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Abstract

Deployed machine learning (ML) models often encounter new user data that differs
from their training data. Therefore, estimating how well a given model might
perform on the new data is an important step toward reliable ML applications.
This is very challenging, however, as the data distribution can change in flexible
ways, and we may not have any labels on the new data, which is often the case
in monitoring settings. In this paper, we propose a new distribution shift model,
Sparse Joint Shift (SJS), which considers the joint shift of both labels and a few
features. This unifies and generalizes several existing shift models including label
shift and sparse covariate shift, where only marginal feature or label distribution
shifts are considered. We describe mathematical conditions under which SJS is
identifiable. We further propose SEES, an algorithmic framework to characterize
the distribution shift under SJS and to estimate a model’s performance on new
data without any labels. We conduct extensive experiments on several real-world
datasets with various ML models. Across different datasets and distribution shifts,
SEES achieves significant (up to an order of magnitude) shift estimation error
improvements over existing approaches.

1 Introduction

Deployed machine learning (ML) models often face new data different from their training data. For
example, mismatch of deployment-development data in geographical locations [21], demographic
features [16], and label balance [20] is widely observed and known to affect model performance.
Thus, estimating and explaining how a model’s performance changes on the new data is an important
step toward reliable ML applications.

Estimating and explaining performance shift is challenging for several reasons, however. One major
challenge is that the data distribution might shift in flexible ways. Another obstacle is that we
often do not have labels on the new data, especially in ML monitoring applications. Without any
assumption on the distribution shift, it’s impossible to estimate how well the model would perform on
the unlabeled new data. Previous work often assumes (i) label shift [22], where feature distributions
conditional on the labels are fixed, or (ii) covariate shift [32], where label distributions conditional
on features stay the same. However, we often do not know whether the real data shift is limited to
label or covariate shift, and naively applying estimation methods designed for one shift may produce
inaccurate assessments [26]. Moreover, labels and features may shift simultaneously in practice,
invalidating these common assumptions.

To tackle the above challenges, here we propose a new distribution shift model, Sparse Joint Shift
(SJS), to consider the joint shift of both labels and a few features. SJS assumes labels and a few
features shift, but the remaining features’ distribution conditional on the shifted features and labels
is fixed. This unifies and generalizes sparse covariate shift and label shift: both of them are SJS,
but some SJS is not label or sparse covariate shift (Figure 1). We describe mathematical conditions
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(a) Sparse joint shift (SJS) (c) Shift estimation error 

age sex loc wage churn

30 M CA 100K Yes

45 F WA 150K No

… … … … …

age sex loc wage

25 F CA 100K

57 M WA 200K

… … … …

Source accuracy: 92%

Accuracy shift: -6% Shift reason: loc & churn

(b) Shift estimation and explanation under SJS

Labeled source data Unlabeled target data

SEES

Figure 1: Overview of sparse joint shift (SJS). (a) Both label shift and sparse covariate shift are
SJS, but SJS contains additional shifts as well. (b) illustrates SEES, a framework for performance
shift estimation and explanation under SJS. Given labeled source and unlabeled target data, SEES
exploits the joint shift modeled by SJS to estimate the model performance change and explain which
factors drive the shift. In this example, the goal is to predict churn. (c) SEES significantly reduces
the shift estimation error over existing methods when both labels and covariates shift.

under which SJS is provably identifiable: if the non-shifted features are weakly correlated, then the
marginal feature distribution uniquely determines the joint distribution under SJS. This makes it
possible to quantify the shift and estimate model performance on new data without any labels.

When SJS occurs: a motivating example. Consider Alice, a data scientist who built an ML model
for customer churn prediction. Two years later, churn rate rose in some states but dropped in others,
while the distribution of other features given label (churn) and location (state) remained. This shift in
customer distribution is a natural SJS and challenging to estimate without labels on the new data.

Furthermore, we propose SEES, an algorithmic framework for performance shift estimation and
explanation under SJS. SEES exploits correlation shifts between features and labels modeled by SJS
to improve performance estimation accuracy over existing methods, such as BBSE [22] for label shift
and KLIEP [32] for covariate shift (Figure 1). It uses the identified shifted features and labels as a
natural explanation of the performance shift. We present an extensive empirical evaluation on real
world datasets with both simulated SJS and real shifts. Our experiments validate the effectiveness of
SEES: the estimation error of SEES is often an order of magnitude smaller than that of previous
state-of-the-art methods. All together, our contributions are:

1. We formulate and study sparse joint shift (SJS), a new distribution shift model that considers
the joint shift of both labels and features. We show how it unifies and generalizes existing
shift models and when it is identifiable with unlabeled data.

2. We propose SEES, a general framework for performance shift estimation and explanation
under SJS. We design efficient substantiations of SEES for different data types. We also
release our code1.

3. We provide comprehensive empirical analysis of our methods. On real world datasets with
natural distribution shifts, we found SEES leads to up to 66% performance estimation error
reduction over standard approaches.

Related Work. Label shift: Label shift has been observed and studied in various domains, such as
epidemiologic [5], economics [23], and data mining [13]. Recently, there is an increasing interest
in model evaluation and development under under label shift. For example, [22, 3] study how to
quantify label shift and evaluate an ML model’s performance under label shift accordingly. [40] gives
an algorithm for active learning under label shift. Online adaptation to label shift [37] is also shown
to be feasible. Label shift can be viewed as a subset of our proposed shift model SJS. Although
simpler and easier to estimate, label shift does not capture the joint shift of labels and features. Thus,
methods developed for label shift may not work well under SJS.

1https://github.com/stanford-futuredata/SparseJointShift
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Covariate shift: Covariate shift [30, 38, 24] is perhaps the most widely adopted assumption in data
distribution shift. Since studied in the seminal work [30], various methods have been proposed to
estimate covariate shift, including KLIEP [33], KMM [15], and IWCV [31]. Adaptation to covaraite
shift has been found useful in many applications, such as spam filtering [4], emotion recognition [19]
and human activity detection [18]. More recently, covariate shift adaptation is jointly optimized with
model robustness [29], fairness [28], and conformal prediction [35].

Unsupervised model performance evaluation: Model performance evaluation without labels has
received relatively limited attention. Domain-specific models’ performance can be estimated via
certain statistics, such as confidence score [17], rotation prediction [9] and feature statistics of the
datasets sampled from a meta-dataset [10] for image recognition. General model evaluation often
relies on different assumptions and accessibility [14, 7, 6, 12, 8, 36]. [7] assumes covariate shift and
requires users to provide an approximation (slice) of the shifted features, while [6] needs white-box
access to the ML models to train an ensemble as a reference. [12] assumes the label distributions are
known, while [8] needs a feature independence structure given the labels. When a small number of
labels can be obtained, [36] proposes an active model evaluation approach. To our knowledge, this is
the first paper that explicitly models the joint shift of both labels and a few features with provable
identification guarantees. Moreover, we do not require access to side information such as model
design or metadata.

2 Preliminaries and Problem Statement

We start by giving the preliminaries and the problem of estimating and explaining performance shift.

Prediction tasks and ML models. In this paper we consider the standard classification task: given
a d-dimensional feature vector xxx ∈ X ⊆ Rd from the feature space X , the goal is to predict its
associated label y ∈ Y in the label space Y . Let f(·) : Rd 7→ Y denote an ML model designed for
such a task. For simplicity, we assume that Y = {1, 2, · · · , L}. Given the model’s prediction f(xxx)
and its true label y, its performance is quantified by some loss function ℓ(·, ·). A popular choice is
the standard 0-1 loss: ℓ(a, b) = 1a=b, which we focus on, but other losses are also applicable.

Joint distribution shift. The training and inference data for ML often come from two different
distributions, referred to as source domain and target domain. Here, we consider the general case
when the joint distribution vary across the source and target domains, and call this joint distribution
shift. Formally, let Ps,Pt : X × Y 7→ [0, 1] denote the source and target domains, and ps, pt be their
probability density (or mass) functions. Then joint distribution shift means ps(xxx, y) ̸= pt(xxx, y).

Problem statement. Suppose we are given a labeled dataset Ds ≜ {(xxxs,i, ys,i)}ns
i=1 from the

source distribution Ps, an unlabeled dataset Dt ≜ {(xxxt,i)}nt
i=1 from the target distribution Pt, and an

ML model f(·) predicting the associated label given any feature vector xxx. Our goal is to estimate
how much performance changes from the source domain to the target domain. More formally, we
aim at estimating the performance shift ∆ ≜ E(xxx,y)∼Pt

[ℓ(f(xxx), y)]− E(xxx,y)∼Ps
[ℓ(f(xxx), y)]. This is

challenging as we do not observe labels on the target domain. In many applications, attributing the
performance shift to certain features is also desired. Thus, we are also interested in identifying a set
of features to explain the performance shift.

3 SJS: A Tractable Unification of Label Shift and Sparse Covariate Shift

At a first glance, estimating the performance shift under joint distribution shift without observing
labels from target domain seems hopeless: if the marginal feature distributions are identical for both
domains, then observing the features alone should give 0 as the estimated performance shift. However,
the label distribution given any feature on the target domain is arbitrary, and thus the estimated shift
can be arbitrarily bad. In other words, joint distribution shift is not identifiable with no target labels.

To mitigate nonidentifiability, it’s necessary to make additional assumptions. The most popular
assumptions in literature are label shift [22] and covariate shift [30]. Label shift assumes that only
label distribution may change, but the feature distribution given a label remains, i.e., ps(xxx|y) =
pt(xxx|y). On the other hand, covariate shift assumes that feature distribution can shift, but the label
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distribution given the features is fixed, i.e., ps(y|xxx) = pt(y|xxx). However, those assumptions disallow
simultaneous changes of both features and labels, which often happen in real-world data [21, 27, 34].
To enable joint feature and label estimation which is tractable, we introduce a subclass of joint
distribution shift, Sparse Joint Shift (SJS), as follows.

Definition 1 (Sparse Joint Shift (SJS)). Suppose for an integer m ≤ d and an index set I ⊂ [d] with
size at most m (i.e., |I| ≤ m), ps(xxxIc |xxxI , y) = pt(xxxIc |xxxI , y). Then we say the source and target pair
(ps, pt) is under m-Sparse Joint Shift, or m-SJS. Here, Ic ≜ [d]− I . We call I the shift index set.

Roughly speaking, SJS allows both labels and a few features to shift, but assumes the remaining
features’ conditional distribution to stay the same. Section 1 gives one example when SJS occurs,
and more examples and discussions can be found in the appendix. Next, we will study when this
assumption allows tractable performance shift estimation. All proofs are left to the appendix.

3.1 When is sparse joint shift identifiable?

Recall that additional assumptions are needed because the general joint distribution shift is not
identifiable. However, when m = d, m-SJS simply becomes general joint distribution shift. Thus, it
is worthy understanding when m-SJS resolves the identifiability issue. To do so, let us first formally
introduce the notation of identifiability.

Definition 2 (Identifiable). Suppose the source-target tuple (ps, pt) is under m-SJS. (ps, pt) is
identifiable if and only if for any alternative distribution pa(xxx, y), if pa(xxx) = pt(xxx) and ∃J ⊂
[d], |J | ≤ m, such that pa(xxxJ c |xxxJ , y) = ps(xxxJ c |xxxJ , y), then pa(xxx, y) = pt(xxx, y).

The identifiability can be easily interpreted in words: If a joint feature and label distribution matches
the target feature distribution and satisfies the m-SJS requirement together with the source distribution,
it has to be the target distribution. The following statement shows when (ps, pt) is identifiable.

Theorem 1. Suppose (ps, pt) is under m-SJS. Assume for any set J ⊂ [d], |J | ≤ m and any
fixed x̄xx ∈ X , the probability density (or mass) functions {ps(xxxJc∩Ic ,xxxJ∪I = x̄xxJ∪I , y = i)}Li=1 are
linearly independent. Then (ps, pt) is identifiable.

This statement sheds light on why uniquely identifying the target distribution without target label is
feasible under sparse joint shift. Roughly speaking, m-SJS requires that given the shifted features
and labels, the remaining features’ distribution remains the same on both domains. If those remaining
features are different enough (linear independence), they can uniquely determine the distribution of
the shifted features and labels. We stress that the linear independence is necessary: if it does not hold,
then for any m, we can always find some source-target pair (ps, pt) which is not identifiable. Linear
independence implicitly requires sparsity: if m > d/2, then Jc ∩ Ic can be empty and the linear
independence does not hold. In other words, the sparsity is necessary for the shift to be identifiable.

3.2 How does SJS relate to label shift and covariate shift?

A natural question is how does SJS relates to standard label shift and covariate shift. To answer this,
let us first introduce label and sparse covariate shift formally.

Definition 3. The source and target (ps, pt) is under Label Shift iff ps(xxx|y) = pt(xxx|y), and under
m-Sparse Covariate Shift iff ps(xxxIc , y|xxxI) = pt(xxxIc , y|xxxI) for some index set I with size m < d.

Now we are ready to answer the above question.

Theorem 2. If (ps, pt) is under label shift, then it is also under 0-SJS. If (ps, pt) is under m-sparse
covariate shift, then it is also under m-SJS. In addition, there exists (ps, pt) under m-SJS such that
it is under neither label shift or covariate shift.

There are several takeaways. First, label shift implies SJS without additional requirements. In fact,
as certain distribution pairs are under SJS but not label shift, SJS is strictly more general than label
shift. Second, SJS also includes sparse covariate shift. When m = d, SJS completely unifies both
label shift and covariate shift, though it is not identifiable. Identifiable SJS, on the other hand, unifies
label shift and sparse covariate shift. Finally, SJS also allows shifts not covered by label shift and
covaraite shift: the correlation between label and (a set of) features can be shifted.
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Figure 2: How SEES works. Given labeled source and unlabeled target data, SEES uses a sparsity-
aware density matcher to learn a weight function ŵ(x̄xx, y). Next, an empirical gap calculator computes
the performance gap ∆̂ by weighing the source samples with the learned ŵ(x̄xx, y). The shifted feature
selector extracts the features Î on which the weight function depends heavily.

4 Shift Estimation and Explanation under Sparse Joint Shift

Now we present SEES, an algorithmic framework to estimate and explain the performance shift
∆ when the source and target domain is under m-SJS. As shown in Figure 2, it consists of three
components: a sparsity-aware density matcher, an empirical gap calculator, and a shifted feature
selector. Given the labeled source samples and unlabeled target samples, we first adopt the sparsity-
aware density matcher to obtain an estimated ratio of the target and source density functions, denoted
by ŵ(xxx, y). Next, the empirical gap calculator is responsible to estimate the performance shift ∆
via appropriately reweighting source samples with ratio ŵ(xxx, y). Finally, the shifted feature selector
picks a set of features as the explanation for the shift. We explain each component as follows.

4.1 Sparsity-aware density matcher

A key component of SEES is the sparsity-aware density matcher. Here we want to find some weight
function ŵ(xxx, y) to induce an estimated target distribution p̂t(xxx, y) ≜ ŵ(xxx, y) · ps(xxx, y). Our goals
include (i) a small distance between the estimated target distribution and the true target distribution,
(ii) m-SJS between the source and the estimated target distributions, and (iii) flexible parameterization
of the weight function. To achieve those goals, we propose the following optimization framework

min
w(xxx,y)∈W

D(pt(xxx), p̂t(xxx))

s.t. p̂t(xxx) =
L∑

y=1

w(xxx, y) · ps(xxx, y), and w(xxx, y) depends on at most m features of xxx.
(4.1)

Here, D(·, ·) is some distance metric that measures the difference between two density functions.
We minimize the distance between the induced feature density p̂t(xxx) and the target feature density
pt(xxx). The minimization is not over joint label and feature distributions since target labels are not
available. The induced feature density function can be easily derived from source density function
and the weight function, encoded in the first constraint. m-SJS is enforced by the second constraint:
m-SJS means given m features and labels, the distributions of remaining features are fixed across
source and the induced domain, which holds if and only if their density ratio w(xxx, y) only depends
on those m features. W represents the set of all feasible weight functions. Different parameterization
can be easily realized by adopting different W . Assume access to density functions ps(xxx, y) and
pt(xxx), and a weight function set W containing the true weight w∗(xxx, y) ≜ pt(xxx,y)

ps(xxx,y)
. One can easily

show the above optimization returns the true weight function w∗(xxx, y) for identifiable m-SJS.

One benefit of the above framework is the flexibility of concrete instantiations. Different design
choices, including the distance metric D(·, ·) and the weight parameterization space W , can fit differ-
ent feature types, incorporate domain knowledge, and tradeoff different sample and computational
complexity. We give two instantiations of the above optimization: SEES-c for continuous features,
and SEES-d for discrete features.

SEES-c: SEES for continuous features. For continuous features, we use KL-divergence DKL(·, ·)
as the distance metric, and initialize the parameterization space W by linear combinations of K
fixed basis functions, ϕ1(xxx, y), ϕ2(xxx, y), · · · , ϕK(xxx, y). That is to say, W = {w(xxx, y)|w(xxx, y) =
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∑K
k=1 ak,yϕk(xxx, y), ak,y ≥ 0,E(xxx,y)∼Ps

[∑K
k=1 ak,yϕk(xxx, y)

]
= 1, αk,y ≥ 0}. The last two con-

straints ensure w(xxx, y) · ps(xxx, y) is a valid probability density. Those basis functions encode users’
prior knowledge about the shift. A simple choice, for example, is linear functions (when xxxk ≥ 0):
setting K = d and ϕk(xxx, y) = xxxk. To model the dependence on different features, let ei denote
all indexes k such that ϕk(·) depends on feature xxxi, and introduce a vector βββ ∈ Rd such that

βββi ≜
√∑

k∈ei

∑L
y=1 a

2
k,y. The feature dependence requirement in Problem 4.1 is equivalent to

sparsity constraint ∥βββ∥0 ≤ s. We can relax the 0-norm by 1-norm and obtain one instantiation as

max
a1,1,a1,2,··· ,aK,L

Exxx∼Pt

[
log

L∑
y=1

ps(y|xxx)
K∑

k=1

ak,yϕk(xxx, y)

]
+ η

d∑
i=1

√√√√∑
k∈ei

L∑
y=1

a2k,y

s.t. E(xxx,y)∼Ps

[
K∑

k=1

ak,yϕk(xxx, y)

]
= 1, αk,y ≥ 0

where η > 0 controls the trade-off between sparsity and the KL distance. One benefit of this
instantiation is computational efficiency: the constraint is linear in the optimization variables, and the
objective is convex. Thus, the problem is convex and can be efficiently solved. The label distribution
given feature ps(y|xxx) is unknown but can be approximated by the ML model f(·) trained on the
source domain. Given finite samples, the expectations can be replaced by their empirical estimation.

SEES-d: SEES for discrete features. Another interesting instantiation exists for discrete features.
With no prior knowledge, we parameterize W to include all possible m-SJS: specifically, W contains
all tuple (J,wJ(xxxJ , y)), where index set J ⊂ [d], |J | = m represents the shifted features, and weight
function wJ(xxxJ , y) only depends on xxxJ and y.

Features only take finite values, so we can view the density (mass) functions as vectors with finite
dimensions. Thus, we adopt the squared ℓ2 distance, i.e., D(zzz,zzz′) =

∑|zzz|
i=1(zzzi − zzz′i)

2 to measure
distance. However, naively measuring ℓ2 distance between pt(xxx) and p̂t(xxx) leads to a computational
complexity exponential in d. Instead, we measure the distance on a set of marginal densities: given
an index set J , for every index set with size 2s that contains J , denoted by κ, we measure the squared
ℓ2 distance between pt(xxxκ, f(xxx)) and p̂t(xxxκ, f(xxx)), and then aggregate over κ. This design leads to
the following instantiation of Problem 4.1

min
J,wJ (xxx,y)

∑
κ:J⊆κ,|κ|=2m

L∑
f̄=1

∑
x̄xxκ∈Xκ

∥pt(x̄xxκ, f̄)−
L∑

ȳ=1

wJ(x̄xxJ , ȳ) · ps(x̄xxκ, f̄, ȳ)∥22, s.t.|J | = m (4.2)

where pt(x̄xxκ, f̄) and ps(x̄xxκ, f̄, ȳ) are short for pt(xxxκ = x̄xxκ, f(xxx) = f̄) and ps(xxxκ = x̄xxκ, f(xxx) =
f̄, y = ȳ), respectively.

Compared to the naive approach, the above formulation is much more computationally efficient: the
number of parameters in the above objective is only polynomial in the feature dimension d. For fixed
J , the problem is simply a linear regression over the weight wJ(xxxJ , y) and thus can be efficiently
solved. In practice, one can estimate pt(x̄xxκ, f̄) and ps(x̄xxκ, f̄, ȳ) via labeled source and unlabeled
target samples, and then solve the empirical version of the above problem. Compared to using
KL-divergence, solving the empirical version produces the correct shifted index set and a weight
function close to the true weight w∗(xxx, y) (under mild conditions). This is formally stated as follows.
Theorem 3. Consider when all features are discrete, i.e., for each i, xxxi ∈ {1, 2, · · · , v}. Suppose (i)
the source and target are under exact m-SJS, (ii) for any set J ⊂ [d], |J | ≤ m and any x̄xx ∈ X , the
marginal probability density (or mass) functions {ps(f(xxx),xxxJ∪I = x̄xxJ∪I , y = i)}di=1 are linearly
independent, and (iii) w(xxx, y) is bounded by a constant M . Then there exists some constant c (indepen-

dent of d, ns and nt), such that if
√

1
2ns

+LM
√

1
2nt

< c/
√
2m log d+m log v + 2 logL+ log 1/δ,

then with probability 1 − δ, (i) the index set Ĵ learned by Problem 4.2 matches the true
shift index set I , and (ii) the produced weights wĴ(xxxĴ , y) satisfies

∣∣wĴ(xxxĴ , y)− w∗(xxx, y)
∣∣ ≤

O
(√

2m log d+m log v + 2 logL+ log 1/δ
(√

1
2ns

+ LM
√

1
2nt

))
.

6



Roughly speaking, this statement ensures that, when source and target sample sizes are large enough,
with high probability, the true shift index set can be identified with finite samples, and the error rate
of the learned weight function is approximately the inverse of sample sizes’ square root.

Comparisons of SEES-c and SEES-d. SEES-d enjoys mathematical guarantees, but SEES-c can
be computationally more efficient. In practice, we can discretize continuous features to use SEES-d.

4.2 Empirical gap calculator and shifted feature selector

Now we explain how the other two components of SEES work. The empirical gap calcula-
tor computes the performance shift ∆̂ via three steps. First, it estimates the source perfor-
mance by 1

ns

∑ns

i=1 ℓ(xxx
s,i, ys,i). Next, it estimates the performance on the induced target dis-

tribution. Note that the performance on the induced target domain is
∫
p̂t(xxx, y)ℓ(xxx, y)dxxxdy =∫

ŵ(xxx, y)ps(xxx, y)ℓ(xxx, y)dxxxdy = E(xxx,y)∼Ps
[ŵ(xxx, y)ℓ(xxx, y)]. Thus, we use the weighted loss on the

source samples 1
ns

∑ns

i=1 ŵ(xxx
s,i, ys,i)ℓ(xxxs,i, ys,i) as the estimation. Finally, their difference, i.e.,

∆̂ = 1
ns

∑ns

i=1(ŵ(xxx
s,i, ys,i)− 1)ℓ(xxxs,i, ys,i) is returned as the estimated performance shift.

The shifted feature selector picks a set of features as the shift explanation. For discrete data, the
weight function ŵ(xxx, y) learned by the density matcher’s instantiation is parameterised as a shifted
index Ĵ and the corresponding weight ŵĴ(xxxĴ , y). Thus, a natural choice is to return Î = Ĵ as
the explanation. For continuous data, the weight function is ŵ(xxx, y) =

∑K
k=1 âk,yϕk(xxx, y), where

âk,y is learned by the corresponding instantiation. Recall that ei denotes all basis functions that

depends on feature i. Then β̂ββi ≜
√∑

k∈ei

∑L
y=1 â

2
k,y can be viewed as the total contribution of

feature i. Thus, a simple choice is to pick features with the m largest contributions. Formally, we use
Î = {i|β̂ββi > β̂ββ(d−m)}, where β̂ββ(d−m) is the d−m smallest value in β̂ββ.

5 Experiments

In this section, we study the performance of SEES on several real world datasets with synthetic and
natural distribution shifts. Our goal is four-fold: (i) understand when and how SEES estimates the
performance shift, (ii) evaluate the trade-offs between the estimation performance reached by SEES
and the required dataset sizes, (iii) explore the effects of shift sparsity on SEES’ performance, and
(iv) validate the effectiveness of SEES on datasets with real world distribution shifts.

Datasets, ML models and baselines. Six datasets are used for evaluation purposes. we first
simulate various SJS on BANKCHURN [1], COVID-19 [2], and CREDIT [39] to systematically
understand the performance of SEES. Next, we apply SEES on EMPLOY, INCOME, and INSUR-
ANCE [11] with real world distribution shifts and perform an in-depth analysis. We use a gradient
boosting tree model as the ML model, and results for more models can be found in the Appendix.
For comparison, we adopt two state-of-the-art methods for comparison: BBSE [22] for label shift
and KLIEP [32] for covariate shift. More details on the experiments can be found in the Appendix.

Case study. We start with a case study on the dataset COVID-19. The task is to predict whether
a person tests positive for COVID-19. We simulate a joint shift of the feature aged and label.
Specifically, both source and target data contain 5000 young and aged individuals. The positive rate
is 40% for both young and aged group from the source. In the target data, we raise the positive rate to
80% for aged group and 50% for young group. This simulates a shift due to a COVID variant more
harmful to the elder than its ancestor. We adopt SEES-d as all features are categorical.

Figure 3 summarizes this case study. First note that identifying which feature is shifted is not obvious.
As shown in Figure 3(a), the marginal distribution of most features except age and gender has changed
from the source to the target. The actual joint shift (Figure 3(b)) is, on the other hand, due to age
group and the labels. Identifying shifted age is challenging as the label on the target (last red bar
in Figure 3(a)) also shifts but cannot be observed. On the other hand, SEES-d correctly identifies
the shifted feature age, and produces a weight function close to the true weight (Figure 3(b) and
(c)). This is primarily because SEES-d explicitly exploits the joint shift modeled by SJS. In fact,
SEES-d’s performance is significantly better than existing methods. As shown in Figure 3(d), the
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(c) Est shift by SEES-d

(a) Marginal feature and label distribution 

(b) True joint shift

𝑤∗(𝒙, 𝑦)=

𝐼 = {𝒂𝒈𝒆}  𝐼 = {𝒂𝒈𝒆}

 𝑤(𝒙, 𝑦)=

Method MSE PCC Est Gap True Gap

SEES-d 0.002 0.996 16.7

15.5BBSE 0.144 0.857 26.3

KLIEP 0.573 -0.112 1.58

(d) Performance of weight & acc gap estimation 

Figure 3: A case study on the COVID-19 dataset. (a) The marginal distribution of labels and all
features. The label on the target domain (the last red bar) is not observable. (b) The actual joint shift
between source and target data. (c) The mean square error (MSE), pearson correlation coefficient
(PCC) between learned and true weights, and the the estimated accuracy gap. Overall, SEES-d
significantly improves estimation performance over existing methods.

mean square error (MSE) between the true weights and learned weights is only 0.002 when adopting
SEES-d, but 0.144 and 0.573 when using BBSE and KLIEP, respectively. The Pearson correlation
coefficient (PCC) between the true weights and weights learned by SEES-d is 0.996, indicating a
strong correlation. The weight estimation performance directly affects how precise the estimated
accuracy gap is. The estimated gap ∆̂ of SEES-d is 16.7%, which is close to the true gap (15.5%).
By contrast, BBSE tends to overestimate the gap (26.3$) while KLIEP underestimates it (1.58%).

Trade-offs between estimation performance and sample size. Next, we study the trade-offs
between estimation performance and the number of available samples. For simplicity, we simulate
various sparse joint shifts with s = 1 via (i) specifying marginal distribution of the shifted feature
and labels first, and (ii) then drawing random samples from the original dataset conditional on values
of specified labels and shifted feature. Same number of samples are allocated to both source and
target datasets. Figure 4 shows the simulated data shift (column 1), the squared ℓ2 loss of accuracy
estimation (column 2), weight estimation (column 3), and the shifted feature discovery rate (column
4) for three datasets. Overall, we observe that the estimation error of SEES-c and SEES-d diminishes
as the number of samples increases, while that of BBSE and KLIEP is almost flat.

Table 1: Root mean square error of estimated accuracy gap (%) under real shifts for a gradient
boosting model. The numbers are averaged over all source-target pairs in each dataset. Results for
other models (e.g., a neural network) can be found in the Appendix. For each dataset and ML model,
SEES provides significant estimation error reduction over baselines.

EMPLOY INCOME INSURANCE

SEES-c SEES-d BBSE KLIEP SEES-c SEES-d BBSE KLIEP SEES-c SEES-d BBSE KLIEP

2.90 3.00 5.20 5.20 1.90 2.40 3.00 3.40 1.70 2.20 2.10 5.00

Effects of shift sparsity. We have focused on 1-SJS for simplicity, but how the sparsity s affects
the estimation performance remains unknown. To answer this, we fix the number of samples to be
10,000, and then measure the performance of all compared methods for joint distribution of label
and different number of features. Overall, we observe that the estimation error often grows as more
features shift jointly with the labels. This is because more shifted features often implies higher
complexity in the distribution shifts and thus more parameters to estimate. It is worthy noting that
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Figure 4: Trade-offs between shift estimation and sample size. We vary the shifted features (first
column), and measure performance of the estimated accuracy shift (second column), estimated
weights (third column), and how often the true shifted features are discovered (last column). The first,
second, and third row corresponds to dataset BANKCHURN, COVID-19, and CREDIT, respectively.
Overall, both SEES-c and SEES-d consistently outperforms existing estimation approaches.

0-SJS degenerates to label shift, and the performance of SEES-c and SEES-d is slightly worse than
BBSE (designed for label shift) under 0-SJS. More details can be found in the appendix.

Accuracy gap estimation on real shifts. Finally we validate the effectiveness of SEES on accuracy
estimation with real world shifts. EMPLOY and INCOME are partitioned by geography (states) and
INSURANCE is partitioned by time (year). For each partition pair, we train a gradient boosting
model on one and estimate its performance on the other. Table 1 shows the estimation error averaged
over all partition pairs for each dataset. SEES consistently outperforms BBSE and KLIEP, and
reduces the estimation error by up to 66% (1-1.7/5.0). We also evaluate other models (including a
neural network) and observe similar results. More results can be found in the Appendix.

6 Conclusion

In this paper, we propose Sparse Joint Shift (SJS), a new distribution shift model that accounts for both
label and covariate shifts. We show how SJS unifies and generalizes existing distribution shift models
and remains identifiable under reasonable assumptions. We develop SEES, an algorithmic framework
for unsupervised model performance estimation and explanation under SJS. Both theoretical analysis
and empirical study validates the effectiveness of SEES. Our work contributes to making ML more
reliable when data can change. A natural next step is how to improve estimation performance under
SJS when a small number of target labels can be queried. To stimulate more research on SJS, we
also release our code in https://github.com/stanford-futuredata/SparseJointShift.
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