Mesos
Problem

- Different applications need different frameworks
- How can we share a cluster among multiple frameworks?
 - Statically partitioning the cluster
 - Centralized task scheduler
Key ideas

- Fine-grained sharing
Coarse-Grained Sharing (HPC):

Framework 1

Framework 2

Framework 3

Storage System (e.g. HDFS)
Key ideas

- Fine-grained sharing
- Decentralized scheduling
 - Mesos decides resource offers
 - Frameworks can reject
Figure 2: Mesos architecture diagram, showing two running frameworks (Hadoop and MPI).
Figure 3: Resource offer example.
Optimizations

- Frameworks can set resource filters
- Master can revoke tasks
 - Master can set guaranteed allocation
 - Frameworks can call `setNeedsOffers(bool)`
Frameworks should behave

- Resources offered count as resources allocated
- Mesos can rescind offers after a timeout
- Short tasks
- Elastic scaling
Scalability and fault tolerance

- Master has soft state
 - Active slaves, active frameworks, running tasks
- Multiple masters with leader election
- Frameworks deal with own failures
Use case: Best with...

- Elastic frameworks
- Homogeneous task durations
- Frameworks that prefer nodes equally
Use case: Frameworks prefer nodes

- If each framework can get preferred slots, they will
- Else, lottery scheduling
 - Frameworks will probably get proportionate numbers of preferred slots
- Delay scheduling \rightarrow data locality
Use case: Heterogeneous task durations

- Okay when there are many slots or not many long tasks
- Master can reserve space for short tasks
- Master can set minimum offer size for long tasks
Limitations

- Fragmentation (bounded)
- Framework interdependence
- Framework schedulers required to use resource offers
Jobs have higher utilization than static partitioning
Jobs finish at least as fast as in static partitioning.
Questions?