONED ON ['face']

Consider an analyst exploring a VIDEO table that contains frames
from a TV dataset. They submit a query searching for instances of
Bernie Sanders reacting angrily to Jake Tapper. The analyst sets an
accuracy requirement of 90% and provides a short clip (the canary
input) of Bernie Sanders being interviewed and reacting angrily to
Jake Tapper. The system will use this video to estimate accuracy of
new plans. In the following query, we bold models for which there
are valid hints available:
SELECT frameID , EmotionDetect ( frame ) AS e,

FaceRecognition ( frame ) AS f,
COUNT ( SELECT ObjectDetect ( frame ) AS o

FROM VIDEO
GROUP BY frameID
WHERE o. label = ' person ') AS pcount ,

FROM VIDEO
WHERE e. label = ' angry ' AND pcount = 2 \

AND f. label LIKE '% Sanders %' AND f. label LIKE '% Tapper %'
ACCURACY 90%

The cost-based optimizer will generate additional plans using the
registered hints and selects the fastest plan that meets the user
accuracy requirement. The lowest cost plan that meets the user’s
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Figure 2: VIVA Architecture Diagram.

accuracy is the following, where the changes made are bolded:
Result

+ EmotionDetect . label isin [' angry ']
+ ObjectDetectFast . pcount = 2 AND \

ObjectDetectFast . label isin [' person ']
+ FaceRecognition . label isin [' Tapper ', ' Sanders ']

+ FaceRecogNews . label isin [' Sanders '] \
AND FaceRecogNews .conf > 0.8

+ FaceDetect . label isin ['face'] AND \
FaceDetect .conf > 0.7

Note the optimizer in applying the hints also finds the optimial
execution order to execute the most selective models first.

4.3 Sources of Relational Hints

We now give examples of where model relationships can originate
from and how users can capture these relationships using hints.

Model Variants. Models having the same signatures and either
equal or overlapping classes are ideal candidates for CAN REPLACE
relationships. For example, when analyzing 5 popular open-source
repositories for object detection models, we find there are at least 24
unique models with varying accuracy and performance characteris-
tics [13, 45, 55, 57, 60]. Also, there are 16 pre-trained image classifi-
cation models in PyTorch with varying performance and accuracy
profiles [44]. These different profiles can come from themodel archi-
tecture or the use of techniques like quantization that post-process
the model to further trade accuracy for performance [23].

Additionally, an emerging trend is building models using a com-
mon set of layers and fine-tuning the rest for a specific application.
The common layers are known as the “prefix” and the fine-tuned
layers as the “suffix”. These are also considered variants of the orig-
inal model. A system can take advantage of saving the results of
the prefix after the first call and reuse the results multiple times
only needing to run the suffix model [24]. Model variants are best
expressed as CAN REPLACE relationships.

Proxy Models. Proxy models can be trained to be smaller (in total
GFLOPs) approximate versions of a larger, more accurate MLmodel.
They can also be used to limit the number of invocations to the
larger model. For example, a model may be trained on a subset of
data because a fixed-view camera only needs to identify the original
model’s objects from a single viewpoint [25]. Other techniques like
TASTI [28] train embedding indices at query optimization time.
These indices run a model on a small fraction of the input dataset
and store a representation (embeddings) of the frames and results

from the model. At query time, the input frame embeddings are
compared to the index and if the frames are similar enough, the
stored results are used. This obviates the need to run an expensive
model on the dataset. This techniques requires training an index
for each target model.

Area Expertise. A practitioner could use their knowledge of the
training data or the dataset to define even richer relationships. For
example, a biologist may wish to detect bears or deer to study their
foraging habits [9]. As an alternative way of detecting animals, the
biologist knows camera trap feeds are mostly static and detecting
motion is usually a good indication of an animal being present. A
motion detection model has disjoint labels from an animal detection
model. This can be expressed using a CAN FILTER hint:
CREATE HINT MotionDetect CAN FILTER AnimalDetect

CONDITIONED ON [' motion ']

Another example can be a sports analyst creating a highlight video
of a basketball game. They can use an expensive action recognition
model that does pose estimation to analyze if there was a scoring
motion and if the ball went through the hoop. Alternatively, they
could replace the action recognition model with an optical character
recognition (OCR) model to detect score changes using a bounding
box on the broadcast score [15, 40]. This would be cheaper because
only a small section of the frame is analyzed. This can be expressed
using a CAN REPLACE hint:
CREATE HINT ScoreChangeOCR CAN REPLACE ScoreActionRecog

Users can also express relationships where one of the models do
not process frames. For example, consider the TV News analysis
example from Section 1. An alternative way of detecting Bernie
Sanders can be to search for him in video transcripts. This can be
expressed as a CAN FILTER hint since it has disjoint labels from
the face recognition model:
CREATE HINT TranscriptSearch CAN FILTER FaceRecognition

CONDITIONED ON [' Sanders ']

5 APPLYING RELATIONAL HINTS

We now describe the design of VIVA a video analytics system that
interprets hints to optimize queries. VIVA enables users to query
videos using SQL, provides an interface to specify hints and an
accuracy threshold, and automatically applies hints to a query.

Figure 2 shows VIVA’s system architecture. Blue components are
specially designed for translating hints to executable plans. Users
register hints with the registrar which are stored in the hints table.
The parser processes the query and creates a query model tree. This
tree is passed to the hint validator that determines which hints are
relevant to the existing query. The planner and optimizer apply
hint transformation rules to produce additional query plans, esti-
mates accuracy, selectivity, and finally the overall cost of each plan.
Depending on a user-defined optimization target (performance,
cheapest price or best performance per dollar), VIVA selects the
plan that meets the user’s accuracy requirements. This plan is sent
to the execution engine to process the user’s input.

We walk through each blue component of Figure 2 by breaking
down the query optimization steps shown in Figure 3. We design
our system with the following goals in mind:
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Algorithm 1 Plan Generation with Hints
1: 𝑉𝑎𝑙𝑖𝑑𝐻𝑖𝑛𝑡𝑠 ← 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐻𝑖𝑛𝑡𝑠 (𝐴𝑙𝑙𝐻𝑖𝑛𝑡𝑠,𝑄𝑢𝑒𝑟𝑦)
2: procedure Planner(𝑄𝑢𝑒𝑟𝑦𝑇𝑟𝑒𝑒)
3: for node in DepthFirstSearch(QueryTree) do

4: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑇𝑟𝑒𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (Permutations(𝑛𝑜𝑑𝑒 ) )
5: while 𝑁𝑢𝑚𝑃𝑙𝑎𝑛𝑠! = 𝑁𝑒𝑤𝑃𝑙𝑎𝑛𝑠 do

6: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑇𝑟𝑒𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (ApplyHints(𝑛𝑜𝑑𝑒 ) )
7: 𝑁𝑒𝑤𝑃𝑙𝑎𝑛𝑠 ← 𝐿𝑒𝑛 (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑇𝑟𝑒𝑒𝑠 )
8: 𝑁𝑢𝑚𝑃𝑙𝑎𝑛𝑠 ← 𝑁𝑒𝑤𝑃𝑙𝑎𝑛𝑠

9: end while

10: end for

11: return 𝐴𝑙𝑙𝑃𝑙𝑎𝑛𝑠

12: end procedure

• Validating hints (Section 5.1) – The validator requires rules to
arbitrate which hints can be used to generate additional plans.

• Applying hints to generate plans (Section 5.2) – The planner
needs to translate validated hints to query plans using a formal
set of transformation rules while limiting the number of total
plans considered.

• Providing accuracy guarantees (Section 5.4) – Given a user’s
accuracy requirement, the optimizer must compare plans, and
only select those that meet the accuracy requirement.

5.1 Validating Hints

After VIVA’s parser produces a tree with the models to run, the
hint validator determines which registered hints are valid for the
query. This is Step 1 in Figure 3. Throughout this section, we refer
to the original model as M and the hint model as H. For both hint
types, this is a fast static analysis where VIVA is comparing hint
arguments to the model classes.

CAN REPLACE hints. CAN REPLACE is only applied if the
overlap in classes of H and M are equal or larger than the classes
predicated in the user’s query. The requirement is the model Hmust
produce the same predicated results as M. The hint is discarded if
the classes are not equal or there is no overlap. To limit the search
space, hint validation only retains hints that are likely to yield
a plan with a lower cost than the original query ccomparing the
profiled latency of the hint model to the original model. The latency
is profiled offline as a one-time step.

CAN FILTER hints. VIVA validates that the user-specified classes
in CONDITIONED ON are in model H. Because the classes can either
overlap, be equal, or disjoint, there is no validation for M.

5.2 Generating Plans using Hints

We now describe the steps the planner takes to recursively apply
hints to a query (Step 2 in Figure 3).

Transforming a Query Plan. VIVA’s parser transforms a user’s
query into an intermediate representation called a model tree. Each
tree node represents a model and its predicate. If a parent node
has a child, the output of the parent is dependent on its child (or
children’s) predicate(s) which preserves dependencies.

Algorithm 1 shows the planner’s steps. The planner first reorders
the predicates of that node’s children (line 4) then applies the hints
exhaustively (lines 5 ∼ 8) until no new candidate trees can be gen-
erated at that node. The order the hints are applied does not matter.
Remaining order-agnostic is necessary: a hint could generate a tree
that could be further modified. This is Step 2 of Figure 3, where we
show a subset of the plans generated for the query after applying
the hints from the table. A CAN REPLACE hint can modify a tree
in two ways: (1) H replaces M in the new tree, (2) the planner will
insert H before M if the user has set FALLBACK ENABLED. M will
only run on frames where H did not produce a label because the
confidence was too low. The predicate is applied to the union of H
and M’s results. For CAN FILTER hints, the planner will generate a
tree where a model H predicated on CONDITIONED ON is inserted
before model M. All inputs to M are predicated on H.

Enumerating Plans. To ensure all plans have been generated
using hints, VIVA’s planner analytically computes the number of
expected plans based on the number of models and hints. The stan-
dard way of generating alternate query plans is to permute the
predicates of independent models. Let 𝑁 be the number of indepen-
dent models at depth 𝑖 . The number of valid plans is the product
of the permutations of those models:

𝑖−1
𝑗=1 N𝑗 ! For example, if a

plan has three independent models A, B and C, there are six plans
representing the permutations of these models (ABC, BAC, etc.).
We also to consider cases where hints generate additional plans. A
CAN REPLACE hint will only generate an alternate plan if either
one or both models of the hint appear in the plan. A CAN FILTER
hint will only generate an alternate plan if M appears in the plan
where H will be inserted into the plan.

5.3 Canary Inputs

VIVA takes as input the query plan, an accuracy requirement and
a canary input video. A canary input is a short video the user
provides that represents events they are querying in the dataset.



Using small, representative canaries is common when tuning or
calibrating computer vision, machine learning, and data mining
systems before execution [35]. They have also been used by recent
video analytics systems [59]. Canary data is similar to sampling
during pre-processing to optimize the query [7] except in our case
the user explicitly defines the data used. Empirically, we found it
suffices to use a canary with at least one occurence of the event
queried and some amount of noise to generate true positives and
true negatives for calculating F1 score.

VIVA runs the original query plan on this input to generate
ground-truth labels. Alternate query plans are also run on the ca-
nary and their accuracies are computed with respect to the ground-
truth labels. The canary needs to closely resemble but not necessar-
ily match the type of events a user is looking for. VIVA uses this to
find which alternate plans will closely resemble the original plan
i.e., have high accuracy. The canary is specifically provided by the
user and not sampled from the input dataset because it serves as a
labelled set of frames, similar to a validation set.

In the TVNews analysis example from Section 4.2, a canary input
could contain scenes of Bernie Sanders upset in an interview with
Jake Tapper or, more generally, scenes of two people being inter-
viewed with one person reacting angrily. A poor canary has events
for which the models in the original query plan would have low
accuracy (e.g., a basketball player dunking). In this work, canaries
are manually selected to be representative of the query. In future
work, we plan to explore techniques to automate the selection of
canaries or notify users when their canary is not representative.

5.4 Selecting Plans to Meet User Requirements

The planner produces 𝑋 plans P = {𝑃1, 𝑃2, · · · 𝑃𝑋 }. A plan 𝑃𝑥
consists of 𝑁 ordered modelsM = {𝑀1, 𝑀2, · · ·𝑀𝑁 }. The goal of
VIVA’s optimizer is to select the fastest or most price-efficient plan
P∗ that satisfies a user’s accuracy requirement A. We now discuss
how VIVA’s optimizer selects this plan.

Estimating Plan Accuracy. Relational hints enable users to ex-
press knowledge to the query optimizer to evaluate alternate query
plans. Using hints, the planner may generate query plans that trade-
off accuracy for performance. VIVA provides users the ability to
express an accuracy target the optimizer must still meet in selecting
the plan with the lowest cost. Step 3a of Figure 3 shows this step
of the optimizer estimating accuracy for each plan.

We next detail our approach to accuracy estimation where we
use common techniques from recent work for using the original
models to generate ground-truth labels [25]. We use F1 score to
estimate accuracy [3, 5, 63], and compute an F1 score per plan
(not per model). To estimate each plan’s accuracy, VIVA first runs
the original models and candidate models over the canary input’s
frames and stores these results in a table. During query optimization,
VIVA queries the table only with each plan’s predicates to produce
a final set of labels, 𝑅. This eliminates the need to run the model
again for each plan. The results from the user’s initial query plan
are used as the ground-truth labels 𝑅𝑡𝑟𝑢𝑡ℎ . Finally, the candidate
plan’s F1 score is computed using 𝑅𝑡𝑟𝑢𝑡ℎ and 𝑅.

Selectivity and Cost Estimation. The last step in plan selec-
tion, Step 3b of Figure 3, is to estimate cost. VIVA determines
how many frames 𝑓𝑖 a model𝑀𝑖 needs to process. This is based on

the selectivity 𝑠𝑖−1 of the upstream model 𝑀𝑖−1 and is given by:
𝑓𝑖 = 𝑀𝑖−1 × 𝑠𝑖−1. We use a standard approach of estimating selec-
tivity: VIVA samples a number of frames from the input dataset.
We sample frames at a fixed rate from the input dataset similar to
prior work; other techniques for sampling can also be used [3, 38].
VIVA estimates selectivity independently for each model.

VIVA’s cost model is designed to support arbitrary backend
hardware platforms and models with arbitrary batch sizes. The
latency of executing𝑀𝑖 on hardware platform 𝐻 𝑗 for a batch of 𝐵
inputs is 𝐿𝑀𝑖

𝐻 𝑗
(𝐵). For each new model, VIVA profiles 𝐿𝑀𝑖

𝐻 𝑗
(𝐵) once

and stores its value for future cost estimations. If there is a data
transfer time associated with a particular platform like the GPU,
VIVAwill profile transferring different batches of frames and builds
a model to estimate transferring any number of frames. Profiling
and building the model is a one-time, offline step. When estimating
the cost, VIVA includes the data transfer time estimated by the
model as part of the overall plan cost. For 𝑉 different hardware
platforms, there are up to 𝑁𝑉 different hardware configurations
that models in 𝑃𝑥 can run on K𝑃𝑥 = {H1

𝑃𝑥
,H2

𝑃𝑥
, . . . ,H𝑁𝑉

𝑃𝑥
}. A

hardware configurationH𝑐
𝑃𝑥

= {𝐻1, 𝐻2, . . . , 𝐻𝑁 } corresponds to a
model𝑀𝑖 in plan 𝑃𝑥 running on hardware platform 𝐻𝑖 . Then, the
estimated cost of running 𝑃𝑥 withH𝑐

𝑃𝑥
is:

𝐶 (𝑃𝑥 ,H𝑐
𝑃𝑥
) = 𝐿𝑇𝑟𝑎𝑖𝑛 +

𝑁∑︁
𝑖=1

𝐿
𝑀𝑖

𝐻𝑖
(𝐵) × (𝑓𝑖/𝐵)

𝐿𝑇𝑟𝑎𝑖𝑛 is the time to train models specific to the query. If models are
trained in parallel, 𝐿𝑇𝑟𝑎𝑖𝑛 is the maximum time to train all models.
If models are trained sequentially, 𝐿𝑇𝑟𝑎𝑖𝑛 is the sum of times to train
all query-specific proxy models [25, 28]. If all models are available,
𝐿𝑇𝑟𝑎𝑖𝑛 = 0. The cost-optimal hardware configuration for models in
𝑃𝑥 is:

H∗𝑃𝑥 = arg min
H𝑐

𝑃𝑥
∈K𝑃𝑥

𝐶 (𝑃𝑥 ,H𝑐
𝑃𝑥
)

Finally, let 𝐴𝑥 be the estimated accuracy for 𝑃𝑥 . The cost-optimal
plan, P∗, among plans satisfying the user accuracy requirement is:

P∗ = arg min
𝑃𝑥 ∈P

𝐶 (𝑃𝑥 ,H∗𝑃𝑥 ), 𝑠 .𝑡 . 𝐴𝑥 ≥ A

A user can parameterize the query with 3 targets: performance,
cheapest price, or best performance per dollar. For performance,
VIVA will return the fastest plan given the hardware available.
For cheapest price, VIVA will return the cheapest plan based on
estimated latency multiplied by the cost per hour. For best perfor-
mance per dollar, VIVAwill return the plan and target platform that
delivers the highest end-to-end performance at the lowest price.

5.5 Plan Pruning

As the complexity of queries increases with more models, pred-
icates, and hints, the number of possible plans generated grows
exponentially. This increases VIVA’s query optimization latency
because of the larger search space to consider given plans generated
using hints. We apply several heuristics and pruning techniques to
limit the search space and provide fast query optimization.

At hint validation, VIVA finds any model that is more expensive
than the original model in the user’s query and removes it before
the plan generation step. Using these models would generate plans
that are strictly more expensive than the original query. During plan



Table 2: Queries, Datasets, Predicates, and Validated Hints Per Query.

Application Dataset Query Description Predicates # Hints

Traffic Jackson square traffic camera [25, 28] Cars turning left with people in intersection at night time of day = night ∧ object = (people & car) ∧ object track 7
News “Big three news” broadcasts [2, 20] Jake Tapper interviewing angry Bernie Sanders emotion = angry ∧ count(object = people) = 2 ∧ face = (Sanders & Tapper) 7
Sports NBA games [21, 52] LeBron James dunks action = dunking basketball ∧ face = James 2
Bias Casual conversations dataset [17] Non-white females over the age of 19 age > 19 ∧ race != non-white ∧ gender = female 3

generation, VIVA eliminates redundant calls to models that could
be a result of CAN REPLACE hints and push predicates down to the
first call of the model. Thus, duplicate plans are eliminated which
can occur as a result of hints replacing interchangeable models.

Our pruning approach is akin to recent work in video analytics
optimization, CORE [63], which uses branch-and-bound to evaluate
the plan cost after each model. CORE only retains plans that are
likely to have a lower cost than the best plan found thus far. VIVA
prunes a plan if 1) the accuracy requirement was already met with
a lower accuracy model and the current plan uses a higher accuracy
model, 2) the accuracy requirement was not met with a higher
accuracy model and the current plan uses a lower accuracy model,
or 3) if a plan’s estimated cost exceeds the best complete plan’s cost
after a given model, it is pruned.

VIVA transparently applies these heuristics and pruning tech-
niques which significantly limits the search space making query
optimization fast. In future work, we plan to investigate other prun-
ing techniques. For example, we can use statistics about CAN FIL-
TER hints and their historical accuracy when generating plans.
Historically low accuracy CAN FILTER hints can be pruned.

6 IMPLEMENTATION

VIVA is built on top of Spark [64] where users express queries using
UDFs and predicates in SQL or Spark’s dataframe API in Python.We
use Spark’s execution engine for UDF execution and take advantage
of its optimizer for structured query optimizations. Video ingestion
and indexing uses FFmpeg [11]. Frames are stored as raw byte
arrays in a PySpark DataFrame to enable data pipelining.

We use pretrained PyTorchmodels for applications such as action
recognition, object detection, and facial recognition [10, 41, 43, 45],
and TensorFlow for bias analysis and emotion recognition [1, 53].
Computer vision models to detect day/night scenes, motion detec-
tion, and similarity detection are implemented using OpenCV [4].
For the day/night scene detector, we use Scikit-learn’s Support Vec-
tor Machine (SVM) [50] implementation which we trained on 240
images of day/night frames from traffic camera feeds [25].

By giving users the ability to express relationships across a wide
range of models, hints naturally capture several existing video ana-
lytics optimizations. We use cheaper, less accurate object detection
models to represent techniques like BlazeIt [25] that propose train-
ing low accuracy purpose-built models. We implement three layer
sharing models for race, gender, and age detection, using on Deep-
Face [51], that share a common set of layers like those produced by
Mainstream [24]. CAN FILTER hints can be used to relate cheap
binary classifiers such as those produced using techniques like
Probabilistic Predicates [36] or CORE [63]. We use models of simi-
lar computational footprints to represent these optimizations. We
use TASTI [28] to generate candidate models for CAN REPLACE
or CAN FILTER hints. We use a pre-trained ResNet18 embedding
model. Unless otherwise noted, these indexes are trained and avail-
able at query time.

7 EVALUATION

We now evaluate VIVA using the queries from Table 2. In all cases,
the query plans benefit from the execution engine’s query optimizer
which applies standard structured query optimizations where pos-
sible. We deployed VIVA on Google Cloud Platform (GCP). We
use a n1-highmem-16 instance (16 vCPUs, 104 GB of DRAM). This
instance features Intel Xeon E5-2699 v4 CPUs operating at 2.20GHz,
Ubuntu 20.04 with 5.15.0 kernel. For GPU experiments, we consider
n1-highmem-16 instances with an NVIDIA T4 and a V100.

Queries and Datasets. Table 2 shows the queries, datasets, predi-
cates, and total number of validated hints used to evaluated VIVA.
All queries are complex: each with multiple models and predicates
and represent a range of different applications. TV News analysis is
based on queries used to explore a decade of US cable news [12, 20].
Sports analysis is commonly used for game planning, as well as for
creating highlight reels [21]. Traffic analysis is used for landscaping
and autonomous vehicle training [25, 26, 32]. Bias analysis is used
to assess and detect model bias from training data [17].

We consider two inputs: the event searched is present in the
video — Event Present, and no instances of the event are in the
video — Event not Present. As shown in Table 2, these inputs
come from the same dataset. All videos are one hour long, 360p,
and are processed at 1 FPS. The framerate we use is chosen to be
consistent with prior work [25]. The canary input is 15 seconds.
We use F1 score for accuracy. Also consistent with prior work,
selectivity estimation is performed over 3% of the input frames [6].

Relational Hints. Table 3 shows example tasks, models, and hints
we use in our evaluation. In total, we use 19 different hints — 11
CAN REPLACE, 4 CAN REPLACE with FALLBACK ENABLED, and
4 CAN FILTER— across 30 different models. We capture several
sources of domain knowledge in our choice of hints.

Model Variants. Using a smaller object detection as a replacement
for a larger model is a classic example of a model variant where the
models have the same output and classes but have different model
architectures e.g., SmallObjDet CAN REPLACE LargeObjDet. For
layer sharing models, a user specifies the suffix layers to run in the
model relationship e.g., RaceID CAN REPLACE SuffixRaceID. VIVA
automatically determines whether it is worthwhile to execute the
combination of prefix and suffix layers.

ProxyModels. Cheaper, less accuratemodels generated using TASTI
can be used as a replacement for more expensive ones like face
detection and action detection. To indicate that these models should
use the larger models when a label cannot be produced, we set
FALLBACK ENABLED for CAN REPLACE hints.

Area Expertise. Classical computer vision techniques can be used
by practitioners and expressed as model relationships. For example,



Table 3: Tasks, Models, and Sample Relational Hints.

Task Models Relational Hints

Emotion Detection MTCNN Emotion Detection, HAAR Emotion Detection, TASTI Emotion Detection MTCNNEmoDet CAN REPLACE HAAREmoDet,
TASTIEmoDet CAN REPLACEMTCNNEmoDet FALLBACK ENABLED

Object Detection Small Object Detection, Large Object Detection,
Object Similarity Detection, Motion Detection

SmallObjDet CAN REPLACE LargeObjDet, ObjSimDet CAN FILTER LargeObjDet,
MotDet CAN FILTER LargeObjDet CONDITIONED ON [‘motion’]

Image Classification ResNet50 Image Classification, ResNet18 Quantized Image Classification QImgCls CAN FILTER LargeObjDet
Facial Recognition Face Recognition, TASTI Face Recognition TASTIFaceRecog CAN REPLACE FaceRecog FALLBACK ENABLED
Race Identification RaceID, Suffix RaceID RaceID CAN REPLACE SuffixRaceID
Action Recognition Action Recog, Action Similarity Recog ActionSimDet CAN FILTER ActionRecog
Day/Night Detection Pixel Brightness Detect, SVM for Day/Night Detection PixelBriDet CAN REPLACE SVM
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Figure 4: Query Speedup Relative to UpperPR.

a pixel brightness detector can be used as a replacement for an
SVM model trained to detect whether a frame is from day or night
(PixelBriDet CAN REPLACE SVM). Performing similarity detection
to find frames similar to a reference image can be used as a replace-
ment for detecting actions. In the case of the Traffic analysis query,
since the analyzer is querying static camera feeds, they can infer
that detecting cars and people can be cheaper using motion detect.
They can relate motion detection to object detection as: MotDet
CAN FILTER LargeObjDet CONDITIONED ON [‘motion’].
We compare VIVA to the following baselines:
• Upper Bound Predicate Reorder (UpperPR): this is the worst-

case latency of predicate reordering for a given accuracy require-
ment if a system does not support selectivity and cost estimation
for ML UDFs which is common in today’s execution engines.

• Best Predicate Reorder (BestPR): this represents what a
user can expect if a video analytics system is able to do selectivity
and cost estimation for ML UDFs to find the lowest latency
ordering given an accuracy requirement.

• EVA: a recently-proposed, state-of-the-art video analytics sys-
tem whose optimizer makes model and predicate reordering
selections given a fixed accuracy [62]. Users specify a model’s
accuracy using coarse-grained indicators: low for accuracies 80%
and below, medium for accuracies [80%, 90%), and high for accura-
cies 90% and above. During query optimization, EVA selects each
model to use separately based on the plan accuracy requirement.

7.1 Improving Query Performance

We first explore how VIVA uses hints to improve performance
over predicate reordering with an accuracy requirement of 90%.
Figure 4 shows the performance for each query for Event Present
(Figure 4a) and Event not Present (Figure 4b). The latencies
presented are inclusive of query optimization time. Table 4 shows
the plan UpperPR uses and the best plan VIVA uses and its accuracy.

Traffic Analysis. For Event Present, UpperPR filters by time of
day, objects, and object tracking. EVA and BestPR filter by time of
day last. Since Event Present is all night scenes, no filtering occurs
with the SVM day/night detection. VIVA uses a pixel brightness
detection and a faster object detection model than EVA since its
accuracy estimator determines it can use what EVA considers a
“low” accuracy model. This enables VIVA to improve performance
by 4.8× over the baselines. For Event not Present, VIVA and EVA
first filter by time of day since this input is all day scenes. VIVA is
slightly faster (1.2×) because it uses the pixel brightness detection.
UpperPR runs the time of day detection last, which leads to a 16.6×
drop in performance compared to VIVA.
News Analysis. For Event Present, UpperPR first filters by emo-
tion, which is the least efficient since this expensive model must
process all frames. EVA and BestPR first filter by faces — a faster
model — before doing object and emotion detection, respectively.
VIVA uses a faster object detection (which EVA would classify as
low accuracy), along with a TASTI-trained model for emotion detec-
tion. The TASTI-trained emotion detection is backed by the HAAR
emotion detection. This improves performance 4.8× over UpperPR,
and 1.3× over EVA and BestPR. For Event not Present, VIVA uses
object similarity detection as a result of a CAN FILTER hint.

Sports Analysis. For Event Present, all baselines use the same two
models, with EVA and BestPR benefiting from predicate reordering.
VIVA uses a TASTI-trained action detection backed by the original
action detection model. This enables VIVA to improve performance
by 1.5× over UpperPR, and 1.2× over EVA and BestPR. For Event
not Present, VIVA uses a similarity detection for detecting dunks
from a reference image. This improves performance up to 2.5×.
Bias Analysis. For Event Present, VIVA uses a plan with common
prefix layer models for race and age detection, specified using a
CAN REPLACE hint. The common layers are run once and reused
for the two suffix models. This improves performance by 1.5× over
UpperPR, and matches the performance of EVA and BestPR. For
Event not Present, VIVA does not use the common prefix layer
models, since the gender detection model can filter the majority of



Table 4: Best Plan Identified by VIVA. PR: Predicate Reorder, RP: CAN REPLACE, RPF: CAN REPLACEwith FALLBACK ENABLED, FT: CAN FILTER.

Application Original Plan Best Hint Plan: ∃: Event Present, : Event not Present Accuracy

Traffic TimeOfDay ∧ Object ∧ ObjectTrack ∃: RP(Object) ∧ ObjectTrack ∧ RP(TimeOfDay) 100%
: RP(TimeOfDay) ∧ RP(Object) ∧ ObjectTrack 100%

News Emotion ∧ Object ∧ Face ∃: RP(Object) ∧ Face ∧ RPF(Emotion) ∧ RP(Emotion) 91%
: FT(Object) ∧ Object ∧ Face ∧ Emotion 91%

Sports Action ∧ Face ∃: Face ∧ RPF(Action) ∧ Action 100%
: FT(Action) ∧ Action ∧ Face 90%

Bias Age ∧ Gender ∧ Race ∃: Gender ∧ RP(Race) ∧ RP(Age) 100%
: Gender ∧ Age ∧ Race 100%
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Figure 5: Query Latency when Ablating Hints. RP: CAN REPLACE,

RPF: CAN REPLACE with FALLBACK ENABLED, FT: CAN FILTER.

Table 5: Query Optimization Latencies for Figure 4a Queries.

Application

# Plans w/o

Pruning

# Pruned

Plans

Query Opt.

(% Total)

Query Exec.

(% Total)

Total

Traffic 60 17 92s (17%) 453s (83%) 545s
News 432 25 116s (28%) 302s (72%) 418s
Sports 6 6 130s (18%) 592s (82%) 722s
Bias 42 24 88s (16%) 473s (84%) 561s

Average 107s (20%) 455s (80%) 562s

frames. VIVA is slightly slower in this case (1.1×) compared to EVA
and BestPR since both run the same plan but VIVA additionally
performs accuracy estimation. Performance is similar across the
board for this query because the original models and the CAN
REPLACE suffix models have similar performance.

7.2 Query Optimization Latency

We next evaluate VIVA’s query optimization latency. During query
optimization, VIVA estimates hint-generated plan accuracies and
selectivities. This time increases with the number of independent
query predicates and the number of applicable hints per query.
Table 5 shows the absolute and relative time breakdowns for query
optimization and execution using Event Present (a one hour input)
with the 15 second canary input.

VIVA spends on average 20% of execution time on query opti-
mization. This is in line with recently released systems like FiGO [6],
MIRIS [3], and Jellybean [58] where 20%-25% of query execution is
spent on optimization. Pruning eliminates on average 70% of plans
for 3 out of 4 queries. The Sports application does not benefit from
pruning because of the small number of hints used and relatively
small number of additional plans generated. Without pruning, the
News analysis query’s optimization time is 2.1× higher. Query exe-
cution time represents the majority of the time for all queries: 80%
on average, up to 84%. For larger inputs assuming the same query,
the time spent on query execution will grow while query optimiza-
tion stays constant. Lastly, query optimization time varies only by
up to 50% across all queries despite the number of plans differing
by up to 72×. This shows VIVA can scale as queries become more
complex and the number of hints grows.

7.3 Performance Impact of Hint Types

We next analyze what hints improved performance by ablating the
registered hints VIVA applies. We use the News and Traffic queries.
For each query, we consider each available hint type separately (RP:
CAN REPLACE, RPF: CAN REPLACE with FALLBACK ENABLED, FT:
CAN FILTER) and VIVA using all available hints). Traffic analysis
has no CAN REPLACE with FALLBACK ENABLED.

News Analysis. Figure 5a shows the ablated performance for Event
Present and Event not Present. In both cases, the best perfor-
mance comes from using a mix of hints. For Event Present, RP
uses a faster object detect. RPF uses TASTI-trained models for emo-
tion and object detect but uses the more expensive object detection
as a fallback model. Interestingly, VIVA selects a different predi-
cate ordering in each case: object detection runs first for RP while
face detection runs first with RPF. RP is faster than EVA and BestPR
since RP identifies a faster but lower accuracy object detection that
can meet the accuracy requirement compared to the high accuracy
one used by EVA. FT uses the same plan as EVA and BestPR since
using CAN FILTER hints do not meet the accuracy requirement.
For Event not Present, VIVA uses an object similarity detection
model to improve performance.

Traffic Analysis. Figure 5b shows the ablated performance for
Event Present and Event not Present. For both inputs, the
best plan that meets the accuracy requirement is to use only CAN
REPLACE hints. For Event Present, FT again picks the same plan
as EVA since the motion detect model specified using the CAN
FILTER hint does not meet the accuracy requirement. Plans are
closer in performance for Event not Present since filtering by
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Figure 6: Query Latency as Accuracy Requirements Vary.
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Figure 7: Query Latency of News Analysis with Training Latency.

Arrow: TASTI index creation.

time of day first is best in all cases. RP and VIVA use pixel brightness
detection to improve performance over EVA and FT.

7.4 Trading Off Latency and Accuracy

We now evaluate how VIVA automatically chooses the highest
performance plan as the accuracy requirement varies. Using the
News and Traffic analysis queries, we sweep accuracy requirements
from 60% to 95% and use the Event Present input. EVA uses low
accuracy models for requirements 80% and below, medium accuracy
models for [80%, 90%) requirements, and high accuracy models for
requirements 90% and above.

News Analysis. Figure 6a shows the results of varying accuracy
where, aexpected, more stringent accuracy requirements also result
in a decrease in performance. For accuracy requirements of 80%
and 90%, VIVA selects the plan shown in Table 4. For accuracy
requirement of 95%, VIVA uses the faster object detection model,
but no longer uses TASTI-trained models or the faster emotion
detect. However, the performance is similar to the plan shown in
Table 4. The performance difference between these plans is 1.8×.
VIVA outperforms EVA for all accuracy requirements (up to 1.5×)
since it identifies the best performing combination of hints that
meet the accuracy requirements. Indeed, for accuracy requirements

of 90% and 95%, VIVA uses faster models that meet the accuracy
requirements, while EVA uses the slower, high accuracy models.

Traffic Analysis. Figure 6b shows the results where VIVA identifies
the plan shown in Table 4 meets all accuracy requirements, and
hence uses the same plan in all cases. EVA has similar performance
for low accuracies, but uses increasingly larger object detection
models as the accuracy requirement becomes more stringent. This
enables VIVA to improve performance over EVA by up to 4.8×.

It can be difficult to know when models should be updated or
re-trained using optimizations like TASTI and BlazeIt. By selecting
to use these models for lower accuracy requirements, but not for
more stringent ones, VIVA can guide training decisions.

7.5 Impact of Training and Indexing

We next investigate how plan selection can be impacted by the need
to construct an index or train a model for replacement or filtering at
query time. This results in additional cost from training or indexing
to plans that include hints with CAN FILTER or CAN REPLACE
with FALLBACK ENABLED. We use the setup from Section 7.1 and
focus on the News analysis query. We vary the training latency
from 0sec (already exists) to 100sec in increments of 10sec.

Figure 7 shows the end-to-end latency (y-axis) for the two base-
lines and VIVA as the training latency varies (x-axis). We note VIVA
matches or outperforms EVA even when spending up to a minute
for training, since it spends less time on query execution. The arrow
shows the case for creating a TASTI [28] index, which is on the
order of seconds if frame embeddings are available. Proxy models
can be trained in tens to hundreds of seconds [25], which can still be
worth this additional upfront cost. Furthermore, caching this model
means VIVA only incurs a one-time training cost that can benefit
future queries as well. As noted in Section 5.4, VIVA considers this
training time when selecting the best plan to execute.

7.6 Optimizing Across Hardware Platforms

We now evaluate VIVA’s ability to generate and compare plans
for different hardware platforms. We consider three instances: a
standalone n1-highmem-16 (CPU), a n1-highmem-16 with a T4
GPU, and a n1-highmem-16 with a V100 GPU. We use the GCP
pricing for each: 0.66 $/hr for CPU, 0.91 $/hr for T4, and 2.40 $/hr
for V100 [14]. We use out-of-the-box GPU implementation and
fallback to CPU implementations if not available on the GPU. We
study three optimization goals: performance (fastest plan), cheapest
price, or best end-to-end performance per dollar. We use the Traffic
and TV News queries on the Event Present input.

Figure 8 shows the results where VIVA optimizes for perfor-
mance with the final dollar cost of the plan annotated. For Traffic
analysis, the T4 GPU is 1.8× faster than the CPU while being 30%
cheaper. While the T4 GPU instance is more expensive, the faster
execution means the instance can be provisioned for less time. Sim-
ilarly for News analysis, execution with the T4 is ∼2× faster and
42% cheaper. In both cases, the V100’s performance improvement
of ∼2× does not outweigh its high cost, 1.8× more expensive com-
pared to a CPU. As shown in Table 6, the optimizer chooses the
same plan in all cases since object detection can be significantly
accelerated on GPU compared to running on CPU and the latency
is the only variable when estimating cost. In this study, we do not
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tencies presented are the fastest plans given the available hardware.

Table 6: Hardware Platform Selection. Perf./$ normalized to CPU.

Chosen HW is bolded.
∗
Model executes on CPU if GPU selected.

App. Opt. Target (HW avail.) Selected Plan Perf./$

Perf. (CPU, T4, V100)
RP(Obj.) ∧ ObjTrack ∧ RP(TimeOfDay)∗

1.04
Traffic Cost (CPU, T4) 2.33

Cost (CPU, V100) 1.00
Perf. (CPU, T4, V100)

RP(Obj.) ∧ Face ∧ RPF(Emo.)∗ ∧ RP(Emo.)
1.31

News Cost (CPU, T4) 2.23
Cost (CPU, V100) 1.00

include mixed precision models that could take advantage of half-
precision units on the GPU. Such models can be defined as CAN
REPLACE hints and be considered during query optimization.

Table 6 shows the results when VIVA optimizes for cost. VIVA
selects a different hardware platform depending on hardware avail-
ability. Consistent with our previous results, when optimizing for
dollar cost, VIVA will favor a CPU plan if the accelerator available
is the V100 and favor the T4 over the CPU. When optimizing for
performance per dollar, VIVA will choose the T4 plan since it is up
to 2.3× better than the plans for CPU and V100.

8 RELATEDWORK

Accelerating Queries via Specialization. A large body of work
uses cheap approximations to accelerate specific classes of queries,
ranging from selection [26, 27, 36, 63], aggregation [25], and aggre-
gation with predicates [29]. There is also work on using embedding
indexes as cheap approximations [19, 28].VIVA is the first system to
provide a general interface, hints, that captures these optimizations
and their impact on complex query performance and accuracy.

Video Frame Sampling. Several projects have focused on decreas-
ing the amount of data models need to process via dynamic sam-
pling rates. MIRIS [3] executes object detection and object tracking
at reduced framerates and increases the framerate for low confi-
dence detections. ExSample [38] splits a video dataset into temporal
chunks and prioritizes processing chunks with higher probabilities
of finding a new object. It iteratively updates its estimates as more
frames are processed by leveraging an adaptive sampling algorithm
based on Thompson sampling [49]. Depending on the query type,
varying the sampling rate can affect the accuracy since lower sam-
pling rates may lead to missed objects. The optimizations enabled
by hints are orthogonal to existing sampling techniques.

Optimizing ML Execution and Storage. Systems such as Scan-
ner [42], VideoStorm [65], and Llama [48] have focused on optimiz-
ing DNN execution by efficiently utilizing hardware resources for
execution plans for video analytics. The scale-out and serverless
techniques underpinning these systems are complementary to opti-
mization with hints. Hence these systems can be integrated into,

or used instead of VIVA’s execution engine to further accelerate
queries. Several recent projects have also focused on optimizing as-
pects of video retrieval from storage and how video data are stored
and decoded [8, 16, 30, 61]. These techniques are also important for
end-to-end efficiency but are complimentary to this paper’s focus.

Functional Dependencies. Functional dependencies [22, 34] help
database designers automatically determine the relation of one
attribute to another. However, existing work is limited to struc-
tured data that can be easily analyzed to determine relationships.
Video analytics queries execute expensive DNNs over unstructured
records, which makes it infeasible to infer the relationships without
first materializing the results. Hints enable VIVA to consider addi-
tional query plans that can improve performance and cost without
having to first materialize the results.

Specifying Domain Knowledge. Providing extra knowledge to
a system to improve query execution is an idea with roots in the
early days of query processing. Hints most closely resemble early
work in semantic integrity constraints [33], and more generally
hints in existing database systems, such as MicrosoftSQL hints [37]
and MySQL hints [39]. A key difference from domain knowledge
for structured data is that ML models are probabilistic and require a
system to consider and provide accuracy guarantees. VIVA reasons
about the accuracy impact on plans using hints.

9 CONCLUSION

In this paper, we addressed the challenge of users having to manu-
ally explore performance-accuracy tradeoffs across combinations
of optimizations in video analytics queries with multiple predicates.
We proposed relational hints, a declarative interface to express ML
model relationships, informed by domain specific knowledge. Rela-
tional hints eliminate the need for users to manually rewrite their
queries when a new model becomes available and manually reason
about how the use and order of the various models available impact
their query’s performance and accuracy. To determine how and
when relational hints can be used to optimize queries, we designed
the VIVA video analytics system. VIVA uses hints that are validated
for each query to generate additional query plans using a formal
set of transformations, and selects the best performance plan that
meets user accuracy requirements. Using relational hints, we show
that VIVA over Spark improves performance up to 16.6× without
sacrificing accuracy for a range of complex queries.
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