
Journal of Privacy and Confidentiality
Vol. 12 (1) 2022 TPDP 2020 Submitted Mar 2021

Published Jul 2022

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY

VISUALIZATION

PRATIKSHA THAKER, MIHAI BUDIU, PARIKSHIT GOPALAN, UDI WIEDER,
AND MATEI ZAHARIA

Stanford University
e-mail address: prthaker@stanford.edu

VMware Research
e-mail address: mbudiu@vmware.com

VMware Research
e-mail address: pgopalan@vmware.com

VMware Research
e-mail address: uwieder@vmware.com

Stanford University
e-mail address: matei@cs.stanford.edu

Abstract. Data exploration systems that provide differential privacy must manage a
privacy budget that measures the amount of privacy lost across multiple queries. One
effective strategy to manage the privacy budget is to compute a one-time private synopsis
of the data, to which users can make an unlimited number of queries. However, existing
systems using synopses are built for offline use cases, where a set of queries is known ahead
of time and the system carefully optimizes a synopsis for it. The synopses that these
systems build are costly to compute and may also be costly to store.

We introduce Overlook, a system that enables private data exploration at interactive
latencies for both data analysts and data curators. The key idea in Overlook is a virtual
synopsis that can be evaluated incrementally, without extra space storage or expensive
precomputation. Overlook simply executes queries using an existing engine, such as a SQL
database, and adds noise to their results. Because Overlook’s synopses do not require costly
precomputation or storage, data curators can also use Overlook to explore the impact of
privacy parameters interactively. Overlook offers a visual query interface based on the open
source Hillview system. Overlook achieves accuracy comparable to existing synopsis-based
systems, while offering better performance and removing the need for extra storage.

Key words and phrases: synopsis, curator, virtual synopsis, interactive visualization, privacy.

www.journalprivacyconfidentiality.org
DOI:10.29012/jpc.779

© P. Thaker, M. Budiu, P. Gopalan, U. Wieder, and M. Zaharia
Creative Commons (CC BY-NC-ND 4.0)

https://www.journalprivacyconfidentiality.org
https://doi.org/10.29012/jpc.779
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

1. Introduction

1.1. Motivation. Privacy has become a key issue for all organizations that collect personal
data, from companies to government entities [47, 4, 30]. After organizations collect a dataset,
they would like to make it available to internal data analysis teams, or even expose it to
external researchers [47], without leaking a significant amount of information about any
individual in the dataset. To be broadly useful, a private data analysis system should support
ad-hoc, exploratory queries through familiar interfaces while making it easy for the data
curator (the administrator configuring the system) to control the amount of information
leaked.

The most widely used framework for reasoning about privacy is differential privacy
(DP) [14, 16]. A differential privacy mechanism is a randomized algorithm A such that, for
any two databases D1 and D2 that differ by exactly a single element (say row), and every
possible set S of outputs of the algorithm, it holds that

Pr[A(D1) ∈ S] ≤ exp(ϵ) · Pr[A(D2) ∈ S].

The probability is taken over the internal randomness of the algorithm, and limits the ability
of the data analysis to infer which of the two databases were queried, and thus provides a
privacy guarantee at the resolution of a single element. Differential privacy quantifies the
privacy cost of a statistical analysis through a privacy budget denoted by ϵ; a smaller privacy
budget implies more error in the query results but more privacy for the individuals in the
dataset.

Although many research systems provide differential privacy [37, 28, 17, 31, 32, 45, 21],
these current systems are challenging for organizations to configure and use, especially for
ad-hoc exploratory analysis. At a high level, current DP systems fall into two categories:

1. Systems with per-query budgeting: Systems such as PINQ [37] and FLEX [28] ask
users to select a privacy budget, ε, for each query they execute. The total privacy leakage
of the system is then bounded by the sum of these ε values. These systems are complex
for both users and data curators to use. Users typically have a limited total privacy
budget available, εtotal, and need to decide how to divide it between the queries they
submit; when they run out of budget, they can no longer make queries. In addition, two
users that collaborate can reveal information proportional to the sum of their budgets,
so data curators must carefully limit which users can access the system. Such systems
would be unsuitable for exposing a research dataset to the public, for instance [47].

2. Synopsis-based systems: Systems such as PrivateSQL [31] generate a synopsis data
structure that can answer a specific class of queries after taking in a dataset, a description
of the query class, and a total privacy budget ε. Users can then query the synopsis
arbitrarily many times without revealing additional information beyond the ε budget.
These systems are more suitable for exploratory analysis and for public access, but
unfortunately, they are also challenging to use. Constructing the synopsis requires
solving an expensive optimization problem to minimize the error it will produce for
a specific query workload, which can take hours even for a modest dataset, and the
synopsis can consume a large amount of space, on par with the original data, making it
costly for large datasets.

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 3

1.2. Overview. In this paper, we present Overlook, a system that makes synopsis-based
differential privacy practical for one of the most common types of data analysis: visual
exploratory analysis of immutable datasets. Visual query interfaces, such as Tableau [46],
are one of the most common ways for organizations to expose data internally, and produce a
class of queries that are a good fit for synopsis data structures (mostly counting queries).
In Overlook, we seek to make private visual queries accessible to both data users and
data curators, by designing a system that lets curators tune a synopsis interactively to
set privacy parameters, and lets users query data interactively at a similar cost to their
existing data analysis infrastructure. Overlook runs as an interposition layer in front of
existing analytical engines, such as a standard relational database system that supports
the SQL programming language for querying data, enabling organizations to benefit from
the scalability and optimizations of these existing engines and to offer private visual query
interfaces over existing datasets.

The key idea in Overlook is a virtual synopsis data structure that represents the noise
that would be added by a classical synopsis algorithm in a highly compressed format using
a pseudo-random function (PRF). For any counting query (e.g., counting the users in a
dataset by country), Overlook can use the virtual synopsis to compute just the noise that
should be added to each tuple in the query result. Overlook simply adds this noise to the
results computed by any existing query engine. Thanks to this design, users can run queries
at a similar speed to their existing query engine. Likewise, while preparing the dataset,
data curators can use Overlook to explore parameters of the virtual synopsis interactively,
e.g., change the total privacy budget ε or its allocation to various columns, and see its
results on several queries. Overlook’s synopses are based on the hierarchical histogram
mechanism [24, 9], a synopsis design that supports multidimensional queries, and can be
tuned by curators to provide different noise levels for different dimensions in the data.

Overlook also offers a rich privacy-aware visual query interface built on virtual synopses,
based on the open source Hillview system [1]. In particular, we extend built-in visualizations
in Hillview, such as histograms and heatmaps, to display information about the noise
introduced by DP. The various visualization choices are all based on the virtual synopsis,
so they do not cause any additional privacy leakage. Data visualization has some unique
features that make it a good candidate for a synopsis-based approach to DP: most queries can
be expressed as (combinations of) count queries, for which there are good synopses. Secondly,
the visualization itself introduces errors via the quantization to the pixels in the screen. This
inherent approximation may even mask the error introduced by DP, particularly for large
datasets. Finally, typically data visualization interfaces already incorporate methods for
presenting errors and approximations to the user (e.g., via confidence intervals and error
bars). These tools help the user understand the results the differential privacy mechanism
produces.

Overlook operates in the setup where the data curator is a trusted party with unrestricted
access to the data, who wishes to make the dataset accessible for analysis to an untrusted
community of data analysts, while ensuring differential privacy. The data curator must
make decisions about the privacy parameters used to build the synopsis. These decisions
must balance the privacy of the dataset with utility for the analyst. We refer the reader to
figure 1 for a schematic diagram of the setup. We emphasize that in our model data access
by the curator is not private, and does not consume from the privacy budget.

Overlook provides a visual interface that is meant to address the needs of both the data
curator as well as the data analyst. In curator mode, the curator can set various privacy

4 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

parameters such as bins for categorical features and privacy budgets along different data
dimensions, on multiple visual queries. The curator can tune these parameters in creating
the virtual synopsis, but once the dataset has been published, the curator may not modify
them further, as doing so would violate differential privacy. The Overlook user interface
(UI) lets the curator quickly see the impact of adjusting various privacy parameters. This
allows the curator to analyze the impact of various budgeting choices on the utility to the
analyst. To our knowledge, Overlook is the first system to provide interactive feedback for
tuning a DP synopsis.

1.3. Implementation and Evaluation. We implement Overlook using the Hillview UI,
and develop backends to let it run either over a SQL database or over Hillview’s built-in
distributed execution engine [1], a high performance in-memory query engine that supports
approximate query processing for common visualization queries. In both cases, Overlook
benefits directly from the optimizations in the underlying engine. Overlook is an open source
project, the code is available at http://github.com/vmware/hillview.

We evaluate Overlook against the algorithms for computing synopses in DAWA [32] and
PrivateSQL [31], and other algorithms in DPBench [23]. Although many of these algorithms
build workload-aware synopses, which are optimized for a specific set of queries [35], we
find that Overlook’s workload-agnostic virtual synopses offer similar levels of error in query
results when given the set of visualization queries as input. The key intuition is that in an
exploratory analytics setting with many possible queries, a synopsis that “balances” the noise
over the possible queries will perform well, and it is not useful to solve a complex optimization
problem [44, 42, 24]. Moreover, Overlook’s virtual synopses require no precomputation and
minimal storage over the underlying histogram. We show that Overlook achieves the same
scaling properties as the underlying database while requiring no more than 2.5× the time
required to compute equivalent non-private queries. Overlook requires only a 32-byte key
for its synopsis, compared to existing synopses that require kilobytes of space to store and
potentially gigabytes of memory to compute.

1.4. Summary of contributions.

(1) We present Overlook, the first practical differentially private visual analytics system
that provides interactive configuration for data curators and simultaneously supports
interactive multidimensional histogram queries for users. Overlook uses a standard
unmodified database for data storage and query execution, by acting as an interposition
layer between the user and the database.

(2) We introduce virtual synopsis, a data structure to represent DP synopses for multidi-
mensional counting queries that can be used incrementally to add noise to a specific
query, instead of requiring costly precomputation and storage.

(3) We develop a privacy-aware interactive visualization UI for use by both data users and
data curators. Used in conjunction with a novel curation mode where the curator can
configure virtual synopsis parameters, the UI lets the curator visualize the effect of
various parameter choices interactively.

http://github.com/vmware/hillview

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 5

1.4.1. Organization of the paper. The rest of this paper is organized as follows:

• Section 2 describes the general structure of Overlook. It talks about the threat model, the
roles of the user and data curator, and the functionality that we wish to provide to each.
• Section 3 defines the data model, privacy definitions and data structures such as the
hierarchical histogram synopsis structure that we use.
• Section 4 talks about the need for generating synopses quickly and efficiently, how virtual
synopses address this need and how they are implemented in Overlook using a crytographic
pseudorandom number generator.
• Section 5 describes the implementation of Overlook, including the UI, the privacy interpo-
sition layer and the backend.
• Section 6 talks about the user experience of using Overlook, and contrasts it with the
experience of using Hillview, the open source visualization engine that it is built on, focusing
on how we try to convey the uncertainty inherent in differentially private visualizations.
• Section 7 details experimental results which evaluate Overlook and substantiate our claims
regarding its efficiency, scalability and utility.
• Section 8 surveys related work in the literature.

2. System overview

Privacy
parameters Off-the-shelf database

with raw data

Untrusted
frontend

Virtual synopsis

Curator

Trusted backend

Histogram query

Private response

Histogram query

Quantized response

Overlook

Figure 1. Overlook architecture. Overlook is an interposition layer that
sits between a user and an off-the-shelf database. The privacy parameters
are created by a trusted data curator; they dictate the privacy policy. The
privacy parameters can be read by untrusted users. Overlook rewrites queries
into privacy-preserving queries that can be executed by the database, and
it sanitizes the answers obtained from the database. Overlook provides the
same answers that would be obtained from querying a synopsis of the data,
but without computing the actual synopsis.

6 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

Figure 1 shows the architecture of Overlook. A data analyst interacts with Overlook
through a browser interface that allows them to issue queries to the Overlook root node.
The root dispatches the query to the backend, applies a privacy mechanism to the returned
result, and returns the private result to the user. The backend servers can run standard
off-the-shelf database software, with no special knowledge of DP. This is significant, because
DP code is complex and difficult to audit.

The raw data resides on a possibly distributed set of trusted servers; a centralized
root receives histogram queries and dispatches them to the servers. The root also stores
relevant privacy parameters used to compute the private response to a histogram query.
The trusted data curator can make changes to these privacy parameters until the dataset
is published, at which point the privacy parameters as well as the dataset must become
immutable. The untrusted data analyst can only access published data through the private
results of histogram queries. The privacy parameters are assumed to be public and visible to
both the data curator and the data analyst. The privacy parameters are discussed further
in Section 2.3.

Overlook primarily supports histogram queries. A histogram query over a column
takes as input a set of disjoint buckets and returns the number of data items that fall
in each bucket. In Overlook, these counts are perturbed with noise consistent with a
differentially-private mechanism, described further in Section 4. Overlook allows users
to issue an arbitrary number of histogram queries on privately-published data, with no
privacy budget restriction. Histogram queries are sufficient to support a large number of
visualizations, including histograms, heat maps, pie charts, trellis plots, and cumulative
distribution functions (CDFs). The visualizations supported in Overlook are described in
Section 6.

2.1. Threat model. We assume untrusted users, who can make an unbounded number of
queries to the Overlook backend through the Overlook UI. Users may communicate with
each other and make queries in parallel or from multiple sessions. Users cannot modify
privacy parameters, view raw data, or alter any secret key stored on the root. Side-channel
and denial-of-service attacks are out of scope in our work.

The data curator is trusted and has access to the raw data and privacy parameters. In
curator mode, the curator can set various privacy parameters, and visualize the effect of these
settings on various queries using the UI. The curator may not modify data or parameters
once a dataset has been published, as doing so would violate differential privacy.

The distributed backend is entirely trusted not to leak the data (but otherwise is not
DP-aware in any way), including the root server as well as servers hosting the raw data.

2.2. User interface. The data curator and data analyst both access Overlook through an
interface that is an extension of the Hillview data visualization system [1], which provides a
browser interface for interacting with charts and data. There is nothing particularly special
about the Hillview UI, we have chosen it because we were familiar with its internals so we
could modify it to handle data with uncertainties. In principle any other UI can be adapted
to display noisy data. In particular, the UI is completely agnostic to the DP algorithms that
run in the root node.

When using the UI in curator mode, the curator may modify privacy parameters and
generate new histogram queries under the new parameters prior to publishing the dataset.

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 7

The curator can use the UI in the same way as an analyst might, in order to gauge the effect
of various parameter choices on the utility of the analyst.

The result of a histogram query is displayed as an interactive plot. Additional queries
can be made by zooming in using the mouse, by selecting an interval, which issues a new
histogram query to the backend.

Note that, while the frontend is an extension to Hillview, Overlook can be used with
any backend that supports count queries. In Section 5, we describe one such alternate
implementation using MySQL.

2.2.1. Supported visualizations. Overlook essentially supports multi-dimensional histogram
visualizations. Multi-dimensional histograms encompass a number of useful visualizations,
including degenerate histograms (counts), traditional 1-dimensional histogram, and also heat
maps, pie charts, trellis plots, and CDFs.

In addition, the user interface displays schema metadata including standard values
such as the column type, but also the privacy policy associated with a column or group of
columns.

Figure 2. Histogram plot with CDF curve overlaid. The data at the mouse
position is shown in a semi-transparent white rectangle; notice that the bar
size (count) is given as an interval, and confidence intervals are plotted for
each bar.

Histograms. Overlook’s main primitive is a histogram query. This primitive can be applied
to create a variety of useful visualizations:

• Histogram queries over a column (with numeric or categorical data). The visual presenta-
tion can be a bar chart with confidence intervals, as shown in Figure 2, or, for example, a
pie chart, which emphasizes percentage of the whole that falls within each bucket.
• Cumulative distributions functions (CDF) over a column (numeric or categorical). CDF
plots are always shown together with a histogram plot. Figure 2 shows a histogram plot
with an overlaid CDF curve in dark blue. The CDF is a series of step functions, due to
the quantization of the data, as described in Section 2.3.3.

8 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

Figure 3. Heatmap on two columns. The color shows the count for each
combination of values. Values with low confidence are hidden, and the user
can highlight with the mouse values within a specific range.

• Histogram queries over a pair of columns, each of which can be either numeric or categorical.
This can be visually presented as a heat map as in Figure 3, or for example a trellis plot
of 1-dimensional histograms as in Figure 8.

One important feature of Overlook is that it displays estimates of uncertainty about the
data. For 1-dimensional histograms, this is in the form of 99% confidence intervals.1 The
presentation of uncertainty is discussed further in Section 6.

Counts. In addition to histograms, Overlook supports releasing useful counts (“degenerate
histograms”) privately, e.g., the number of rows of a table.

2.3. Curator mode. The data curator’s job is to decide which columns and pairs of columns
will be released privately, and to then decide the privacy level for each of those data releases.
These parameters are set by the curator in curator mode. Overlook’s UI helps the data
curator make these decisions. The parameters are currently stored in a JSON file that can
only be edited by the curator (but the settings themselves are public). Once the dataset
is published, these settings should not be changed, as doing so will violate the differential
privacy guarantees.

For each set of columns that is to be released privately, the curator must specify a
corresponding privacy policy. This policy provides Overlook with information about public
values that can be used in the histogram as well as parameters that are used to instantiate
the privacy mechanism. The curator can use the Overlook UI to experiment with policy
settings and generate sample charts on a dataset before it is published. To our knowledge,
Overlook is the first system that provides such functionality to the curator at interactive
speeds. There are two key attributes of Overlook that makes this possible:

• The ability of Hillview to render visualizations at interactive speeds, even for very large
datasets.

1Clearly, 99% is just a parameter of our implementation; we have not explored the usability/privacy
tradeoffs of this choice.

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 9

• The virtual synopses employed by Overlook, which do not need to be materialized
separately for each setting of parameters (which might be time and resource intensive),
but rather are computed on-the-fly at runtime.

Together these enable the curator to make changes to the privacy parameters, and see the
effects of these changes on the visualizations, and thus to concretely visualize the utility
tradeoffs incurred by different privacy parameter settings.

Next we describe the parameter settings the curator can choose in a privacy policy.
While specifying a policy for every such histogram may be impractical, Overlook provides
some useful default values for the convenience of the curator.

2.3.1. Privacy levels. For each set S of columns that can be visualized together, the curator
specifies a corresponding value εS that denotes the privacy level that should be used when
exploring these columns. A smaller value of εS typically results in more privacy at the cost
of more noise in the private output. The curator can explore many values of εS for each set
of columns before deciding which privacy level gives the best tradeoff between data privacy
and utility for potential analysts. The curator can specify default values: e.g., “for any three
columns use an ε(∗,∗,∗) = 0.3” or specific values for specific column sets, e.g., “for the pair
(name,age) use an ε(name,age) = 0.1”. The total privacy budget used is ε =

∑
S εS , where

each S is a set of columns that can be visualized together.

2.3.2. Data ranges. On the first histogram query a user makes for a column, Overlook must
return a histogram over a sensible range, after which the user can zoom in to regions of
interest. A non-private visualization could compute the true minimum and maximum values
in the dataset and return a histogram over the full range. Computing these values in a
differentially-private manner is a considerably more complex task [15]. Instead, Overlook
requries the data curator to specify publicly-visible values for the initial minimum and
maximum for each column in the privacy policy. As in prior work [37, 27], the curator must
be careful to not choose values closely associated with specific data points.

2.3.3. Quantization. In Overlook, the data curator must specify a public quantization, or
partitioning, of the data. The need for this is twofold:

(1) The synopsis used in Overlook, detailed in Section 3, operates over a finite, enumerable
data domain.

(2) When displaying histograms on categorical data, Overlook uses the curator-specified bin
boundaries as public labels for the bins.

To illustrate the second point, consider a column that contains the names of patients
in a hospital. A non-private histogram might reveal specific names through the choice of
bin labels. In Overlook, a curator may set the quantization boundaries to be the letters ‘A’
through ‘Z’, so that the finest unit of aggregation is the first letter of the name, and no
individual’s name is leaked in the published histogram.2

2While curators should be careful to choose parameters that are public and independent of the data,
we note that the curator’s decisions may leak information if they are made adaptively based on the true
underlying dataset. Preventing this leakage is a challenging issue that is not unique to Overlook, and devising
methods to add differential privacy to this kind of human-in-the-loop parameter selection is an interesting
avenue for further work.

10 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

The idea of public partitioning has been explored in prior systems [37, 27], but the
partitioning in those systems has been left up to the data analyst to specify. In contrast, in
Overlook, the data curator specifies the bin boundaries, and can therefore choose a set of
boundaries that is appropriate for the dataset and provides good visual utility to analysts.

Importantly, Overlook never fully materializes a quantized version of the dataset. Instead,
the quantization policy is expressed implicitly as a function that maps data points their
quantized versions.

3. Definitions and Data Model

We consider a tabular dataset X = {x1, . . . , xn}, xi ∈ A = A1 × . . .×Ad, which consists of
n rows and d columns or attributes. This dataset could be the result of a join on multiple
tables or a materialized view.3 Each column i takes values in the domain Ai, which must be
finite and public (which can be achieved implicitly by applying the privacy policy to each
column at query time).

Our goal is to answer queries from some setQ, where each q ∈ Q is a function q : An → Y .
A mechanism for answering queries from Q is a randomized algorithmM : An ×Q → Y.
Following [14], a mechanism M is ε-differentially private if for any two databases X,X ′

which differ in a single row,

∀Y ⊆ Y,Pr[M(X, q) ∈ Y] ≤ eε Pr[M(X ′, q) ∈ Y].

Intuitively, this means that adding, removing, or changing any one row of the dataset
will not change the probability of an event under the differentially-private mechanism by
more than a pre-specified multiplicative factor, eε. An extensive line of work has explored
the construction of mechanisms that achieve this guarantee [16, 48]. The most common
mechanisms add random noise to the raw result according to the Laplace distribution. In
a histogram visualization, this manifests as random perturbations to the counts for each
bar. Our challenge is then to choose a mechanism that gives good visual utility to the user
despite these random perturbations (§3.2) and implement it efficiently (§4).

Importantly, throughout this section we assume that the mechanism operates over data
which has already been quantized according to the privacy policy, and therefore belongs to a
finite and public domain A. In practice, this quantization happens on demand, at query
time; the quantized dataset is not materialized.

3.1. Query model. Overlook primarily supports one- and two-dimensional histogram
queries.4

The basic building block of a histogram query is computing the count of the elements
that belong to a bucket; a bucket is in general a k-dimensional rectangle.

For example, a 1-dimensional histogram query with ℓ buckets specifies a column i and a
set of ℓ+ 1 bucket boundaries h0 < h1 < . . . < hℓ. The query returns a vector of ℓ counts,
one for each interval [hi, hi+1).

3We note that a line of prior work [41, 6, 39, 27, 31] considers limiting the sensitivity of joins in differential
privacy. Overlook assumes all released views are materialized and provides only per-row privacy in the
materialized view, but, as Overlook operates over a standard database backend, these techniques could be
incorporated in the future.

4Larger dimensions can be accommodated easily, but histograms and heat maps are most relevant to the
visualization setting.

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 11

Note that, although the domain Ai must be finite and public, the bucket boundaries
hi can be any value specified by the user. For example, if Ai = {0, 1, 2}, the user may
query the range [0.5, 1.5). In this case, Overlook would privately return the (noisy) count
corresponding to the value 1 (the only value in the quantized domain that falls in the query
range). We are careful to note that this count corresponds to the data after quantization.

3.2. Synopsis mechanism. Certain families of queries permit a special type of mechanism
that produces a private summary called a synopsis. Such a mechanism can be decomposed
into two stages:

(1) It releases a synopsis S =Mε(X) of the dataset, which is guaranteed to be ε-differentially
private, and is independent of the queries q ∈ Q.

(2) On input q ∈ Q, it computes an answer S(q) using only the synopsis. Since the answer
is computed by post-processing the synopsis, and post-processing does not leak privacy
[14], the answer is differentially private. Further, there is no limit to the number of
queries that a user can submit.

Given a column of a dataset over a finite, enumerable data domain Ai of size m, one
can build a histogram of m buckets containing the count of each element in the domain.
Making this histogram private näıvely requires adding Laplace noise with scale Lap(1/ε) to
each of m buckets. Answering an interval query of size t then adds t independent random
Laplace variables to the result. The error of such a mechanism scales as

√
t [9].

However, adding this much noise to each query is suboptimal. Instead, Overlook uses a
mechanism called the hierarchical histogram [24, 9], also referred to as Hb in the literature.
The error of this mechanism scales as log2b(t) rather than

√
t. At a high level, the hierarchical

histogram builds a tree such that nodes higher in the tree correspond to progressively larger
contiguous intervals in the domain. Each internal node of the tree corresponds to an interval
of the histogram that is the union of its b children, and the mechanism adds noise with scale
Lap(logb(m)/ε) to each internal node. For such a tree with branching factor b, an arbitrary
interval of size t can be computed by taking the union of only (b − 1) logb(t) nodes: the
number of noise variables now scales logarithmically, rather than linearly, in the interval
size. Figure 4 shows such a tree with branching factor 2 (also called a “dyadic” tree).

A multidimensional rectangle query can be computed by taking the Cartesian product
of its decomposition in each axis, as illustrated in Figure 5, for a heatmap over columns i, j.

3.3. Discussion.

3.3.1. Why use hierarchical histograms. Hierarchical histograms are just one of many mech-
anisms that have been proposed in the literature (see the surveys of [24, 44]). We choose to
implement hierarchical histograms for two reasons:

(1) Data-obliviousness. Hierarchical histogram mechanisms are oblivious to the data. They
only need to know the quantization, which is public knowledge in our setting. This
makes them particularly suitable for exploratory data analysis. We do not need any
expensive processing of the data to compute quantization boundaries, which several
data dependent mechanisms require.

(2) Error guarantees. A systematic comparative study of various data-dependent and data-
indpendent mechanisms was performed by [23]. They found that for large datasets, the
Hb mechanism typically results in less error than any other mechanism.

12 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

Quantized domain Ai

Dyadic interval
decomposition

c([0, 4))

c([0, 2))

c(0) c(1) c(m)

Figure 4. Tree used in a hierarchical histogram with b = 2. The tree for
column i is constructed for the quantized domain Ai. Each internal node in
the tree corresponds to the count for a contiguous interval in the domain,
and receives independent random Laplace noise. In this example, the grey
internal nodes in the tree can be used to compute the count for the grey
range in the domain.

Intervals over Ai

Intervals over A
j

Figure 5. Interval decomposition for a 2D histogram (heatmap). The
decomposition in two dimensions is simply the Cartesian product of the
decompositions in each dimension.

3.3.2. Optimizing the shape of the tree. Different tree topologies yield different tradeoffs
between accuracy and privacy [44]. The shallower the tree, the less the sensitivity of the

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 13

resulting synopsis, hence the less noise we need to add per node of the tree. But then
the number of nodes we need to sum might be large for some ranges, which means those
queries produce noisier results. The tradeoffs between these parameters have been studied
extensively in [44]. The best choice of b depends on what type of queries one wishes to
optimize for.

3.3.3. Setting privacy parameters. The simplest option for the curator is to rely on the basic
composition theorem [48, Lemma 2.3] which states that the privacy leakage adds up across
mechanisms. Hence, for range queries of dimensionality i the curator might specify a value
εi, such that

∑
i≤k εi = ε. The curator may then partition each εi (uniformly or otherwise)

across the di mechanisms that answer i-dimensional range queries. Overlook’s privacy
policy allows the curator to specify the value of εS for each set of columns S independently.
A curator with greater expertise in differential privacy may take advantage of advanced
composition theorems [48] to optimize the choice of ε for a table.

4. Virtual Synopses

Let us start by discussing how a private synopsis is usually constructed and used in differential
privacy. An important requirement for releasing a private synopsis is that random noise is
added once, when the synopsis is constructed, and must not be resampled on future queries
to the synopsis. For the hierarchical histogram mechanism, this requirement näıvely would
mean that Overlook would have to store a random sample for every node in the synopsis tree.
This incurs a storage overhead that grows linearly in the size of the domain. Further, we
would create a different synopsis structure for every histogram, so if there are d columns and
we wish to answer all 1 and 2-dimensional histogram queries, this would mean constructing
O(d2) synopsis structures.

Overlook aims to empower the curator to experiment with different privacy settings,
and rapidly visualize the effect of these choices on the visualizations rendered for the user.
Suppose the curator wishes to experiment with privacy budget allocation for 2-dimensional
histograms. Using the naive paradigm as described above would require recomputing O(d2)
synopsis structures every time the budgets change, since the random noise for each histogram
would need to be resampled according to the new parameters. This would be costly both in
terms of computation time and storage space, and would render it hard for the curator to
experiment with a broad set of budgets.

The virtual synopses constructed in Overlook solve this problem. Rather than construct
every new synopsis explicitly, they are represented implicitly. When a certain visualization is
requested, the virtual synopsis allows us to reconstruct only the relevant part of the synopsis
on the fly. This results in a savings in both computation time and storage space, which
in turn empowers the curator to experiment with various privacy settings at interactive
speeds. The key idea used to construct virtual synopses is to use a cryptographically secure
pseudo-random function (PRF) F : (K,X)→ Z to implicitly represent the random noise.
This use of random number generators to save space is similar in spirit to the use of such
generators in streaming algorithms [3], but in our setting, the use of cryptographically secure
generators is essential (see the discussion at the end of the section).

Informally, a PRF guarantees that, given a small random key k in the key space K, F (k, ·)
will be indistinguishable from a truly random function R : X → Z to a computationally-
bounded adversary. (See e.g. [7] for a formal definition.) In our setting, the inputs X

14 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

Algorithm 1 Overlook virtual synopsis.

Inputs: range R for which to compute private count
branching factor b
domain size m
privacy level ε
column index i
true count c(R)
PRF key k

Output: noisy count ĉ(R)

Set scale s = ⌈logb(m)⌉/ε
Set N(R)← B-adicDecomposition(R, b)
Set ĉ(R) = c(R)
for v ∈ N(R) do

ĉ(R)+ = ℓ(F (k, (i, v)), s)
end for
return ĉ(R)

Algorithm 2 Computing the b-adic decomposition for a range.

Inputs: interval R = (rl, rr), rl ≥ 0, rr > rl
branching factor b

Output: nodes N(R) = (v1, . . . , vn) in tree corresponding to R indexed by (start, interval size)

function B-adicDecomposition(R, b)
Set N(R)← {}
Set L = rl
if |R| == 0 then

return N(R)
end if
while L < rr do

pL = −1;
if rl > 0 then

pL = ⌊logb(L)⌋
end if
ps = ⌊logb(rr − L)⌋
p = pL < 0 ? pS : min(pL, ps)
nodeSize = bp

N(R) = N(R) ∪ {(L,nodeSize)}
L+ = nodeSize

end while
return N(R)

end function

to F are nodes in the hierarchical histogram synopsis for a given column, each of which
corresponds to a contiguous interval in the underlying domain. F takes as input a node

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 15

index v, a column index i,5 and the key k associated with a table, and returns a uniformly
distributed random sample F (k, (i, v)), which we then transform to a sample from a Laplace
variable ℓ(F (k, (i, v)), s) with the appropriate scale s.

Using the PRF, we are able to reduce the storage cost of the synopsis from linear in
the domain size to a small constant — in fact, only the 32 bytes required to store the key
associated with a given table.

We incorporate the PRF into the hierarchical histogram mechanism as follows. A range
R can be decomposed into a minimal set N(R) of internal nodes in the synopsis tree, each
of which corresponds to a sub-interval of R. For each v ∈ N(R), we can use the PRF to
compute ℓ(F (k, (i, v)), s), the random noise corresponding to that interval. Then, if the
true count in the interval is c(R), we can compute the private count for the interval as
ĉ(R) = c(R)+

∑
v∈N(R) ℓ(F (k, (i, v)), s). (For a domain of size m, the scale s is ⌈logb(m)⌉/ε.)

Algorithm 1 describes the synopsis algorithm in detail. For completeness, we also
describe the algorithm for computing a b-adic decomposition of an interval in Algorithm 2.

Because the PRF is ultimately deterministic (though indistinguishable from random),
this algorithm satisfies the requirement that queries to the synopsis will not require resampling
noise, although we have not explicitly stored any samples.

4.1. Cryptographic security. It is important to note that the PRF used to generate
random samples must be cryptographically secure. If one can somehow reverse-engineer the
generator and compute ℓ(k, (i, v)), then one can subtract it from the end result and obtain
the true count c(v). A cryptographic PRF ensures that, even if an adversary knows ℓ(k, (i, v))
for some v, perhaps because they know c(v) as auxillary information, the adversary still
cannot efficiently compute ℓ(k, (j, v′)) for a new value and column. This additionally requires
that the key k associated with a table must be stored securely on the Overlook root node.
The importance of securing the randomness in the context of differential privacy along with
possible implementational details is discussed in [18].

Section 5.2.1 further describes the implementation of virtual synopses in Overlook.

4.2. Extension to higher dimensions. Overlook allows for the computation of histograms
in up to 3 dimensions. Higher dimensions than this are not a natural use case for visualization.
Here we wish to point out that the complexity of computing a virtual synopsis does scale
exponentially with the dimension, in terms of the number of calls to the PRF. Let us assume
for simplicity that we have d = 3 dimensions, and that in each dimension the domain size is
m. Let us fix B = 2, so we are computing dyadic decompositions. A histogram query asks
for the count in an interval I1 × I2 × I3 where each Ij is an interval in the domain. We then

compute the dyadic decomposition of each interval as Ij = D1
j + · · ·D

kj
j where k ≤ logm,

and then take the product to get

3∏
j−1

Ij =

3∏
j=1

(D1
j + · · ·D

kj
j) =

k1∑
i1=1

k2∑
i2=1

k3∑
i3=1

Di1
1 Di2

2 Di3
3 .

This gives a sum of at most (log(m))3 dyadic rectangles of the form Di1
1 Di2

2 Di3
3 , and we

query the PRF for a noise variable for each of these intervals.

5Multi-dimensional histograms are also assigned unique indexes, which can then be used with the PRF in
the same manner; the general PRF for a node in a d-dimensional histogram with index i is F (k, (i, v1, . . . , vd)).

16 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

Clearly, in d dimensions, this would translate to (log(m))d calls. We stress that for
Overlook, the natural use cases are d ≤ 2, while some visualizations do require d = 3. The
question of whether there are efficient ways to compute virtual synopses in higher dimensions
which do not suffer an exponential dependence in d is an interesting open problem.

5. Implementation

We have implemented Overlook by extending the open-source Hillview [8] visualization
system. However, to make the case that a system like Overlook could be implemented as an
agent between any suitably powerful UI and a generic database, we have modified Hillview to
also use a root node that generates SQL queries for a MySQL database for storing the data.
We then have added the Overlook differential privacy layer on top of both these back-ends:
the Hillview in-memory database and MySQL. For both cases the adaptations required were
minimal; the MySQL engine is completely unmodified. We describe them in the following
sections.

In this section, we describe implementation details for the UI (§ 5.1), privacy interposition
layer (§ 5.2), and Hillview and MySQL backends (§ 5.3).

5.1. User interface. For data interaction and presentation we reuse the UI of Hillview [1].
This UI is written in the TypeScript programming language [5] and runs in any modern web
browser. To support differentially private visualizations we had to modify a few hundred
lines of code. The most significant changes are (1) the data presentation of uncertainty
(confidence intervals) that is inherent in differentially private results, and (2) the curator
mode, which enables the curator to edit the privacy parameters interactively. We believe that
displaying the confidence intervals significantly enhances the usefulness of a visualization
tool.

5.2. Privacy layer. The privacy layer of Overlook is implemented in Java. It is sandwiched
between the web server layer and the query generation and execution layer. When a new
dataset is opened, the privacy layer checks for the existence of related privacy metadata to
decide whether a data source should be treated as differentially private.

5.2.1. PRFs for virtual synopses. The virtual synopsis described in Section 4 uses a PRF to
generate noise. In practice, we use AES-256 as the PRF. The root node stores one AES key
per table, which ensures that no two tables are released using the same PRF. In the same
vein, columns and pairs of columns are labeled with unique and immutable IDs so that no
two synopses within a table share random samples.

On receiving an interval query [hi, hj), the root computes unique IDs of the nodes in the
synopsis corresponding to this interval. To generate a new Laplace sample for an interval,
the root uses the interval ID and column ID as input to AES to generate random bits, which
can then be transformed into a Laplace sample using standard methods for converting bits
to doubles and then inverting the Laplace CDF.6

6We note that we do not currently implement the snapping mechanism described in [38], but this is not
fundamental to our system design, and can be incorporated in the future.

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 17

5.2.2. Confidence intervals. To approximate the α-confidence interval for a sum of Laplace
variables, we sample the corresponding distribution and return the 1− α percentile value.
Näıvely this operation would be performed for every bucket on every histogram query.
However, we observe that our synopsis guarantees that every interval will be the sum of
at most logd n random variables (for a histogram of dimension d, where n is the size of the
domain). Therefore, the confidence intervals once computed can be stored in a cache of

size at most logd n. Moreover, the confidence intervals are added as a postprocessing step
independent of the raw data, and therefore need not be computed securely; the cache can
be shared across columns and tables.

5.2.3. Privacy policies. Overlook stores privacy policies in JSON format at the root node.
Any user or curator can query the privacy policy, but only the curator is allowed to modify
it (before the data is exposed publicly). The current UI allows the curator to edit the JSON
file directly.

5.2.4. Query rewriting. The query rewriting layer receives queries from the UI and rewrites
them to operate on quantized data. We give a concrete example about such query rewriting
in Section 5, where we describe the implementation of Overlook using a traditional SQL
database. Recall that the quantization parameters for a column are established by the data
curator. The quantization information describes a range of intervals for the data values;
data that falls outside all the quantization intervals is treated as if it belongs to the same
bucket as NULL values. Data out of range could be handled in multiple ways, by allocating
essentially different histogram buckets for data that is smaller than the lowest quantization
boundary, larger than the largest boundary, or NULL. Our UI handles all 3 categories of
data in the same way, but this is just one of the possible choices – each with slightly different
utility and privacy costs.

5.2.5. Adding noise to results. When the root receives the complete counts for the base
histogram, it queries the virtual synopsis for the noise to add to each bucket and adds this
noise to the histogram before returning it to the UI. The UI will display the confidence
interval centered around the noisy result. The confidence interval around the noisy result
may include negative values; in that case the negative values are not displayed, effectively
truncating the confidence interval (how to visualize it exactly is up to the UI and the
specific visualization). Since it is publicly known that count queries cannot be negative this
truncation respects the semantics of a confidence interval and does not violate the privacy
constraints.

5.3. Backends. Overlook operations can be adapted to use any back-end that supports
a rich enough query language to compute standard histograms. We demonstrate this by
describing how it operates over two different back-ends: the Hillview back-end, and one that
operates on top of MySQL. We are interested in highlighting the additional effort required
for adding privacy on top of an existing SQL-based query engine. In this section we describe
how this is done for the case of histogram queries.

18 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

5.3.1. Hillview backend. Hillview is a MapReduce [13]-like distributed query engine that
implements vizketches – mergeable sketches for visualization. (Histograms are a particular
kind of vizketch.) Hillview implements a number of data-parallel aggregation tasks suitable
for visualization, including those used in Overlook. Hillview is described in additional detail
in [8].

The only change required to support privacy-related processing is to adapt all the existing
sketches to first quantize the columns that they operate on according to the appropriate
privacy policy. No other changes were required in the backend. This change amounts to less
than 10 lines of code in each sketch.

5.3.2. MySQL backend. Overlook can interface with unmodified, existing database backends;
we have implemented one such backend in MySQL. In this section, we describe some of the
queries implemented in order to support the Overlook UI.

Numeric histograms. Consider a user request to display a (non-private) histogram of the
data in a column C as a histogram with b buckets. Let us assume first that C is a numeric
column in table t. This kind of visualization is executed using SQL in two stages: (1) the
range of the data in the column is computed, and (2) the histogram is built. To obtain the
range of the data we generate the following query:

SELECT min(C), max(C), count(*), count(C)
FROM t

This query computes the minimum and maximum values in column C, and also the
number of non-null elements and the number of total elements.

The UI receives these parameters and decides on a range l–r of data and on a number
of buckets b to display (in some cases the UI does not need to issue any other query, for
example when all elements are NULL, or when l=r). The query to compute a histogram is
written as:

SELECT bucket, COUNT(bucket) FROM (
SELECT CAST(FLOOR((C - l) * scale)

AS UNSIGNED) AS bucket
FROM t
WHERE C between l AND r)

GROUP BY bucket

scale=b/(r-l) is computed statically before the query is generated.

Quantized data view. Since all private queries operate over quantized data, one option is
to pre-compute and materialize a view where all columns are quantized using the curator-
specified quantization intervals. Such a query can be generated automatically by the system
once the privacy policy has been set. For example, to create a view QV of a table with a
single numeric column C with equal-sized quantization intervals of size g between qmin and
qmax one can issue the following query:

CREATE view QV as
(SELECT qmin + FLOOR((C-qmin)/g)*g AS C
FROM t WHERE C between qmin AND qmax)

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 19

Private numeric histograms. For the case of a private numeric column the general flow is
very much as described in the previous section, but with three changes: (1) the data range is
obtained directly from the privacy policy associated to a column, (2) the query is executed
over the quantized view, and (2) after the histogram is computed noise is added to each
bucket. Let us assume that we are quantizing the data to be within the range qmin and
qmax with a granularity g.

The complete query that is executed is:

-- compute histogram
SELECT bucket, COUNT(bucket) FROM (

-- compute buckets
SELECT CAST(FLOOR((C - l) * scale)

AS UNSIGNED) AS bucket
FROM QV -- quantized view
WHERE C between l AND r)

GROUP BY bucket

String histograms. Computing (non-private) histograms over a categorical column is a bit
more involved because the UI never displays a large number of histogram buckets (more
than can be shown on the screen). The first step in computing a histogram over a string
column involves computing a set of distinct quantiles over the column. For example, if the
screen can accommodate 50 columns, then the UI will first issue a query to sort the distinct
values in the column and extract 50 equi-distant values from the sorted set. These 50 values
will be used as histogram bucket boundaries. If the column has fewer than 50 distinct values
then all values will be used as distinct bucket boundaries.

SELECT DISTINCT BINARY C AS C FROM t
ORDER BY BINARY C

(One has to be careful with the sorting and comparison order: these have to be consistent
between the code that computes the buckets and the database code that performs comparisons
and sorting. In our case we had to prevent MySQL from doing default case-insensitive
string comparisons in order to obtain consistent results — this is why we used the BINARY
keyword. We will omit it from the subsequent queries.)

To compute a histogram quickly over a set of explicit string buckets the Java code
generates an explicit binary search tree using nested SQL IF expressions. For example, to
build a histogram with buckets separated by strings ’A’, ’G’, ’M’, and ’Z’ it generates the
following query:

SELECT bucket, count(bucket)
FROM (

SELECT (IF(C<’G’,0,IF(C<’M’,1,2))) AS bucket
FROM t
WHERE C BETWEEN ’A’ AND ’Z’)

GROUP BY bucket

20 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

Private string histograms. Finally, computing private histograms requires modifying the
query for string histograms in a way similar to numeric private histograms, by quantizing
the data in the column first. A quantization policy for a string column is given essentially by
a sorted list of strings. The quantization query also makes use of a binary search tree. Let’s
assume that our quantization boundaries are ’A’, ’F’, ’N’, ’O’ and ’Z’. The quantization
query is:

CREATE view QV as
(SELECT IF(C<’N’, IF(C<’F’, ’A’, ’F’),

IF(C<’O’, ’N’, ’O’)) AS C
FROM t
WHERE C BETWEEN ’A’ AND ’Z’)

The query to compute a histogram over a quantized view is the composition of these
two queries:

SELECT bucket, count(bucket)
FROM (

SELECT (IF(C<’G’,0,IF(C<’M’,1,2))) AS bucket
FROM QV -- query the quantized view
WHERE C BETWEEN ’A’ AND ’Z’)

GROUP BY bucket

6. Experience

We have not carried any standardized user experience tests, either on Hillview or Overlook.
In this section we describe the developers’ personal experience with the system.

Since we have built Overlook on top of the UI of an existing visualization tool, we can
make a direct comparison of the user experience for traditional and differentially-private
visualization. In this section, we describe some notable differences between these user
experiences.

6.1. Browsing individual data items. The most conspicuous difference is that many
operations that are natural in a normal visualization are unavailable when doing differentially-
private visualization. For example, enumerating the rows of a table is something that cannot
be done in a differentially-private way. Traditional visualization systems can be used for
two purposes: detecting trends and identifying outliers. A differentially-private visualization
system can only be used for the first purpose: differential privacy masks rare events.

6.2. Displaying uncertain values. A second difference is that all counts that are displayed
in a differentially-private visualization are noisy. This can be interpreted as displaying a
value with uncertain range. Although there is substantial work on the visualization of
uncertain values, from our experience the interpretation of confidence intervals requires
a sophisticated understanding from users. While confidence intervals are a useful tool to
visualize uncertainty, they do not prevent spurious high counts that users might confuse for
signal. This phenomenon has already been observed by [52].

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 21

Figure 6. An example of a confidence interval (dotted box) overlaid on
a heat map legend. When a user hovers over a heat map cell, Overlook
highlights the confidence interval corresponding to the cell on the legend.

6.3. Uncertainty in heat maps. While uncertainty for histograms can intuitively be
presented as a range around each count, it is less clear how uncertainty should be displayed
in a heat map. We prototyped multiple possible solutions to this problem.

Figure 6 shows a heat map legend in Overlook that displays a confidence interval. When
the user hovers over a cell, Overlook highlights the confidence interval in the legend.

In addition, however, we would like to visually convey the confidence in each cell on the
chart itself. One way to achieve this, shown in Figure 7c, is to suppress any values whose
count is smaller than a multiplicative factor of its confidence interval. A a noisy value ĉ
with confidence w is considered “low confidence” if ĉ− t ·w < 0, for a threshold parameter t.
By default t = 2, but we provide an UI to the (untrusted) user to change the value of the
threshold t interactively for each plot. Notice that changing t has no privacy costs, it is only
changing the way data is displayed on the screen. Figure 7b shows a plot produced with a
threshold of t = 0, while Figure 7c shows the same data with a threshold of t = 2.

Another idea is to use the whiteness of the image to convey uncertainty. In Figure 7d,
we illustrate such a plot. The raw color scale is used to convey the count in each cell, and
the whiteness provides an additional dimension that can be used to convey the amount of
certainty a user should have in the visualization.

6.4. Quantization intervals. The quantization intervals, especially for categorical data,
have a huge impact on the information that is conveyed to the user. As an example, we
show in Figure 9 three histograms of the exact same dataset on the column “cities” with
different quantization intervals. The first histogram has on the X axis only the cities that
actually appear in the dataset, sorted alphabetically. The second one is quantized on the
first letter of a city’s name, having exactly 26 buckets. The third one is quantized on the first
2 letters of the city’s name. The third one allows the user to zoom-in further and explore
the distribution of data for each letter pair; the additional structure is visible in the CDF
which is more fine-grained (it has 262 steps instead of just 26).

6.5. Query resolution. The amount of noise added to a histogram/heatmap bucket R on
columns S depends on two primary factors: the extent of the bucket (the set of quantization
intervals that fall in R), and the εS privacy budget allocated for the set S of columns. The
noise does not depend on the actual data distribution; however, the relative noise added
does depend on the number of data items that falls into the bucket R. So there is a trade-off
between the resolution of the query and its precision: if we make buckets smaller, we can
potentially see more detail in the data, but the relative noise will be higher. If we make
buckets larger we lose the resolution but we gain precision. There is no obvious choice in this
trade-off, since it depends very much on the data distribution. This is a trade-off that the
data curator can explore and to some degree control by choosing the εS and the quantization
intervals for each column.

22 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

(a) Raw data (b) Private heatmap

(c) High confidence values only (d) Color saturation depicts confidence

(e) Coarse-grain bins

Figure 7. Various ways to convey uncertainty. The color scale of the heat
map conveys the value in each cell. (7a) Raw heatmap with no noise. Y
axis range is -1500 – 2800. (7b) Private heatmap with noise and no color
adjustment. Notice that the min-max range is different for the Y axis, due
to the curator having specified the range -100 – 1000. (7c) Private heatmap;
only bins where counts are higher than 2 times the confidence interval of
the added noise are displayed. We have highlighted with a yellow circle a
lone noisy dot that is displayed. (7d) Whitening added to private heatmap.
The counts that have low confidence are desaturated. (7e) Whitening added
to private heatmap computed on coarse-grained bins. Each bin now has a
larger count relative to the standard deviation of the data, so less whitening
is applied.

6.6. Outliers or sentinel values. In one database we have encountered a date column
which was using a value year of 9999 to indicate that an event has not happened yet. Overlook
in general displays counts for NULL values separately from the hierarchical histogram synopsis,
as NULL will not be part of any data range. In contrast, this sentinel value would be näıvely

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 23

Figure 8. A Trellis plot of histograms shows multiple independent his-
tograms, each computed for a range of values in a second column.

Figure 9. Histogram with up to 26 buckets of a set of cities quantized
in different ways: (upper) public histogram with adaptively chosen bin
boundaries; (middle) quantization fixed to the first letter; (lower) quantization
fixed to first two-letters. The shape of the histogram and CDF curve change
according to the choice of quantization bins.

included in the displayed histogram if the specified public date range included values up to
9999.

24 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

7. Evaluation

In this section, we evaluate the design decisions made in Overlook to support our claims
that the system:

• allows data curators to quickly explore parameter settings for synopses before data release
(§ 7.2),
• implements a synopsis that provides accuracy comparable to state-of-the-art methods
(§ 7.3),
• achieves significantly lower storage cost than the synopses implemented in prior systems
through the use of a pseudorandom function (§ 7.4), and
• retains the scaling properties of the underlying distributed system with low performance
overhead from privacy (§ 7.5).

In addition, we demonstrate that for large datasets, in the visualization setting, the
error induced by differential privacy can be smaller than a pixel on the screen – so that,
with high probability, the user loses no utility compared to the raw visualization (§ 7.6).

7.1. Evaluation setup. Local experiments were run on a machine with 16 GB of memory
and 4 cores using an Intel i7 processor. Cloud experiments were run on an Amazon EC2
cluster of 15 machines with 8 GB of RAM and 2 cores each. The Hillview backend uses
Java 8.

7.2. Synopsis generation overhead. One benefit of Overlook is that it allows the data
curator to quickly explore privacy parameters for the data before it is released. In particular,
the data curator might change the data quantization or privacy budget ε for any column.
Generating example visualizations with the new parameters then requires recomputing the
underlying synopsis.

We use DPBench [23] to evaluate the time required to generate a synopsis with the
hierarchical histogram mechanism against the time required for comparable synopses. We
stress that these times are not trivially comparable as DPBench is primarily an accuracy
benchmark that is not optimized for performance.

We evaluate each method on a one-dimensional all-zeros dataset of increasing size, on a
workload of all intervals (the workload that Overlook targets). These times do not include the
additional time required to compute the base histogram of counts over which the synopses
are computed. We evaluate seven mechanisms in the literature: the baseline “identity”
mechanism [14], the binary hierarchical histogram [9, 24], the hierarchical histogram with
adaptive branching [24], DAWA [32], MWEM [22], Privelet [49], and StructureFirst [51].

Figure 10 shows the results of the benchmark. Figure 10a shows that MWEM and
DAWA are by far the most expensive algorithms, followed by StructureFirst. The remaining
algorithms run in under one second, so we plot these separately in Figure 10b. While the
time required for the hierarchical mechanisms scales linearly in the data size, they are still
considerably less expensive to compute than more complicated workload-aware synopses.

In fact, Overlook itself does not instantiate the synopsis and computes the noisy values
on the fly, so the synopsis adds no precomputation overhead but does add some overhead at
query time. We benchmark Overlook query overhead in Section 7.5.

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 25

0 1000 2000 3000 4000
Domain size

0

20

40

60

80

100

Sy
no

ps
is

ge
ne

ra
tio

n
tim

e (
se

co
nd

s)

Identity
H2
HB
DAWA
MWEM
Privelet
StructureFirst

(a) Time required to generate synopses as the
domain size increases.

0 1000 2000 3000 4000
Domain size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sy
no

ps
is

ge
ne

ra
tio

n
tim

e (
se

co
nd

s)

Identity
H2
HB
Privelet

(b) Generation time for faster synopses.

Figure 10. Time required to generate synopses using various mechanisms,
benchmarked using DPBench. MWEM and DAWA dominate in the first plot;
the second plot shows that generating hierarchical histograms scales in the
domain size, when not using Overlook’s PRF-based construction.

7.3. Synopsis accuracy. Overlook uses hierarchical histograms as the underlying synopsis.
The primary benefit of the hierarchical histogram is that the error scales logarithmically,
rather than linearly, in the size of the underlying dataset. However, more complex optimiza-
tion procedures [35, 32] may yield even better accuracy.

In this section, we demonstrate empirically that Overlook’s histogram mechanism
achieves utility comparable to that of state-of-the-art synopses. These results are supported
by prior work [44, 42, 24] that also investigates the empirical accuracy of hierarchical
histograms. More complex methods work well for skewed or restricted query workloads, but
Overlook benefits from simple mechanisms because it aims to support a very general set of
range queries.

We benchmark accuracy on a dataset of 20 years of U.S. flights [40]. This dataset
contains both numeric and categorical columns over a range of data distributions and
domain sizes (varying from 7 to over 4000). Figure 11 shows results for histograms on all
columns and heat maps on a selection of column pairs. For each bar, we sample 5000 random
intervals or rectangles and compute the ℓ1 distance between the vector of true counts for all
samples and the vector of noisy counts returned by the mechanism.

The key takeaway from these figures is that the hierarchical histogram mechanism
has comparable accuracy to mechanisms that perform more complex, workload-specific
optimization on the random-intervals workload. As noted in [44], the benefits of this
mechanism decrease as the dimension increases. Adaptively choosing which mechanism to
use for a given visualization may be a direction for future work.

7.4. Synopsis memory overhead. Overlook’s synopsis mechanism uses only 32 bytes of
memory, required to store the AES secret key.

The synopsis mechanisms implemented by DPBench are consistent mechanisms. These
take as input a histogram over the elements of the domain and output a synthetic histogram

26 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

Day
OfW

ee
k

Orig
in

Uniq
ueC

ar
rie

r
Actu

alE
lap

se
dTim

e
Orig

in
St

at
e

Dist
an

ce
Des

t
Des

tS
ta

te
Orig

in
City

Nam
e

ArrD
ela

y
Dep

Tim
e

Dep
Dela

y
ArrT

im
e

0

10

20

30
Av

er
ag

e L
1 e

rr
or

H2
DAWA
HB
Identity
Hierarchical (Overlook)

(a) Histogram accuracy. Most mechanisms perform comparably on this
dataset. The X axis is the column whose histogram is computed.

ArrT
im

e+
Orig

in
ArrD

ela
y+

Des
tS

ta
te

Actu
alE

lap
se

dTim
e+

Des
tS

ta
te

Day
OfW

ee
k+

Orig
in

Dist
an

ce
+O

rig
in

St
at

e

Dep
Dela

y+
Orig

in
City

Nam
e

Dep
Tim

e+
Orig

in
City

Nam
e

ArrD
ela

y+
Des

t
Des

t+
Orig

in
City

Nam
e

Orig
in

City
Nam

e+
Uniq

ueC
ar

rie
r

0

1000

2000

Av
er

ag
e L

1 e
rr

or

AG
H2
HB
Identity
Hierarchical (Overlook)

(b) Heatmap accuracy. The baseline identity mechanism outperforms all
others; the hierarchical mechanism nevertheless achieves reasonable accuracy.
The X axis is a pair of columns whose heatmap is computed.

Figure 11. ℓ1 error of Overlook mechanism on the U.S. flights dataset on
5000 randomly-sampled queries per column or pair of columns.

as the synopsis over which all subsequent queries are run. The size of the synopsis is therefore
proportional to the size of the data domain for a histogram, and grows exponentially in the

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 27

number of dimensions (columns). (In particular, if the data is small or especially sparse in
the domain, the size may be considerably larger than necessary to represent the data.)

We note, that these mechanisms may require a considerably larger amount of memory
at computation time. For example, DAWA in two dimensions requires instantiating a matrix
representation of the workload [32]. For the workload that Overlook supports (the all-queries
workload), this requires a matrix of size n3. For such a workload, a relatively small domain
with 1000 quantization intervals would require at least 8 gigabytes of memory simply to
compute the synopsis.

7.5. Overlook performance. In this section, we benchmark the performance of Overlook
and demonstrate that adding differential privacy does not substantially slow down the system
or change its underlying scaling properties. In particular, the overall slowdown from privacy
is no greater than 2.2×.

Hillview
quantized

Hillview
quantized
with noise

MySQL
quantized

MySQL
quantized
with noise

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Sl
ow

do
w

n
re

la
tiv

e t
o p

ub
lic

(a) Histogram slowdown.

Hillview
quantized

Hillview
quantized
with noise

MySQL
quantized

MySQL
quantized
with noise

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Sl

ow
do

w
n

re
la

tiv
e t

o p
ub

lic

(b) Heatmap slowdown.

Figure 12. Slowdown relative to raw (non-private) databases for histograms
and heat maps. In all cases, privacy adds at most a 2.2× performance penalty.

7.5.1. Slowdown relative to public data. We first evaluate how much differential privacy
causes queries to slow down relative to queries on public data. In order to understand the
slowdown, we make two measurements for each backend: first, the time required to quantize
the dataset, and second, the time required to answer a quantized histogram query with noise
added.

Figure 12 shows the average slowdown when plotting histograms and heat maps on
the U.S. flights dataset using both the Hillview and MySQL backends. The slowdown is
below 2.5× for all configurations. In all cases, the majority of the slowdown is a result of
the quantization step. This is intuitive: where each data point would initially have required
one operation to add it to the appropriate bucket, quantization adds an additional operation
to round the point to its nearest value in the quantization domain.

28 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

2 4 6 8 10 12 14
Number of machines

3000

4000

5000

6000

7000

8000

Cu
m

ul
at

iv
e t

im
e (

m
s)

Public
Quantized
Quantized with noise

(a) Histogram scaling.

2 4 6 8 10 12 14
Number of machines

6000

8000

10000

12000

14000

Cu
m

ul
at

iv
e t

im
e (

m
s)

Public
Quantized
Quantized with noise

(b) Heat map scaling.

Figure 13. Average time to generate histograms for columns in the flights
dataset as the number of machines grows. The data size grows with the
number of machines, so the runtime remains constant.

7.5.2. Scaling. The Overlook frontend can be used with any SQL backend. However, the
Hillview distributed backend is powerful as it retains Hillview’s ability to scale to large
datasets.

We evaluate scaling using clusters of 1, 2, 4, 8, and 15 Amazon EC2 machines. The
total dataset size is 58.2 GB, split equally among the machines in the cluster. For linear
scaling we expect the time required for each query to be roughly the same regardless of
the number of machines. We measure time to compute charts once the data is already in
memory (excluding I/O time).

In Figure 13, we show our measurements that evaluate the time breakdown for computing
histograms over the U.S. flights dataset. Each point corresponds to the total time required
to compute a histogram or heat map for every column or pair of columns. The overhead of
privacy is the same roughly 2× overhead as in Figure 12, but privacy does not change the
scaling behavior of the system at all, as expected.

7.6. Visual error. At large enough data sizes, the error induced by differential privacy can
be smaller than the pixel-level rounding error induced by the screen resolution. In particular,
in a 1-dimensional histogram, Overlook rescales the y-axis to the maximum displayed value
in order to make use of all of the available vertical pixels.

Given p vertical pixels and a maximum displayed value of y, each pixel represents a
count of y/p. Hence, a confidence interval of size less than y/p will be smaller than a pixel
on the screen. Assuming the case of a single Laplace random variable added to each bucket
(i.e. the “identity” mechanism), we ask what value of ε would suffice to achieve this level of
error.

The inverse of the Lap(1/ε) distribution is given by

F−1(x) = −(1/ε) sgn(p− 0.5) ln(1− 2|x− 0.5|).

Then we would like F−1(0.95) < y/p for a confidence level of α = 0.95. In this case, we
arrive at an approximate solution of ε > 2.303p/y. In other words, if the maximum count is

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 29

approximately 2.3 times the number of vertical pixels, a privacy level of ε = 1 will likely
result in no visible difference from the raw data.

8. Related Work

8.1. Differentially private database management systems. A number of prior systems
make differential privacy available through a SQL-like database API. PINQ [37] implements
a subset of SQL as well as a prototype visualization system with incremental ε-budgeting.
PINQ additionally pointed out that joins have potentially unbounded sensitivity, and several
later systems [41, 6, 39, 27] propose methods for mitigating this issue.

Other work considers additional variants on SQL-like programming frameworks that
allow developers to easily express differentially private queries. Airavat [45] allows users to
run custom MapReduce [13] queries on sensitive data by enforcing differential privacy on the
queries. Ektelo [53] exposes a number of higher-level operators as a programming framework
for differentially private mechanisms. PrivateSQL [31] uses synopsis-based mechanisms
rather than incremental budgeting to release dataset views. PrivateSQL introduces the
notion of view sensitivity as an approach to handle joins. While Overlook does not explicitly
target joins, such techniques could be naturally integrated with Overlook, as the join is
ultimately materialized as a tabular view of the data. Chorus [29] implements differential
privacy directly in SQL. APEx [19] supports adaptively-chosen exploratory queries presented
in a SQL-like declarative format.

Most of these prior systems support a broad set of queries written directly in SQL or a
SQL-like language. In contrast, Overlook restricts queries to those visualizations enabled by
the UI, which enables the release of a flexible and small synopsis.

8.2. Synopsis-based mechanisms. A number of DP mechanisms [48] are designed to
support all queries in a given class of queries simultaneously. Recent work on synopses include
the matrix mechanism [33, 34, 35], HDMM [36] where the workload is given implicitly, wavelet
transforms [49], and approaches that incorporate data-dependent partitioning [50, 51, 42, 12].
Overlook primarily relies on a hierarchical histogram [24, 9]. A growing body of work
[44, 43, 23] additionally considers data-dependent optimizations that can improve the
accuracy of synopses under certain query workloads.

A number of papers [44, 42, 24] have investigated the accuracy of these methods in
practice. These papers support our claim that the synopses used in Overlook give usable,
and often optimal, accuracy in practice.

The idea of public quantization boundaries, or partitions, has been explored by PINQ
[37] and FLEX [27]. Both of these systems leave it to the data analyst, rather than the data
curator, to specify the quantization boundaries.

Similar ideas are used to analyze streaming data in [20, 10]. A data aware version of
the binary mechanism is presented in [2, 32]. It uses a private partitioning method that
smooths regions of similar count.

Another class of work aims to release a synthetic dataset that approximates the empirical
distribution of the data [54, 26] to answer unrestricted queries. Typically, because the query
class is not restricted, these methods must incur more error per query.

30 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

8.3. Differentially private visualization. PSI [17] may be the closest system to Overlook;
PSI makes ε-budgeting more user-friendly by providing a visual interface for users to interact
with and understand the impact of various values of ε. In contrast to Overlook, PSI assumes a
per-user, incremental ε budget; additionally, PSI is not targeted toward the data exploration
use case.

PINQ [37] provides a case study of a differentially private map visualization as an
application of the framework. [11] provides methods to make linear and logistic regression
plots differentially private. VisDPT [25] is an interface to view two-dimensional trajectories
in a differentially private manner. [52] studies the challenges involved in creating meaningful
visualizations under differential privacy.

9. Conclusion

We have presented Overlook, a visualization system for private data that provides interactive
latencies both for data curators and data analysts. Overlook’s novel virtual synopsis enables
it to scale to large data domains while incurring minimal performance and storage overhead
over queries to raw data. Overlook can integrate with existing query engines with no intrusive
changes. Overlook makes differential privacy accessible, useful, and performant, making it a
practical privacy tool for the real world.

References

[1] Hillview: a big data spreadsheet. http://github.com/vmware/hillview. Retrieved January 2021.
[2] G. Acs, C. Castelluccia, and R. Chen. Differentially private histogram publishing through lossy compres-

sion. In 2012 IEEE 12th International Conference on Data Mining, pages 1–10, Washington, DC, USA,
2012. IEEE Computer Society, pages 1–10. https://doi.org/10.1109/ICDM.2012.80.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
In ACM Symposium on Theory of Computing (STOC), pages 20–29, 1996, pages 20–29. https:
//doi.org/10.1145/237814.237823.

[4] Apple. Differential privacy — technical overview. https://www.apple.com/privacy/docs/
Differential_Privacy_Overview.pdf, 2017.

[5] G. Bierman, M. Abadi, and M. Torgersen. Understanding TypeScript. In R. Jones, editor, ECOOP
2014 – Object-Oriented Programming, pages 257–281, Berlin, Heidelberg, 2014. Springer, pages 257–281.
https://doi.org/10.1007/978-3-662-44202-9_11.

[6] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of social networks via
restricted sensitivity. In Conference on Innovations in Theoretical Computer Science, pages 87–96. ACM,
2013, pages 87–96. https://doi.org/10.1145/2422436.2422449.

[7] D. Boneh and V. Shoup. A graduate course in applied cryptography. Version 0.5, 2020. URL: https:
//crypto.stanford.edu/˜dabo/cryptobook/BonehShoup_0_5.pdf.

[8] M. Budiu, P. Gopalan, L. Suresh, U. Wieder, H. Kruiger, and M. K. Aguilera. Hillview: A trillion-cell
spreadsheet for big data. Proc. VLDB Endow., 12(11):1442–1457, July 2019. https://doi.org/10.
14778/3342263.3342279.

[9] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM Transactions on
Information and System Security (TISSEC), 14(3):26, 2011. https://doi.org/10.1145/2043621.
2043626.

[10] Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau. PeGaSus: Data-adaptive differentially private
stream processing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pages 1375–1388, 2017, pages 1375–1388. https://doi.org/10.1145/
3133956.3134102.

[11] Y. Chen, A. Machanavajjhala, J. P. Reiter, and A. F. Barrientos. Differentially private regression
diagnostics. In ICDM, pages 81–90, 2016, pages 81–90. https://doi.org/10.1109/ICDM.2016.
0019.

http://github.com/vmware/hillview
https://doi.org/10.1109/ICDM.2012.80
https://doi.org/10.1145/237814.237823
https://doi.org/10.1145/237814.237823
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/2422436.2422449
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf
https://doi.org/10.14778/3342263.3342279
https://doi.org/10.14778/3342263.3342279
https://doi.org/10.1145/2043621.2043626
https://doi.org/10.1145/2043621.2043626
https://doi.org/10.1145/3133956.3134102
https://doi.org/10.1145/3133956.3134102
https://doi.org/10.1109/ICDM.2016.0019
https://doi.org/10.1109/ICDM.2016.0019

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 31

[12] G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu. Differentially private spatial decompo-
sitions. In 2012 IEEE 28th International Conference on Data Engineering, pages 20–31. IEEE, 2012,
pages 20–31. https://doi.org/10.1109/ICDE.2012.16.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Symposium
on Operating System Design and Implementation (OSDI), San Francisco, CA, December 2004. URL:
http://labs.google.com/papers/mapreduce.html.

[14] C. Dwork. Differential privacy. Encyclopedia of Cryptography and Security, pages 338–340, 2011. URL:
https://doi.org/10.1007/978-1-4419-5906-5.

[15] C. Dwork and J. Lei. Differential privacy and robust statistics. In Forty-first Annual ACM Symposium
on Theory of Computing (STOC), pages 371–380, 2009, pages 371–380. URL: http://doi.acm.org/
10.1145/1536414.1536466, https://doi.org/10.1145/1536414.1536466.

[16] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3–4):211–407, 2014. URL: https://doi.org/10.1561/
0400000042.

[17] M. Gaboardi, J. Honaker, G. King, K. Nissim, J. Ullman, and S. P. Vadhan. PSI: a private data sharing
interface. CoRR, abs/1609.04340, 2016. URL: http://arxiv.org/abs/1609.04340.

[18] S. L. Garfinkel and P. Leclerc. Randomness concerns when deploying differential privacy. In WPES’20:
Proceedings of the 19th Workshop on Privacy in the Electronic Society, pages 73–86, Virtual Event, USA,
November 9 2020. ACM, pages 73–86. https://doi.org/10.1145/3411497.3420211.

[19] C. Ge, X. He, I. F. Ilyas, and A. Machanavajjhala. APEx: Accuracy-aware differentially private data
exploration. In 2019 International Conference on Management of Data, pages 177–194, 2019, pages
177–194. https://doi.org/10.1145/3299869.3300092.

[20] S. Ghayyur, Y. Chen, R. Yus, A. Machanavajjhala, M. Hay, G. Miklau, and S. Mehrotra. IoT-detective:
Analyzing IoT data under differential privacy. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, pages 1725–1728, Houston, TX, June 10-15 2018.
pages 1725–1728. https://doi.org/10.1145/3183713.3193571.

[21] Google. Privacy on a beam. https://github.com/google/differential-privacy/tree/
main/privacy-on-beam, 2021.

[22] M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 61–70. IEEE, 2010,
pages 61–70. https://doi.org/10.1109/FOCS.2010.85.

[23] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang. Principled evaluation of differentially
private algorithms using DPBench. In Proceedings of the 2016 International Conference on Management
of Data (SIGMOD), pages 139–154, June 26 – July 01 2016, pages 139–154. https://doi.org/10.
1145/2882903.2882931.

[24] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private his-
tograms through consistency. Proc. VLDB Endow., 3(1-2):1021–1032, Sept. 2010. https://doi.org/
10.14778/1920841.1920970.

[25] X. He, N. Raval, and A. Machanavajjhala. A demonstration of VisDPT: visual exploration of differentially
private trajectories. Proceedings of the VLDB Endowment, 9(13):1489–1492, 2016. https://doi.org/
10.14778/3007263.3007291.

[26] Z. Huang, R. McKenna, G. Bissias, G. Miklau, M. Hay, and A. Machanavajjhala. PSynDB: accurate
and accessible private data generation. Proceedings of the VLDB Endowment, 12(12):1918–1921, 2019.
https://doi.org/10.14778/3352063.3352099.

[27] N. Johnson, J. P. Near, and D. Song. Towards practical differential privacy for SQL queries. Proc. VLDB
Endow., 11(5):526–539, Jan. 2018. https://doi.org/10.1145/3187009.3177733.

[28] N. M. Johnson. Towards Practical Privacy-Preserving Data Analytics. PhD thesis, University of California,
Berkeley, USA, 2018. URL: http://www.escholarship.org/uc/item/72j4b4n5.

[29] N. M. Johnson, J. P. Near, J. M. Hellerstein, and D. Song. Chorus: Differential privacy via query
rewriting. CoRR, abs/1809.07750, 2018. URL: http://arxiv.org/abs/1809.07750.

[30] A. Khalid. Google is making its differential privacy tool available
to all developers. Engadget, 2019. URL: https://www.engadget.com/
2019-09-05-google-is-making-its-differential-privacy-tool-available-to-all.
html.

https://doi.org/10.1109/ICDE.2012.16
http://labs.google.com/papers/mapreduce.html
https://doi.org/10.1007/978-1-4419-5906-5
http://doi.acm.org/10.1145/1536414.1536466
http://doi.acm.org/10.1145/1536414.1536466
https://doi.org/10.1145/1536414.1536466
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
http://arxiv.org/abs/1609.04340
https://doi.org/10.1145/3411497.3420211
https://doi.org/10.1145/3299869.3300092
https://doi.org/10.1145/3183713.3193571
https://github.com/google/differential-privacy/tree/main/privacy-on-beam
https://github.com/google/differential-privacy/tree/main/privacy-on-beam
https://doi.org/10.1109/FOCS.2010.85
https://doi.org/10.1145/2882903.2882931
https://doi.org/10.1145/2882903.2882931
https://doi.org/10.14778/1920841.1920970
https://doi.org/10.14778/1920841.1920970
https://doi.org/10.14778/3007263.3007291
https://doi.org/10.14778/3007263.3007291
https://doi.org/10.14778/3352063.3352099
https://doi.org/10.1145/3187009.3177733
http://www.escholarship.org/uc/item/72j4b4n5
http://arxiv.org/abs/1809.07750
https://www.engadget.com/2019-09-05-google-is-making-its-differential-privacy-tool-available-to-all.html
https://www.engadget.com/2019-09-05-google-is-making-its-differential-privacy-tool-available-to-all.html
https://www.engadget.com/2019-09-05-google-is-making-its-differential-privacy-tool-available-to-all.html

32 P. THAKER, M. BUDIU, P. GOPALAN, U. WIEDER, AND M. ZAHARIA

[31] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala, M. Hay, and G. Miklau. PrivateSQL:
A differentially private SQL query engine. PVLDB, 12(11):1371–1384, 2019. URL: http://www.vldb.
org/pvldb/vol12/p1371-kotsogiannis.pdf.

[32] C. Li, M. Hay, G. Miklau, and Y. Wang. A data- and workload-aware query answering algorithm for
range queries under differential privacy. PVLDB, 7(5):341–352, 2014. https://doi.org/10.14778/
2732269.2732271.

[33] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under
differential privacy. In ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 123–134. ACM, 2010, pages 123–134. https://doi.org/10.1145/1807085.1807104.

[34] C. Li and G. Miklau. An adaptive mechanism for accurate query answering under differential privacy.
Proceedings of the VLDB Endowment, 5(6):514–525, 2012. https://doi.org/10.14778/2168651.
2168653.

[35] C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi. The matrix mechanism: optimizing linear
counting queries under differential privacy. The VLDB journal, 24(6):757–781, 2015. https://doi.
org/10.1007/s00778-015-0398-x.

[36] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala. Optimizing error of high-dimensional
statistical queries under differential privacy. Proc. VLDB Endow., 11(10):1206–1219, 2018. https:
//doi.org/10.14778/3231751.3231769.

[37] F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis.
In ACM SIGMOD International Conference on Management of Data, pages 19–30, 2009, pages 19–30.
https://doi.org/10.1145/1559845.1559850.

[38] I. Mironov. On significance of the least significant bits for differential privacy. In ACM Conference on
Computer and Communication Security (CCS), pages 650–661, 2012, pages 650–661. https://doi.
org/10.1145/2382196.2382264.

[39] A. Narayan and A. Haeberlen. DJoin: differentially private join queries over distributed
databases. In Symposium on Operating System Design and Implementation (OSDI), pages 149–162,
2012, pages 149–162. URL: https://www.usenix.org/system/files/conference/osdi12/
osdi12-final-164.pdf.

[40] U. D. of Transportation. Airline on-time performance data. https://transtats.bts.gov/Tables.
asp?DB_ID=120. Retrieved December 2020.

[41] D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to sensitivity in private data analysis.
PVLDB, 7(8):637–648, 2014. https://doi.org/10.14778/2732296.2732300.

[42] W. Qardaji, W. Yang, and N. Li. Differentially private grids for geospatial data. In 29th international
conference on data engineering (ICDE), pages 757–768, 2013, pages 757–768. https://doi.org/10.
1109/ICDE.2013.6544872.

[43] W. Qardaji, W. Yang, and N. Li. PriView: Practical differentially private release of marginal contingency
tables. In SIGMOD International Conference on Management of Data, pages 1435–1446, 2014, pages
1435–1446. https://doi.org/10.1145/2588555.2588575.

[44] W. H. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differentially private
histograms. PVLDB, 6(14):1954–1965, 2013. https://doi.org/10.14778/2556549.2556576.

[45] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat: Security and privacy for MapReduce.
In NSDI, volume 10, pages 297–312, 2010, 10:297–312. URL: https://www.usenix.org/legacy/
events/nsdi10/tech/full_papers/roy.pdf.

[46] Tableau Software. Tableau. https://www.tableau.com, Retrieved January 2021.
[47] US Census Bureau. Disclosure avoidance and the 2020 census. https://www.census.gov/about/

policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.
html, Retrieved 2019.

[48] S. Vadhan. The Complexity of Differential Privacy, pages 347–450. Springer International Publishing,
Cham. pages 347–450, 2017. https://doi.org/10.1007/978-3-319-57048-8_7.

[49] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. IEEE Transactions on
knowledge and data engineering, 23(8):1200–1214, 2010. https://doi.org/10.1109/TKDE.2010.
247.

[50] Y. Xiao, L. Xiong, L. Fan, S. Goryczka, and H. Li. DPCube: Differentially private histogram release
through multidimensional partitioning. Trans. Data Privacy, 7(3):195–222, Dec. 2014. https://doi.
org/10.5555/2870614.2870615.

http://www.vldb.org/pvldb/vol12/p1371-kotsogiannis.pdf
http://www.vldb.org/pvldb/vol12/p1371-kotsogiannis.pdf
https://doi.org/10.14778/2732269.2732271
https://doi.org/10.14778/2732269.2732271
https://doi.org/10.1145/1807085.1807104
https://doi.org/10.14778/2168651.2168653
https://doi.org/10.14778/2168651.2168653
https://doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.14778/3231751.3231769
https://doi.org/10.14778/3231751.3231769
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-164.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-164.pdf
https://transtats.bts.gov/Tables.asp?DB_ID=120
https://transtats.bts.gov/Tables.asp?DB_ID=120
https://doi.org/10.14778/2732296.2732300
https://doi.org/10.1109/ICDE.2013.6544872
https://doi.org/10.1109/ICDE.2013.6544872
https://doi.org/10.1145/2588555.2588575
https://doi.org/10.14778/2556549.2556576
https://www.usenix.org/legacy/events/nsdi10/tech/full_papers/roy.pdf
https://www.usenix.org/legacy/events/nsdi10/tech/full_papers/roy.pdf
https://www.tableau.com
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html
https://doi.org/10.1007/978-3-319-57048-8_7
https://doi.org/10.1109/TKDE.2010.247
https://doi.org/10.1109/TKDE.2010.247
https://doi.org/10.5555/2870614.2870615
https://doi.org/10.5555/2870614.2870615

Overlook: DIFFERENTIALLY PRIVATE EXPLORATORY VISUALIZATION 33

[51] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. Differentially private histogram publication.
The VLDB Journal—The International Journal on Very Large Data Bases, 22(6):797–822, 2013. https:
//doi.org/10.1007/s00778-013-0309-y.

[52] D. Zhang, M. Hay, G. Miklau, and B. O’Connor. Challenges of visualizing differentially private data. In
Theory and Practice of Differential Privacy, 2016. URL: https://people.cs.umass.edu/˜miklau/
assets/pubs/viz/zhang16challenges.pdf.

[53] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay, A. Machanavajjhala, and G. Miklau. Ektelo: A frame-
work for defining differentially-private computations. In 2018 International Conference on Management
of Data, SIGMOD ’18, pages 115–130, 2018, pages 115–130. https://doi.org/10.1145/3183713.
3196921.

[54] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. PrivBayes: Private data release
via Bayesian networks. ACM Transactions on Database Systems (TODS), 42(4):1–41, 2017. https:
//doi.org/10.1145/3134428.

This work is licensed under the Creative Commons License Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Cre-
ative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher
Strasse 2, 10777 Berlin, Germany

https://doi.org/10.1007/s00778-013-0309-y
https://doi.org/10.1007/s00778-013-0309-y
https://people.cs.umass.edu/~miklau/assets/pubs/viz/zhang16challenges.pdf
https://people.cs.umass.edu/~miklau/assets/pubs/viz/zhang16challenges.pdf
https://doi.org/10.1145/3183713.3196921
https://doi.org/10.1145/3183713.3196921
https://doi.org/10.1145/3134428
https://doi.org/10.1145/3134428
https://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	1.1. Motivation
	1.2. Overview
	1.3. Implementation and Evaluation
	1.4. Summary of contributions

	2. System overview
	2.1. Threat model
	2.2. User interface
	2.3. Curator mode

	3. Definitions and Data Model
	3.1. Query model
	3.2. Synopsis mechanism
	3.3. Discussion

	4. Virtual Synopses
	4.1. Cryptographic security
	4.2. Extension to higher dimensions

	5. Implementation
	5.1. User interface
	5.2. Privacy layer
	5.3. Backends

	6. Experience
	6.1. Browsing individual data items
	6.2. Displaying uncertain values
	6.3. Uncertainty in heat maps
	6.4. Quantization intervals
	6.5. Query resolution
	6.6. Outliers or sentinel values

	7. Evaluation
	7.1. Evaluation setup
	7.2. Synopsis generation overhead
	7.3. Synopsis accuracy
	7.4. Synopsis memory overhead
	7.5. Overlook performance
	7.6. Visual error

	8. Related Work
	8.1. Differentially private database management systems
	8.2. Synopsis-based mechanisms
	8.3. Differentially private visualization

	9. Conclusion
	References

