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ABSTRACT
We present MegaBlocks, a system for efficient Mixture-of-Experts (MoE) training on GPUs. Our system is
motivated by the limitations of current frameworks, which restrict the dynamic routing in MoE layers to satisfy
the constraints of existing software and hardware. These formulations force a tradeoff between model quality and
hardware efficiency, as users must choose between dropping tokens from the computation or wasting computation
and memory on padding. To address these limitations, we reformulate MoE computation in terms of block-sparse
operations and develop new block-sparse GPU kernels that efficiently handle the dynamism present in MoEs. Our
approach never drops tokens and maps efficiently to modern hardware, enabling end-to-end training speedups of
up to 40% over MoEs trained with the state-of-the-art Tutel library and 2.4× over dense DNNs trained with the
highly-optimized Megatron-LM framework.

1 INTRODUCTION

Exploiting sparsity in the weights, activations and input data
of deep neural networks (DNNs) is an effective technique
for reducing the amount of computation that is needed to
achieve a given model quality (Han et al., 2015; Gale et al.,
2019). The past decade has seen significant progress in
algorithms and high-performance software to make spar-
sity practically useful (Gray et al., 2017; Narang et al.,
2017; Kalchbrenner et al., 2018; Elsen et al., 2020; Gale
et al., 2020). One area that remains a challenge for spar-
sity is efficient model training on accelerators. DNNs are
most commonly trained on hardware accelerators like GPUs
(NVIDIA, 2020) and TPUs (Jouppi et al., 2017), which
exploit the regularity of dense computation to deliver high
performance. Consequently, fine-grained sparse computa-
tion is less efficient on these processors. To enable efficient
computation on accelerators, structure can be enforced on
the sparse matrices (Narang et al., 2017; Gray et al., 2017;
Yao et al., 2019).

An emerging class of models with underlying structured
sparsity is Mixture-of-Experts (MoEs) (Shazeer et al., 2017).
Each layer in an MoE is a collection of experts, which are
themselves small DNNs. As data is passed through the
MoE layers, each token is dynamically routed to a subset
of the experts for computation. By exploiting this sparse
computation, MoEs have reduced training times by as much
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as 4× for applications in natural language processing and
computer vision (Artetxe et al., 2021; Riquelme et al., 2021).
These gains have translated to new levels of scale for model
training (Artetxe et al., 2021; Du et al., 2021; Fedus et al.,
2022).

The challenge in computing MoEs efficiently is handling
the dynamic routing and load-imbalanced1 computation that
are fundamental to these architectures. However, existing
hardware and software for deep learning make it difficult
to meet this challenge. For example, TPUs and their XLA
compiler require all tensor shapes to be known statically
and often struggle with fine-grained operations like scatters
and gathers (Fedus et al., 2022). These constraints make it
difficult to implement MoEs directly on TPUs. While GPUs
are more flexible, the sparse computation in MoEs does not
map cleanly to the software primitives supported in major
frameworks and libraries.

State-of-the-art frameworks for MoE training sidestep these
challenges by placing rigid constraints on MoE routing. In
order to remove the load imbalance from the computation,
the set of tokens mapped to each expert are trimmed or
padded to a user-specified size (Lepikhin et al., 2020; Fe-
dus et al., 2022; Hwang et al., 2022). This procrustean
formulation introduces a tradeoff between model quality
and hardware efficiency, as users must decide whether to
drop tokens or waste computation and memory on padding.
This decision is often made through hyperparameter tuning,
which increases the complexity of using MoEs.

To address these challenges, we develop an approach for

1Load imbalance results from different numbers of tokens being
routed to different experts. We discuss this in detail in §2 and §3.
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Figure 1. A Mixture-of-Experts Layer. Shown for num_experts=3, top_k=1 and capacity_factor=1 with the prevalent, token dropping
formulation. First (1), tokens are mapped to experts by the router. Along with expert assignments, the router produces probabilities that
reflect the confidence of the assignments. Second (2), the feature vectors are permuted to group tokens by expert assignment. If the
number of tokens assigned to an expert exceeds its capacity, extra tokens are dropped. Third (3), the expert layers are computed for the
set of tokens they were assigned as well as any padding needed for unused capacity. Last (4), the results of the expert computation are
un-permuted and weighted by the router probabilities. The outputs for dropped tokens are shown here set to zero.

MoE routing and computation based on sparse primitives.
Our approach never drops tokens and maps efficiently to
modern GPUs, enabling end-to-end training speedups of up
to 40% and 2.4× over state-of-the-art frameworks for MoE
and DNN training, respectively. We make the following
specific contributions:

• We show how the computation in an MoE layer can be
expressed as block-sparse operations to accommodate
imbalanced assignment of tokens to experts. We use
this formulation to train dropless-MoEs (dMoEs).

• We develop high-performance GPU kernels for block-
sparse matrix products that efficiently handle dynamic
MoE computation. Our kernels use two techniques,
blocked-CSR-COO encoding and transpose indices, to
enable efficient matrix products with sparse inputs and
outputs in transposed or non-transposed order.

We have implemented these techniques in a system called
MegaBlocks, which builds on the state-of-the-art Megatron-
LM library for training Transformer models (Shoeybi
et al., 2019). We evaluate our system through both mi-
crobenchmarks and end-to-end training of Transformer lan-
guage models. Our code is open source and available at
github.com/stanford-futuredata/megablocks.

2 BACKGROUND: MOE LAYERS

MoE layers are made up of many experts, which are them-
selves small neural networks. Each token2 is dynamically
routed to a subset of the experts for computation based on
scores computed by a router. The experts are commonly

2For natural language, training data is composed of tokens. For
vision, the data is typically pixels or patches (Dosovitskiy et al.,
2021). For simplicity, we use the term token throughput this paper.

small multi-layer perceptrons (MLPs). It is typical for to-
kens to be sent to a small number of experts, often between
1 and 4 (Fedus et al., 2022).

MoE layers are often interleaved with other DNN layers. In
Transformer models, MoE layers are most commonly used
to replace feed-forward network (FFN) layers3 (Shazeer
et al., 2017; Fedus et al., 2022). This hybrid architecture
has demonstrated strong results on both natural language
and vision tasks (Du et al., 2021; Riquelme et al., 2021).
It is conjectured that these improvements are a result of
experts specializing to different parts of the data distribution
(Shazeer et al., 2017).

We illustrate an MoE layer in Figure 1 and describe it in
detail in the remainder of this section.

2.1 Routing

The first stage of an MoE layer is the router, which is respon-
sible for determining the assignment of tokens to experts. In
addition to expert assignments, MoE routers also produce
probabilities for each assignment that reflect the confidence
of the mapping. These are encoded as a matrix of scores for
each token-expert pair, which are used to linearly combine
the top_k expert outputs for each token (see §2.4).

The most common MoE router is the learned router pro-
posed by Shazeer et al. (2017). In this router, the tokens are
projected from hidden_size elements to num_experts scores
by multiplying with a weight matrix that is learned jointly
with the other model parameters. The scores are normal-
ized with a softmax and the routing decisions are made by
greedily selecting the top_k scoring experts for each token.

3The attention layers are left unchanged.

https://github.com/stanford-futuredata/megablocks
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Figure 2. MoEs Trained on The Pile with Different Capacity
Factors. The loss reached by the MoE models decreases signifi-
cantly as expert capacity is increased, but at the cost of additional
computation. The lowest loss is achieved by the “max” capacity
factor model, which avoids dropping tokens through the dynamic
capacity factor mechanism proposed by Hwang et al. (2022).

2.2 Permutation

State-of-the-art MoE implementations compute all expert
layers in parallel in order to make effective use of the paral-
lelism available on GPUs and TPUs (Lepikhin et al., 2020;
Fedus et al., 2022; Hwang et al., 2022)4. The standard
primitive used by implementations is batched matrix mul-
tiplication, which computes a set of matrix products of the
same shape (Figure 3A). However, mapping MoE compu-
tation to this primitive is non-trivial. In order to respect
the shape constraints of batched matrix multiplication, the
experts must have weight matrices of the same shape and
the number of tokens assigned to each expert must be equal.
The latter constraint is particularly problematic because the
learned routing algorithm described above provides no guar-
antees of a load balanced assignment of tokens to experts.

In order to satisfy this constraint, prior work has defined a
fixed expert capacity, which is the number of tokens that
each expert can be assigned (Lepikhin et al. (2020); Fedus
et al. (2022)). If the number of tokens assigned to an expert
exceeds its capacity, the extra tokens are dropped. That is
to say, they are not passed to any expert for computation
and the model relies on a residual connection to reintroduce
the dropped tokens’ representations after the MoE layer.
If an expert layer is not assigned enough tokens to fill its
capacity, its set of tokens is padded to fill the remaining
space. Expert capacity is typically specified in terms of a
capacity_factor hyperparameter, which is a multiplier on
the expected number of tokens that would be assigned to
each expert under a perfect uniform distribution:

expert_capacity =
num_tokens
num_experts

× capacity_factor

4We benchmark a sequential implementation in Appendix A.

Table 1. Transformer Model Configurations. These models
are based on those used by Vaswani et al. (2017) and Brown
et al. (2020). FLOPs were calculated using the expression from
Narayanan et al. (2021b) with a single sequence of 1024 tokens.
All models use ffn_hidden_size=4×hidden_size.

Transformer hidden_size num_layers Weights (M) GFLOPs
XS 512 6 46 316

Small 768 12 125 879
Medium 1024 24 356 2487

Large 1536 24 760 5122
XL 2048 24 1316 8684

The capacity_factor can be thought of as a parameter that
reduces the chance of dropping a token. This hyperparam-
eter represents a tradeoff between additional computation
and model quality. As such, it is desirable to minimize the
amount of load imbalance in the assignment of tokens to ex-
perts (§3). The typical mechanism for doing so is auxiliary
load balancing losses, which incentivize the router to pro-
duce a balanced assignment (Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2022). These losses additionally
help to ensure that all experts see a similar number of tokens
during training. This is thought to be important to avoid de-
generate states where some experts are assigned zero tokens
and stop receiving gradient updates (Zhou et al., 2022).

In addition to enabling batched computation of the expert
layers, these constraints allow all tensor shapes to be known
statically, which is required by TPUs and XLA.

2.3 Computation

Once the data has been permuted, the experts can be com-
puted in parallel. For models where the experts are MLPs,
this entails computing each layer for all experts using
batched matrix multiplication. For convolutional experts,
the layers can be computed with grouped convolutions.

2.4 Un-permutation

After the experts are computed, the resulting feature vectors
are un-permuted such that their ordering matches that of the
input to the layer. The last step in MoE computation is to
scale the output tokens by the scores with which they were
assigned to their respective experts. When tokens are routed
to more than one expert, these weighted results are summed
to produce the final layer output for each token.

3 MOTIVATION: TOKEN DROPPING IN
MOES

Despite the use of load balancing losses, prior work has
shown that token routing is still highly imbalanced (Hwang
et al., 2022). To quantify the effect of token dropping on
model quality, we trained MoE language models on The
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Figure 3. Expert Computation in an MoE Layer. Shown with num_expert=3. (A) State-of-the-art MoE implementations use batched
matrix multiplication to compute all experts within a layer in parallel. This introduces the constraints that all experts are assigned the same
number of tokens and that all experts have the same shape. (B) Expert computation can be analogously posed in terms of block diagonal
matrix multiplication with identically sized blocks. (C) In order to relax these constraints, we can construct a block diagonal matrix with
variable sized blocks made up of many smaller blocks. We can compute this matrix efficiently using block-sparse matrix multiplication.

Pile (Gao et al., 2020) with a range of capacity factors. We
train Transformer MoEs similar to those used by Fedus et al.
(2022), where each model is a Transformer with the FFN
layers replaced with 64-expert MoE layers where each ex-
pert is a 2-layer MLP matching the original FFN dimensions.
We used top-1 routing and based our MoE model dimen-
sions on the Transformer-Small model described in Table
1. All models were trained using the tokenization from
GPT2 (Radford et al., 2019) for 10B tokens with sequence
length 1024, the Adam optimizer, and the learning rate and
gradient clipping settings from Shoeybi et al. (2019). We
trained all models on a single A100 GPU with a batch size
of 512 sequences. We trained MoEs with capacity factor
1, 1.5, and 2 as well as the dynamic capacity factor tech-
nique proposed by Tutel (Hwang et al., 2022), where the
capacity factor is set dynamically to the minimum value
that would avoid token dropping. As a baseline, we trained
standard Transformer models across a range of sizes. All
Transformer and MoE models have vocabulary size 51200,
sequence length 1024 and an attention head size of 64. Our
model configurations are summarized in Table 1 and the
results of the experiments are shown in Figure 2.

For these models, we observed that the impact of token
dropping is significant. While the MoE with capacity factor
of 1 achieved a 0.15 reduction in validation loss compared to
Transformer-Small, the MoE that avoided dropping tokens
provided a reduction of 0.26, 1.73× larger than the gain
of the former model and enough to exceed the quality of
Transformer-Medium.

While dropping tokens reduces model quality, increasing
capacity factor comes at the cost of additional computation
and memory. In this example, MoE-layer math operations
increased by over 2× in order to avoid dropping tokens.
Hwang et al. (2022) showed that some MoEs require capac-
ity factors as high as 11 in order to avoid dropping tokens,

and the necessary capacity factor to avoid dropping tokens
can spike unpredictably during training.

In addition to the computational overhead of increasing the
capacity factor, having to tune an additional hyperparameter
can significantly increase the number of models that need to
be trained for a target task. This is particularly cumbersome
for large neural networks, where the cost to train a single
model can run into the hundreds of thousands of dollars
(MosaicML, 2022). Possibly as a result of this, some large
studies on MoEs have declined to explore different capacity
factors at all (Artetxe et al., 2021; Clark et al., 2022).

4 NO-TOKEN-LEFT-BEHIND WITH BLOCK
SPARSITY5

This section describes how we formulate MoE layer compu-
tation in terms of block-sparse computation in order to avoid
dropping tokens. The motivation for using block-sparse
primitives to express MoE computation is manifold. First,
as we show below, block-sparse matrices are a natural and
flexible way of describing the dynamic and load-imbalanced
computation in MoEs. Second, block sparsity maps effi-
ciently to hardware accelerators built around systolic array
matrix multipliers like GPUs and TPUs. Since MoE experts
have coarse granularity, we can select a block size for our
implementation that is large enough to enable the compu-
tation to realize high fractions of peak device throughput.
Last, block-sparse kernels like matrix multiplication and
convolution are general-purpose primitives that are useful
across a range of applications (Narang et al., 2017; Gray
et al., 2017; Child et al., 2019; Elsen et al., 2020). This
makes investment in high-performance kernels more practi-

5The name No-Token-Left-Behind references the technique
briefly discussed by Fedus et al. (2022), which was an unsuccessful
attempt to regain the quality lost from dropping tokens.
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cal, as work can be amortized across target tasks. We could
similarly invest in variable sized batched matrix multiplica-
tion kernels, but the utility of this would be limited to MoE
architectures as they are designed today.

In addition to these considerations, the block-sparse formu-
lation of MoEs exposes a new perspective on these algo-
rithms as a form of dynamic, structured, activation sparsity.
This perspective draws parallels to much of the literature on
sparse training algorithms and opens up the opportunity to
further improve MoEs with insights from this adjacent field.

Preliminaries: Sparse Matrix Product Notation. In this
paper we often refer to matrix multiplication where one of
the three matrices (the two inputs and one output) is sparse
and the others are dense. We borrow the notation from
Triton Blocksparse (Tillet et al., 2019) to describe these
different operations. Each operation is described with a
three character string where each character is either “S” for
sparse or “D” for dense. The order of characters is output,
followed by the left input and then the right input. For exam-
ple, the product of two dense matrices with a sparse output
is “SDD”, which is also referred to as sampled dense-dense
matrix multiplication (SDDMM). This notation is useful to
distinguish operations like DSD and DDS, which are dif-
ferent forms of sparse matrix-dense matrix multiplication
(SpMM). Superscript “T” indicates transposition of the in-
put arguments. For example, SDDT indicates an SDD where
the right-hand input matrix is transposed.

4.1 Expert Computation With Block Sparsity

The key insight behind our method is shown in Figure 3.
Rather than the prevailing approach of computing the ex-
perts within an MoE layer using batched matrix multiplica-
tion, we can equivalently compute the experts as an SDD
product where the output sparse matrix has block diagonal
structure, as shown in Figure 3B. In this formulation, allow-
ing for a load-imbalanced assignment of tokens to experts is
analogous to allowing the blocks in the block diagonal ma-
trix to have a variable number of rows. To achieve this, we
propose to compute each block as many smaller fixed size
blocks using block-sparse matrix multiplication, as shown in
Figure 3C. To construct multi-layer experts, we can iterate
between SDD and DSD operations (see Figure 4).

In this formulation, we can also relax the constraint on the
number of columns in each block to build MoE layers with
variable sized experts, as is shown in Figure 3C. While this
is an interesting direction for future work, we did not explore
these configurations as more research is needed to identify
how this capability can be used to increase efficiency.

With sufficiently large blocks, block-sparse matrix multipli-
cation is capable of reaching high fractions of peak through-
put on modern GPUs (Gray et al., 2017; NVIDIA, 2021).

1 # x.shape: (num_tokens, hidden_size)
2 def dmoe_forward(self, x):
3 # (1) Assign tokens to experts.
4 #
5 # indices.shape: (num_tokens)
6 # weights.shape: (num_tokens)
7 indices, weights = router(x)
8
9 # (2) Create the sparse matrix topology.

10 #
11 # This describes the matrix in Figure 3C.
12 topology = make_topology(indices)
13
14 # (3) Permute the tokens to group by expert.
15 x = padded_gather(x, indices)
16
17 # (4): Compute the expert layers.
18 #
19 # inner_dim = ffn_hidden_size * num_experts
20 # self.w1.shape: (hidden_size, inner_dim)
21 # self.w2.shape: (inner_dim, hidden_size)
22 x = sdd(x, self.w1, topology)
23 x = dsd(x, self.w2)
24
25 # (5) Un-permute the tokens and scale.
26 x = padded_scatter(x, indices)
27 return x * weights

Figure 4. Pseudo-Code for a dMoE. The code follows Figure 1
with three changes. First, we construct the sparse matrix topology
from Figure 3C from expert assignments (line 12). Second, we pad
each expert batch to a multiple of the block size during permutation
(line 15, §5.2). Last, we compute the experts in parallel by iterating
between SDD and DSD operations (lines 22-23, §4.1).

The coarse-grained sparsity in MoEs lends itself to this re-
quirement – in Transformer models using MoE FFN layers,
the number of columns in the blocks shown in Figure 3B cor-
responds to ffn_hidden_size, which is commonly between
1024 and 8192 (Vaswani et al., 2017; Radford et al., 2019;
Brown et al., 2020). The number of rows in these blocks
corresponds to the number of tokens assigned to each expert,
which is expected to be equal to the number of tokens di-
vided by the number of experts under a uniform distribution.
This can range from a few thousand to tens of thousands of
tokens per expert (Lepikhin et al., 2020; Artetxe et al., 2021;
Fedus et al., 2022). These coarse-grained blocks are many
times larger than the largest tile dimensions used for dense
matrix multiplication kernels, which give us the flexibility
to select a block size that can match their throughput.

4.2 Dropless Mixture-of-Experts Layers

We use this formulation of expert computation as block-
sparse operations to implement dropless-MoE (dMoE) lay-
ers. Figure 4 highlights the key differences in dMoE imple-
mentation relative to standard MoEs. Steps 1, 3 and 5 are
identical to a standard MoE implementation. dMoE intro-
duces two changes. First, in step 2, we construct the sparse
matrix shown in Figure 3C. Second, in step 4, we replace
calls to batched matrix multiplication with block-sparse ma-
trix multiplication. We describe the implementation of these
two changes in detail in §5.2 and §5.1, respectively.
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5 MEGABLOCKS: A FRAMEWORK FOR
EFFICIENT MOE TRAINING

We implemented our techniques in a system called
MegaBlocks, which builds on Megatron-LM (Shoeybi et al.,
2019) and PyTorch (Paszke et al., 2019). In addition to
high-performance dMoE layers, our system supports dis-
tributed training of MoEs with both data and expert model
parallelism (Fedus et al., 2022).

This section discusses the design of our dMoE implementa-
tion, including our block-sparse kernels, and other consid-
erations for building an efficient system. §5.1.1 discusses
the limitations of existing block-sparse kernels. §5.1.2 ana-
lyzes the effects of the block size on block-sparse product
performance. §5.1.3 describes our hybrid blocked-CSR-
COO sparse matrix format, which enables efficient matrix
products with sparse input and output operands. §5.1.4
introduces transpose indices as a mechanism for efficient
iteration over block-sparse matrices in transposed order.
§5.2 discusses efficient routing and permutation for dMoEs.
Last, §5.3 discusses our implementations of data and expert
model parallelism.

Preliminaries: Matrix Multiplication on GPUs. Matrix
multiplication kernels on GPUs exploit tiling, where the out-
put matrix is broken up into statically sized two-dimensional
blocks of values (NVIDIA, 2022c). The computation of
these tiles can be parallelized, and the individual tiles can be
sized to tradeoff arithmetic intensity and parallelism. The
group of threads assigned to a tile is called a threadblock.

5.1 Efficient Block-Sparse Kernels for MoEs

To train MoEs with block-sparse kernels we need primitives
for the forward and backward passes. Consider an MoE
FFN layer where each expert is a 2-layer MLP. For this
configuration, the forward pass requires an SDD operation
followed by a DSD (Figure 4). For the backward pass, we
compute SDDT and DSTD for the second layer data gradient
and weight gradient, respectively, followed by DSDT and
DDTS for the first layer data gradient and weight gradient,
respectively.

5.1.1 Existing Block-Sparse Primitives

We considered two existing libraries for block-sparse matrix
multiplication on GPUs: NVIDIA cuSPARSE (NVIDIA,
2022b) and Triton Blocksparse (Tillet et al., 2019). cuS-
PARSE supports the blocked-ELL sparse matrix format for
DSD. However, as of CUDA 11.8, this operation does not
support transposition of the sparse matrix input. cuSPARSE
also provides no SDD primitive with a blocked-ELL matrix.
In addition to these limitations, the blocked-ELL format
requires that all rows in the sparse matrix have the same
number of non-zeros, which would defeat our goal of sup-

512 1024 2048 4096 8192 16384
Square Matrix Side Length

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
t o

f P
ea

k 
Th

ro
ug

hp
ut

64x64
128x64
128x128
256x64
256x128

Figure 5. Matrix Multiplication Throughput with Different Tile
Dimensions. Benchmarked on an A100 SXM4 80GB GPU with
CUDA 11.5 and all tile dimensions supported by CUTLASS 2.5.
We observe that 128x128 tiles perform consistently on-par or better
than other configurations.

porting load imbalanced matrices. Blocksparse supports
SDD, DSD, and DDS as well as all combinations of trans-
posed and non-transposed inputs. However, these primitives
assume that the topology of the sparse matrices does not
change between invocations6. The library API takes a bit-
mask describing the sparse operand and then pre-computes
look-up tables and block groupings to accelerate computa-
tion. For our use case, the sparse matrix topology varies
across every iteration of training and every MoE layer in the
model. In order to use Blocksparse, we would have to pay
the cost of these preprocessing steps repeatedly.

Based on this analysis, we opted to write our own block-
sparse primitives in order to tailor them to MoE expert
computation. We implemented SDD, DSD, and DDS op-
erations targeting NVIDIA GPUs. Our kernels support all
combinations of transposed and non-transposed inputs. The
remainder of this section details the design and implementa-
tion of our kernels.

5.1.2 Selecting Block Size for MoEs

In order to efficiently use modern GPUs, we want to use
sparse blocks that have sufficient arithmetic intensity to
keep matrix multiplication units busy. Large blocks are also
desirable to amortize the cost of storing and operating on
sparse matrix metadata, since metadata like column indices
only need to be kept for each block of non-zeros.

To select our target block size, we studied the performance
of dense matrix multiplication kernels from NVIDIA CUT-
LASS (NVIDIA, 2022c) with different tile dimensions. We

6This is likely because they were written for applications like
sparse attention where the sparse matrix topology is determined
prior to training (Child et al., 2019).
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benchmarked mixed-precision (FP16 + FP32 accumulation)
matrix multiplication on square matrices with power of two
side lengths from 512 to 16384 and every set of tile di-
mensions supported in CUTLASS. For rectangular tiles,
we show only the configurations where the first tile dimen-
sion is larger as we found these to slightly outperform the
alternative ordering for these problems. We ran all bench-
marks on an A100 SXM4 80GB GPU with CUDA 11.5 and
CUTLASS 2.5. These benchmarks are shown in Figure 5.

Across these benchmarks, we observed that 128x128 tiles
consistently perform on par or better than other configura-
tions. Anecdotally, we observe that this same configura-
tion is commonly selected by NVIDIA cuBLAS (NVIDIA,
2022a) for the dense Transformer models we studied. Based
on this analysis, we opted to use 128x128 block sparsity.
While the tile dimensions of a block-sparse matrix multipli-
cation and the block size in the sparse matrix do not need
to be equal, we found that for 128x128 blocks the high-
est performing tile dimensions in our workloads were also
128x128.

To implement our kernels, we extended CUTLASS
(NVIDIA, 2022c) to support block-sparse matrices and
reused their machinery for high-performance matrix multi-
plication with different data types and GPU architectures.

5.1.3 Computing Sparse Outputs With Hybrid
Blocked-CSR-COO

We use blocked compressed sparse row (BCSR) as our pri-
mary sparse matrix format. BCSR makes it simple to iterate
across the non-zeros in a row, which is necessary for op-
erations like DSD and DDST. Iterating over blocks also
has minimal overhead with BCSR, as identifying a block’s
position in the matrix only requires a single load of its col-
umn index. We discuss our approach for efficiently iterating
across the non-zeros in a column with this format in §5.1.4.

One challenge with BCSR sparse matrices is efficiently
computing SDD operations in parallel. On kernel launch,
each threadblock needs to identify the row and column of
its output block so that it knows which rows and columns of
the input matrices are needed to compute it. Because BCSR
only encodes column indices for each block, identifying the
row index of a non-zero block requires a search through
the row offsets. One solution to this problem is to launch
the maximum number of threadblocks that could be needed
to compute each row of the output if it were fully dense.
On startup, each threadblock can check whether its column
offset is out of range for the number of non-zeros in its
row and return if there is no work to do. Gale et al. (2020)
showed that the overhead introduced by launching extra
threadblocks was negligible for moderately sparse matrices
(50 - 90% zeros). We experimented with this approach but
observed that for MoEs the cost of launching these unused
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Figure 6. Block-Sparse Matrix Format used in MegaBlocks.
Pane (B) shows the encoding for the sparse matrix in pane (A).
Indices and offsets in our encoding are block-wise. We use blocked
compressed sparse row (BCSR) as our primary sparse matrix for-
mat. We additionally store the row indices of each non-zero block
(§5.1.3) and a secondary index of transpose indices (§5.1.4).

threadblocks was significant, particularly for models with
high expert counts where the level of sparsity in the block-
sparse matrices is very high.

To efficiently parallelize SDD, we additionally materialize
the row indices for each non-zero block so that threadblocks
can trivially look up the coordinates of sparse blocks in
the output matrix. The storage required for this additional
metadata is negligible since we only need to store one index
per 16384 non-zero values in a 128x128 block. Even with
this additional metadata, we maintain the row-wise ordering
of non-zero blocks so the matrix can be operated on as either
BCSR or blocked coordinate format (BCOO). We illustrate
this hybrid blocked-CSR-COO encoding in Figure 6.

5.1.4 Block-Sparse Transposition With Transpose Indices

Computing forward and backward passes for model train-
ing requires sparse matrix transposition. However, iterating
over BCSR matrices in transposed order requires searching
through each row to identify if the block in the target col-
umn is non-zero (Buluç et al., 2009). We could materialize
a transposed version of the sparse matrix explicitly, but this
would incur runtime and storage costs as all of the non-zero
values in the matrix would need to be copied. To enable
efficient iteration over BCSR matrices in transposed order,
we construct the metadata for the transposed matrix. The
transposed metadata is equivalent to a blocked compressed
sparse column (BCSC) encoding of the matrix, which in-
cludes row indices for each sparse block and column offsets,
which encode the offset of each compressed column of non-
zero blocks in memory. We already materialize non-zero
block row indices for our BCOO encoding, so the column
offsets are the only additional metadata needed for this en-
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coding. We do not explicitly transpose the non-zero values.
Instead, we construct an array of indices, one for each non-
zero block, which are stored in transposed order and contain
the offset of each non-zero block in memory. This addi-
tional metadata allows efficient iteration through the matrix
in transposed order with a layer of indirection, as shown in
Figure 6.

This idea is similar to a secondary index in a database, which
allows efficient access to entries in a different order than the
primary index. Similar to our hybrid Blocked-CSR-COO
encoding, this technique relies on the fact that storage and
computation is many times cheaper for metadata than it
is for non-zero values thanks to our large block sizes. In
total, the additional memory usage of our encoding metadata
is <0.1% thanks to our 128x128 block sizes. We include
pseudo-code for our SDD and DSD kernels in Appendix B.

5.2 Efficient Routing and Permutation

As currently implemented, our block-sparse matrix multipli-
cation kernels require the number of tokens assigned to each
expert to be a multiple of the block size. In order to respect
this constraint, we pad each group of tokens with zeros to
the nearest multiple of 128 and fuse this operation into cus-
tom permutation kernels. We could remove this constraint
by supporting partial blocks at the fringes of the problem
similar to how matrix multiplication handles matrices that
are not divisible by the tile dimensions. However, the per-
formance impact of this feature would be minimal given we
expect the number of tokens assigned to each expert to be
thousands or tens of thousands.

Once the expert assignments have been computed by the
router, we create the metadata for the block-sparse matrix
using a custom CUDA kernel. We additionally construct the
transposed metadata at this time to amortize the cost over
the multiple block-sparse matrix multiplications that use it
across forward and backward computation.

5.3 Data and Expert Model Parallelism

One common technique for parallelizing MoE training
across multiple devices is expert model parallelism, where
the MoE layers are partitioned such that each device only
stores a subset of the experts (Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2022; Hwang et al., 2022). In
this scheme, the permutation and un-permutation steps of
MoE layer execution become cross-device operations that
are typically implemented with the all-to-all primitive from
the MPI standard (Message Passing Interface Forum, 2021).
This approach to training helps reduce memory usage by re-
ducing the number of copies of the large MoE layer weight
matrices that need to be stored in limited on-device acceler-
ator memory. Since each device aggregates tokens assigned
to its experts from the other expert model-parallel devices,

Table 2. MoE Model Configurations. These models correspond
to the Transformer configuration of the same size, but with each
FFN layer replaced with a 64-expert MoE layer.

MoE num_experts top_k Weights (M) GFLOPs
XS 64 1 839 316

Small 64 1 3,693 879
Medium 64 1 13,041 2487

Table 3. Micro Batch Sizes Used for Model Training. We used
the largest micro_batch_size that fit in memory for all experiments.

Model micro_batch_size

Megatron-LM

Transformer-XS 64
Transformer-Small 32

Transformer-Medium 16
Transformer-Large 16
Transformer-XL 8

MegaBlocks
dMoE-XS 64

dMoE-Small 32
dMoE-Medium 8

Tutel
dMoE-XS 32

dMoE-Small 8
dMoE-Medium 1

the expert layers will be computed with batch sizes that are
larger by a factor equal to the number of devices the MoE
layer is partitioned over. This helps maintain computational
throughput on accelerators that require large amounts of
arithmetic intensity and parallel work to realize their com-
putational capability.

MegaBlocks supports distributed training of MoEs with
both data and expert model parallelism (Fedus et al., 2022).
Data parallel training for MoE and dMoE layers is the
same as standard neural neural network layers and we reuse
Megatron-LM’s data parallelism implementation.

Our expert model parallelism implementation follows Fedus
et al. (2022) and Hwang et al. (2022), but we first commu-
nicate how many tokens will be received by each device to
avoid dropping/padding tokens for the all-to-all communi-
cation step.

6 EXPERIMENTS

This section analyzes the performance of our system com-
pared to state-of-the-art libraries, Microsoft Tutel (Hwang
et al., 2022) and NVIDIA Megatron-LM (Shoeybi et al.,
2019), for training Transformer MoEs and standard Trans-
formers respectively. In order to ensure fair comparisons,
we extended Megatron-LM to additionally support MoE
training using Tutel’s MoE layer. All experiments were con-
ducted on NVIDIA A100 SXM4 80GB GPUs with CUDA
11.5, CUTLASS 2.5 and used mixed-precision training (Mi-
cikevicius et al., 2018) as implemented in Megatron-LM.

Our analysis is organized into three components. First,
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Figure 7. MegaBlocks dMoEs, Tutel dMoEs and Megatron-LM
Transformers Trained on The Pile. MegaBlocks uses block-
sparse operation to handle the dynamic and load imbalanced com-
putation in MoEs, which enables 1.38×, 2.0× and 4.35× end-
to-end training speedups for MoE-XS, MoE-Small, and MoE-
Medium respectively compared to the padding-based approach
used by Tutel. The advantage of our approach increases with the
size of the model, as the memory requirements of padding ex-
pert batches forces Tutel to use smaller micro_batch_sizes which
decreases hardware efficiency. Compared to dense Transformer
language models, MegaBlocks achieves 1.8× - 2.4× end-to-end
training speedups for the same validation loss across these models.

§6.1 compares our dMoE method to existing techniques for
avoiding token dropping during MoE training. Next, §6.2
studies the performance of our method compared to MoEs
with tuned capacity factor. Last, §6.3 compares the perfor-
mance of our block-sparse matrix multiplication kernels to
cuBLAS batched matrix multiplication. As explained in
§4.2, the primary difference between dMoE and MoE lay-
ers is the use of block-sparse matrix multiplication instead
of batched matrix multiplication. Thus, this comparison
serves as an ablation demonstrating the difference in per-
formance between dMoE and MoE layers independent of
model quality.

Appendices A and C include additional benchmarks against
a sequential MoE implementation and a comparison of our
block-sparse kernels with Triton Blocksparse.

6.1 MoE Training Without Dropping Tokens

To assess the efficiency of our technique for avoiding token
dropping, we compared to the dMoE method proposed by
Hwang et al. (2022) where the capacity factor is set dynami-
cally to the minimum value that avoids token dropping.

We trained decoder-only Transformer language models on
The Pile (Gao et al., 2020) with the same hyperparameters
described in §3. For Transformer MoEs, we trained models
scaled from our XS, Small, and Medium models with each
FFN layer replaced with 64-expert MoE layers using top-1
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Figure 8. MegaBlocks dMoEs, Tutel MoEs and Megatron-LM
Transformers Trained on The Pile. Even with the most efficient
capacity_factor for each MoE, MegaBlocks reduces the training
time required to reach a given validation loss by 1.38×, 1.37× and
1.18× for MoE-XS, MoE-Small and MoE-Medium respectively.
In addition to these speedups, our approach reduces the cost of
using MoEs by decreasing the number of hyperparameters that
need to be re-tuned for each model and task.

routing. We also trained standard Transformer models from
46M to 1.3B parameters, equivalent to Transformer-Base
(Vaswani et al., 2017) up to GPT3-XL (Brown et al., 2020),
as a dense baseline. We trained all models on 8 A100 SXM4
80GB GPUs using 8-way expert model parallelism for MoE
layers and data parallelism for all other layers. We use
gradient accumulation for all models and train with a batch
size of 512 sequences and the largest micro_batch_size that
does not run out of memory (Narayanan et al., 2021a). Our
model configurations are summarized in Tables 1 and 2. For
each model, we report the end-to-end training time and final
loss achieved on a validation set in Figure 7.

Compared to the prevalent padding-based approach for
avoiding token dropping, our technique for adaptive MoE
computation with block sparsity enables end-to-end training
speedups of 1.38×, 2.0× and 4.35× for MoE-XS, MoE-
Small, and MoE-Medium, respectively. In addition to com-
putational overhead, the padding-based approach imple-
mented in Tutel significantly increases the amount of mem-
ory required to store activations in the MoE layers. This
is particularly problematic because MoEs already require
many times more storage for their large weight matrices
compared to standard Transformers. For these models, we
observed this increase in memory usage reduced the maxi-
mum micro_batch_size that Tutel could use by 2×, 4×, and
8× compared to MegaBlocks for MoE-XS, MoE-Small, and
MoE-Medium, respectively. This in turn increases training
time because of reduced hardware efficiency. As a result,
we observe that the advantage of MegaBlocks over Tutel
grows with model size. The micro_batch_size used for each
model configuration are shown in Table 3.
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Figure 9. Block-Sparse Matrix Multiplication Throughput Compared to cuBLAS Batched Matrix Multiplication. Benchmarked for
the problem configurations used in training MoE-XS, MoE-Small and MoE-Medium models. For these problems, our block-sparse matrix
multiplication kernels realize 98.6% of the throughput achieved by cuBLAS on average with a standard deviation of 4% and a maximum
and minimum relative throughput of 104% and 91% respectively.

Compared to dense Transformer models trained with
Megatron-LM, dMoEs trained with MegaBlocks reduce
the training time required to reach a given validation loss
by 1.8× - 2.4×. The variation in this comparison is primar-
ily a result of the increased weight memory usage of MoE
models, which forced MegaBlocks to use a 2× smaller mi-
cro_batch_size for MoE-Medium than the analogous Trans-
former model. These results highlight the importance of
reducing memory usage in MoEs as future work.

For these Transformer models, we observed that Megatron-
LM sustains between 21% and 48% of the 2.5 petaFLOP
peak throughput of this 8-GPU system with efficiency
increasing with model size. The speedups achieved by
MegaBlocks over this state-of-the-art framework demon-
strates the efficiency of our system and the efficacy of MoEs.

6.2 MoE Training With Token Dropping

We additionally compare our dMoE models to token-
dropping MoEs trained with Tutel. In order to find the
most efficient configurations, we trained MoE-XS, MoE-
Small and MoE-Medium models with capacity factors of
1×, 1.5×, and 2× for a total of 9 additional models. For
these configurations, all token-dropping MoE models were
able to use the same micro_batch_size as the analogous
dMoE without running out of GPU memory. We report
the end-to-end training time and validation loss for these
models, our dMoEs and dense Transformers in Figure 8.
Comparing MoEs and dMoEs for the same accuracy is
non-trivial since token dropping degrades model quality.
For each dMoE, we estimated the runtime of the MoE that
would achieve the same validation loss by comparing to the
loss-equivalent point on the MoE Pareto frontier.

Even with the most efficient capacity_factor for each MoE,
dMoEs trained with MegaBlocks reduce the training time
required to reach a given validation loss by 1.38×, 1.37×
and 1.18× for MoE-XS, MoE-Small and MoE-Medium,

respectively. In addition to significant reductions in end-
to-end training time, our system reduces the cost of using
MoEs by decreasing the number of hyperparameters that
need to be re-tuned for each model and task. These compu-
tational savings could in turn be applied to exploring other
parameters to further improve model quality.

For MoE-Medium, we observe some loss of efficiency in our
implementation due to the relatively small micro_batch_size
that could be used while fitting in limited GPU memory. For
small batch sizes, smaller tile dimensions (e.g., 64x128 or
64x64) in our block-sparse kernels could improve perfor-
mance by reducing the amount of wasted computation when
the problem dimensions are not divisible by 128. Another
direction for increasing efficiency is to reduce the memory
usage per device such that larger batch sizes can be used, ei-
ther through parallelization over more devices or techniques
like selective recomputation (Korthikanti et al., 2022).

6.3 Block-Sparse Matrix Multiplication Performance

To assess the quality of our block-sparse matrix multiplica-
tion kernels, we benchmarked the problem configurations
used in training MoE-XS, MoE-Small and MoE-Medium
models and compared to cuBLAS batched matrix multipli-
cation. This includes the forward pass, backward weights,
and backward data operations for the two layers in each FFN
layer. In total, we benchmark 18 problems – 6 problems
for each of the 3 models. To allow for comparison with
batched matrix multiplication, we benchmarked each prob-
lem with a uniform distribution of tokens to experts and the
same micro_batch_size listed in Table 3. For each problem,
we averaged throughput over 100 executions. We do not
include the time taken to construct the sparse matrix meta-
data in these benchmarks as these operations amortize over
all 6 problems within an FNN layer. The results of these
benchmarks are shown in Figure 9. We include benchmark
results with Triton Blocksparse in Appendix C.
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On these problems, we observe that our block-sparse kernels
are able to realize 98.6% of the throughput of cuBLAS
with a standard deviation of 4%. The maximum relative
throughput was 104% and the minimum was 91%. Overall,
our kernels slightly outperformed cuBLAS on half of the
problems and slightly underperformed on the other half.

While benchmarking CUTLASS, we observed that altering
the order in which tiles of the output matrix are computed
can change the throughput of the operation by as much as
10% due to L2 caching effects. We believe that most of the
performance discrepancy in these results can be attributed to
the re-ordering of computation that occurs with block-sparse
matrices, although further investigation is needed.

One case where we note additional overhead is in the DSTD
operations used to compute weight gradients. Because we
use a secondary index to iterate over the sparse operand in
transposed order the access patterns when iterating through
this matrix exhibit little spatial locality which in turn reduces
the throughput of the overall operation. While this is an
interesting problem for further study, the overall impact
on model performance is minimal because of the limited
opportunity for improvement (<10%) combined with the
relatively small amount of end-to-end runtime that these
two operations represent.

7 RELATED WORK

In this section, we discuss relevant related work.

MoE Routing. Improved routing algorithms for MoEs is
an active area of research. BASE layers formulate MoE
routing as a linear assignment problem trying to maximize
the aggregate token-expert affinities under the constraint of
a perfectly balanced assignment (Lewis et al., 2021). This
method guarantees no tokens are dropped by re-routing to-
kens to different experts as needed. Clark et al. (2022) found
that BASE layers can incur significant runtime overhead and
proposed an approximate version using the Sinkhorn algo-
rithm. Because their approximation is no longer guaranteed
to avoid token dropping, Clark et al. (2022) use a capacity
factor of 2 for all experiments. Other techniques have been
proposed to statically decide tokens to expert mappings
ahead of time based on hash functions (Roller et al., 2021).
However, Clark et al. (2022) observed that this approach
did not perform as well as the other routing algorithms they
studied. More recently, Zhou et al. (2022) proposed to re-
verse the routing problem such that each expert selects its
top_k scoring tokens. While this guarantees a load balanced
assignment of tokens to experts, this method still suffers
from token dropping because the same token can be selected
by multiple experts. We expect that improved routing al-
gorithms complement our method for efficient and flexible
expert computation. Exploring how these methods could be

combined is an interesting direction for future research.

High-Performance MoEs. To scale MoE training, Tutel im-
plements optimized distributed communication primitives
for MoEs and techniques for hiding the communication
costs of expert model parallelism (Hwang et al., 2022). He
et al. (2022) proposed FasterMoE, a system for distributed
training of MoEs based on efficient communication strate-
gies and changes to the MoE routing algorithm to avoid
network congestion. Shen et al. (2022) introduced commu-
nication prefetching and fusion optimizations to scale MoEs
over large-scale distributed systems. Our implementation
could additionally benefit from these techniques, particu-
larly for large-scale distributed training.

Sparse Kernels. Sparse matrix formats that allow for effi-
cient transposed access are well studied (Buluç et al., 2009;
Smith & Karypis, 2015; Li et al., 2018). Exploring how
these formats can be adapted to large block sparsity on
modern GPUs is an interesting direction for future research.

Large-Scale MoEs. Du et al. (2021) and Fedus et al. (2022)
demonstrated significant efficiency wins with MoEs com-
pared to dense neural networks at extremely large scale. In-
vestigating how our methods could contribute in this regime
is an interesting direction for future work.

8 CONCLUSION

We introduced MegaBlocks, a system for efficient MoE
training on GPUs. Our system is based on a reformulation
of MoEs in terms of block-sparse operations and new, block-
sparse GPU kernels that efficiently handle the dynamism
present in MoEs. Our approach never drops tokens and maps
efficiently to modern hardware accelerators, enabling end-
to-end training speedups of up to 40% over MoEs trained
with the state-of-the-art Tutel library and 2.4× over DNNs
trained with the highly-optimized Megatron-LM framework.
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Figure 10. dMoEs Comparison With Megatron-LM
SwitchMLP. MoE layer forward pass benchmarked on an
A100 SXM4 80GB GPU with CUDA 11.5, batch_size=16,
sequence_length=1024, and hidden_size=768. While SwitchMLP
is also able to avoid dropping tokens by computing experts sequen-
tially, its performance degrades rapidly with increasing expert.
With num_experts=2, dMoE is 15% faster than SwitchMLP. This
advantage grows to 20× with num_experts=128.

A COMPARISON WITH SEQUENTIAL MOE
IMPLEMENTATION

Figure 10 shows the execution time of the forward pass of
dMoE compared to SwitchMLP, an MoE layer implemen-
tation in Megatron-LM where the experts are computed in
sequence using standard (non-batched) matrix multiplica-
tion. While SwitchMLP is also able to avoid token drop-
ping, its performance degrades rapidly with increased ex-
pert count. As token computation is spread out over more
experts, the size of each individual matrix multiplication
decreases to the point where a single expert’s computation
does not fully utilize the GPU. Modern GPUs are unable to
schedule more than a small number of independent kernels
concurrently, so the individual expert computations serialize
and execution time grows linearly with expert count despite
no increase in the theoretical number of math operations
that need to be computed. With num_experts=2, dMoE is
15% faster than SwitchMLP. This advantage grows to 20×
with num_experts=128.

B PSEUDO-CODE FOR BLOCK-SPARSE
KERNELS

Figures 11 and 12 show CUDA pseudo-code for our SDD
and DSD kernels, respectively. The DDS operation follows
DSD closely, but with the two inputs swapped. Both figures
show pseudo-code for the case where neither input matrix
is transposed. Our approach for handling transposition of
the sparse matrix input in DSD and DDS is described in

§5.1.4. Relative to Figure 12, this technique adds a layer
of indirection to the tile loading from matrix a inside the
main loop. Concretely, we load the offset of the next non-
zero block in the threadblock’s row from the transpose
indices shown in Figure 6 prior to loading the block for
computation.

C COMPARISON TO TRITON
BLOCKSPARSE

Figure 13 compares our block-sparse matrix multiplication
kernels to the kernels available in Triton Blocksparse on
the problems shown in Figure 9. We benchmarked with
the same setup described in §6.3 with Triton 2.1. For these
benchmarks, we included the time spent preprocessing the
sparse matrix topology on each invocation since the topol-
ogy of the sparse matrix in dMoE layers changes every
iteration of training. If this preprocessing cost is excluded,
our kernels outperform Triton Blocksparse by 1.17× on
average. This advantage, despite no preprocessing of the
sparse matrix, highlights the efficiency of our kernels for
this workload.

D ARTIFACT APPENDIX

D.1 Abstract

MegaBlocks is available on GitHub. This appendix explains
how to run the test suite for the MegaBlocks dMoE layer.

D.2 Artifact check-list (meta-information)
• Program: megablocks/layers/dmoe_test.py.
• Run-time environment: Docker.
• Hardware: Nvidia A100 GPU.
• Execution: python megablocks/ layers /dmoe_test.py.
• How much time is needed to prepare workflow (approxi-

mately)?: 5 minutes.
• How much time is needed to complete experiments (ap-

proximately)?: 30 seconds.
• Publicly available?: github.com/stanford-

futuredata/megablocks.
• Code licenses (if publicly available)?: Apache-2.0.

D.3 Description

D.3.1 How delivered

The repository is hosted on GitHub at github.com/stanford-
futuredata/megablocks. An archival version of the respository
is available at doi.org/10.5281/zenodo.7883726.

D.3.2 Hardware dependencies

Nvidia A100 GPU.

D.3.3 Software dependencies

Docker. All dependencies handled by Dockerfile.

https://github.com/stanford-futuredata/megablocks/blob/main/megablocks/layers/dmoe_test.py
https://github.com/stanford-futuredata/megablocks/blob/main/Dockerfile
https://github.com/stanford-futuredata/megablocks
https://github.com/stanford-futuredata/megablocks
https://github.com/stanford-futuredata/megablocks
https://github.com/stanford-futuredata/megablocks
https://doi.org/10.5281/zenodo.7883726
https://github.com/stanford-futuredata/megablocks/blob/main/Dockerfile
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D.4 Installation

Follow “Training Models with Megatron-LM”.

D.5 Evaluation and expected result

Once inside the Docker container with MegaBlocks installed
(§D.4), run ‘python megablocks/ layers /dmoe_test.py’. After
passing, the test suite will print “OK”.

1 /** Sparse = Dense x Dense.
2 *
3 * Arguments:
4 * a: Dense, left input with shape (m, k).
5 * b: Dense, right input with shape (k, n).
6 * c: Sparse, output with shape (m, n).
7 */
8 __global__ void sdd(Matrix a, Matrix b,
9 SparseMatrix c) {

10 // (1) Load row and column indices.
11 //
12 // These indicate the location of the non-
13 // zero block computed by this threadblock.
14 int row = c.row_idxs[blockIdx.x];
15 int column = c.column_idxs[blockIdx.x];
16
17 // (2) Zero accumulator tile.
18 Tile<128, 128> tile_c(/*init_to=*/0);
19
20 // (3) Main loop.
21 //
22 // Load tiles from a & b and compute.
23 int k = a.shape[1];
24 for (int i = 0; i < k; i += 128) {
25 Tile<128, 128> tile_a = LoadTile(
26 a, /*row=*/row, /*column=*/i);
27 Tile<128, 128> tile_b = LoadTile(
28 b, /*row=*/i, /*column=*/column);
29 tile_c += tile_a * tile_b;
30 }
31
32 // (4) Write output for this non-zero block.
33 StoreTile(tile_c, c);
34 }

Figure 11. CUDA Pseudo-Code for Our SDD Kernel. We launch
one threadblock per non-zero block in the sparse output. (1) On
startup, each threadblock loads the row and column indices of its
non-zero block in the output. As described in §5.1.3, this step
is made trivial by the availability of row indices in our hybrid
blocked-CSR-COO encoding. (2) Next, each threadblock sets its
accumulator tile to zero. (3) The threadblock steps through the a
and b matrices, computing the product of two-dimensional tiles
loaded from the input matrices and accumulating the results. (4)
Last, we store the final accumulated result to the output sparse
matrix.

1 /** Dense = Sparse x Dense.
2 *
3 * Arguments:
4 * a: Sparse, left input with shape (m, k).
5 * b: Dense, right input with shape (k, n).
6 * c: Dense, output with shape (m, n).
7 */
8 __global__ void dsd(SparseMatrix a, Matrix b,
9 Matrix c) {

10 // (1) Calculate row and column indices.
11 //
12 // Each threadblock computes one tile of 'c'.
13 int row = blockIdx.x;
14 int column = blockIdx.y;
15
16 // (2) Load offset into 'a' and calculate
17 // the non-zeros in this threadblock's row.
18 int offset_a = a.row_offsets[blockIdx.x];
19 int nnz = a.row_offsets[blockIdx.x + 1] -
20 offset_a;
21
22 // (3) Zero accumulator tile.
23 Tile<128, 128> tile_c(/*init_to=*/0);
24
25 // (4) Main loop.
26 //
27 // Load tiles from a & b and compute.
28 for (int i = 0; i < nnz; ++i) {
29 Tile<128, 128> tile_a = LoadTile(
30 a, /*row=*/offset_a, /*column=*/i);
31
32 // (5) Load the column index from 'a'
33 // for this non-zero block.
34 //
35 // This indicates which row we need to
36 // load from 'b'.
37 int row_b = a.column_idxs[offset_a + i];
38 Tile<128, 128> tile_b = LoadTile(
39 b, /*row=*/row_b, /*column=*/column);
40 tile_c += tile_a * tile_b;
41 }
42
43 // (4) Write output.
44 StoreTile(tile_c, c);
45 }

Figure 12. CUDA Pseudo-Code for Our DSD Kernel. We launch
one threadblock per tile in the dense output. (1) On startup, each
threadblock calculates the row and column indices of it’s tile in
the output. (2) Next, each threadblock loads the offset of the non-
zero blocks for its row of a and calculates the number of non-zero
blocks in it. (3) Next, each threadblock sets its accumulator tile
to zero. (4) The threadblock steps through the a and b matrices,
computing the product of two-dimensional tiles loaded from the
input matrices and accumulating the results. (5) The row index
of the tile to load from matrix b depends on the column index of
the non-zero block loaded from a, which we load prior to loading
from b. (6) Last, we store the final accumulated result to the output
sparse matrix.

https://github.com/stanford-futuredata/megablocks#building_construction-installation
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Figure 13. Block-Sparse Matrix Multiplication Throughput Compared to Triton Blocksparse. Benchmarked for the problem configu-
rations used in training MoE-XS, MoE-Small and MoE-Medium models. For these problems, our block-sparse matrix multiplication
kernels realize over 9× the throughput achieved by Blocksparse on average due to the overhead of sparse matrix preprocessing.


