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Abstract

This paper presents an algorithm for learning the time-varying shape of a
non-rigid 3D object from uncalibrated 2D tracking data. We model shape
motion as a rigid component (rotation and translation) combined with a
non-rigid deformation. Reconstruction is ill-posed if arbitrary deforma-
tions are allowed. We constrain the problem by assuming that the object
shape at each time instant is drawn from a Gaussian distribution. Based
on this assumption, the algorithm simultaneously estimates 3D shape and
motion for each time frame, learns the parameters of the Gaussian, and
robustly fills-in missing data points. We then extend the algorithm to
model temporal smoothness in object shape, thus allowing it to handle
severe cases of missing data.

1 Introduction

We can generally think of a non-rigid object’s motion as consisting of a rigid component
plus a non-rigid deformation. For example, a person’s head can move rigidly (e.g. turning
left or right) while deforming (due to changing facial expressions). If we view this non-rigid
motion from a single camera view, the shape and motion are ambiguous: for any hypotheti-
cal rigid motion, a corresponding 3D shape can be devised that fits the image observations.
Even if camera calibration and rigid motion are known, a depth ambiguity remains. Despite
this apparent ambiguity, humans interpret the shape and motion of non-rigid objects with
relative ease; clearly, more assumptions about the nature of the deformations are used by
humans.

This paper addresses the question: how can we resolve the ambiguity, with as weak as-
sumptions as possible? We argue that, by assuming that the 3D shape is drawn from some
non-uniform PDF, we can reconstruct 3D non-rigid shape from 2D motion unambiguously.
Moreover, we show that this can be done without assuming that the parameters of the PDF
are known in advance. The use of a proper PDF makes the technique robust to noise and
overfitting. We demonstrate this approach by modeling the PDF as a Gaussian distribution
(more specifically, as a factor analyzer), and describe a novel EM algorithm for simulta-
neously learning the 3D shapes, the rigid motion, and the parameters of the Gaussian. We
also generalize this approach by modeling the shape as a Linear Dynamical System (LDS).



Our algorithm can be thought of as a structure-from-motion (SFM) algorithm with a learn-
ing component: we assume that a set of labeled point tracks have been extracted from a raw
video sequence, and the goal is to estimate 3D shape, camera motion, and a deformation
PDF. Our algorithm is well-suited to reconstruction in the case of missing data, such as
due to occlusions and other tracking outliers. However, we show significant improvements
over previous algorithms even when all tracks are visible.

Our work may also be seen as unifying Active Shape Models [1, 2, 5] with SFM, where both
are estimated jointly from an image sequence. Our methods are closely related to factor
analysis, probabilistic PCA, and linear dynamical systems. Our missing-data technique can
be viewed as generalizing previous algorithms for SFM with missing data (e.g. [8, 9]) to the
nonrigid case. In work concurrent to our own, Gruber and Weiss [7] also apply EM to SFM;
their work focuses on the rigid case with known noise, and applies temporal smoothing to
rigid motion parameters rather than shape.

2 Deformation, Shape, and Ambiguities

We now formalize the problem of interpreting non-rigid shape and motion. We assume
that a scene consists of J scene points sj,t, where j is an index over scene points, and t
is an index over image frames. The 2D projections pj,t of these points are imaged under
orthographic projection:

pj,t = Rt(sj,t + dt) + n (1)

where pj,t is the 2D projection of scene point j at time t, dt is a 2 × 1 translation vector,
Rt is a 2 × 3 matrix that combines rotation with orthographic projection [12], and n is
zero-mean Gaussian noise with variance σ2. Collecting the projected points into a 2 × J
matrix Pt = [p1,t, ...,pJ,t] and the 3D shape into a 3 × J matrix St = [s1,t, ...sJ,t] gives
the equivalent form

Pt = Rt(St + Dt) + N (2)

where Dt = dt1
T contains J copies of the translation matrix dt. Note that rigid motion of

the object and rigid motion of the camera are interchangeable. Our goal is to estimate the
time-varying shape St and motion (Rt,Dt) from the observed projections Pt. Without any
constraints on the 3D shape sj,t, this problem is extremely ambiguous [11]. For example,
given a shape St and motion (Rt,Dt) and an arbitrary orthonormal matrix At, we can
produce a new shape AtSt and motion (RtA

−1
t ,AtDt) that together give identical 2D

projections as the original model, even if a different matrix At is applied in every frame.

A common way to model non-rigid deformations is to assume that the shape is produced
by adding deformations to a shape average S̄:

St = S̄ +

K
∑

k=1

Vkzk,t (3)

where zk,t are scalar per-frame weights that indicate the contributions of the deformations
to each shape; these weights are combined in a vector zt = [z1,t, ..., zK,t]

T . Together, S̄
and Vk are referred to as the shape basis. Equivalently, the space of possible shapes may be
described by linear combinations of basis shapes, by selecting K + 1 linearly independent
points in the space. This model was first applied to non-rigid SFM by Bregler et al. [4].
However, this model contains ambiguities, since, for some 3D shape and motion, there
will still be ways to combine different weights and a different rigid motion to produce the
same 3D shape. Since we are performing a 2D projection, an additional depth ambiguity
occurs. For example, whenever there exist weights wk such that Rt

∑

Vkwk = 0 and
∑

Vkwk 6= 0, these weights define a linear space of distinct 3D shapes (with weights



zt,k +αwk) that give identical 2D projections. (When the number of basis shapes is small,
these ambiguities are rarer and may not make a dramatic impact.) Furthermore, a least-
squares fit may overfit noise, especially with many basis shapes. As the number of basis
shapes grows, the problem is more likely to become unconstrained, eventually approaching
the totally unconstrained case described above.

The ambiguity and overfitting may be resolved by introducing regularization terms that pe-
nalize large deformations, and then solving for 3D shape in a least-squares sense. Soatto
and Yezzi [11] use a regularization term equivalent to

∑

t ||St − S̄||2. However, this regu-
larization may be too restrictive in many cases and too loose in others. For example, when
tracking a face, deformations of the jaw are much more likely than deformations of the
nose. Moreover, the weight for this regularization term must be specified by hand1. Al-
ternatively, Brand [3] proposes placing a user-specified Gaussian prior on the deformation
basis and a prior on the deformations based on an initial estimate.

In order to motivate our approach, we can restate the above techniques as follows. Suppose
we assume that shapes St are drawn from a probabilitity distribution p(St|θ) with known
parameters θ. The non-rigid shape and motion are estimated by maximizing

p(S,R,D|P, θ, σ2) ∝ p(P|S,R,D, θ, σ2)p(S,R,D|θ, σ2) (4)

∝
∏

t

p(Pt|St,Rt,Dt, σ
2)p(St|θ) (5)

assuming uniform priors on Rt, and Dt. The projection likelihood p(Pt|St,Rt,Dt, σ
2)

is a spherical Gaussian (Equation 2). The negative log-posterior − ln p(S,R,D, θ|P)
corresponds to a standard least-squares formulation for SFM, plus a regularization term
− ln p(St|θ). If we set p(St|θ) to be a uniform distribution, then we get the highly un-
derconstrained case described above. If we set p(St|θ) to be a spherical Gaussian with
a specified variance (e.g. p(St|θ) = N (S̄;σ2I)) then we obtain the simple regularization
used previously — the problem is constrained, but by a weak regularization term with a
user-specified weight (variance).

Our approach. Our approach is to simultaneously estimate the rigid motion and learn
the shape PDF. In other words, we estimate R,D, θ, and σ2 to maximize

p(R,D, θ, σ2|P) =

∫

p(R,D, θ,S, σ2|P)dS (6)

∝
∫

p(P|R,D,S, σ2)p(S|θ)dS (7)

The key idea is that we can estimate shape and motion while learning the parameters of the
PDF p(S|θ) over shapes. (Our method marginalizes over the unknown shapes St, rather
than solving for estimates of shape.) In effect, the regularization terms (i.e. the PDF) are
learned simultaneously with the rest of SFM. This means that the regularization terms need
not be set manually, and can thus be much more sophisticated and have many more param-
eters than previous methods. In practice, we find that this leads to significantly improved
reconstructions over user-specified shape PDFs. We demonstrate the approach by model-
ing the shape PDF as a general Gaussian. We reduce the dimensionality of the Gaussian
by representing it as a factor analyzer. In this case, the factors Vk may be interpreted as
basis deformations. We later generalize this approach to model shape as an LDS, leading
to temporal correlations in the shape PDF.

It might seem that, since the parameters of the PDF are not known a priori, the algorithm
could estimate wildly varying shapes, and then learn a correspondingly spread-out PDF.

1In their work, Soatto and Yezzi address a slightly simpler problem where the 3D data is observed
without noise or projection, and thus there are no weights to specify in this case



However, such a spread-out PDF would assign very low likelihood to the solution and thus
be suboptimal; this is a typical case of Bayesian learning naturally balancing the desire to
fit the data with the desire for a “simple” model. One way to see this is to consider the
terms of − ln p(R,D, θ|P) in the case of the Gaussian prior PDF: in addition to the data-
fitting term and the regularization term, there is a “normalization constant” term of T ln |φ|,
where T is the number of frames and φ is the covariance of the shape PDF. This term
directly penalizes spread-out Gaussians. Hence, the optimal solution trades-off between
(a) fitting the projection data, (b) fitting the shapes St to the shape PDF (regularizing),
and (c) minimizing the variance of the shape PDF as much as possible. The algorithm
simultaneously regularizes and learns the regularization.

3 Learning a Gaussian shape distribution

We now describe our algorithm in detail. We model p(St|θ) as a factor analyzer [6]. In
this setting, the factors of the Gaussian can be interpreted as basis deformations — shape
is modeled by Equation 3 — but the weights zt are now hidden variables, with zero-mean
Gaussian priors with unit variance for each:

zt ∼ N (0; I) (8)

The shape and projection model is then completely specified by Equations 2, 3,
and 8. The problem of non-rigid SFM is now to solve for the maximum like-
lihood estimates of Rt,Dt, S̄,V, and σ2, i.e. maximize p(Rt,Dt, S̄,V, σ

2|Pt) ∝
∏

t p(Pt|Rt,Dt, S̄,V, σ
2) =

∏

t

∫

p(Pt, zt|Rt,Dt, S̄,V, σ
2)p(zt)dzt

3.1 Vectorized form.

For later computations, it is useful to rewrite the model in a vectorized form. First, define
ft to be the vector of point tracks ft = vec(Pt) = [x1,t, y1,t, ..., xJ,t, yJ,t]

T . Note that ft
is the same variable as Pt, but written as a vector rather than a matrix2. Expanding ft we
have

ft = vec(Pt) = vec(RtSt + RtDt + Nt) (9)

=
K
∑

k=1

vec(RtVk)zk,t + vec(RtS̄) + vec(RtDt) + vec(Nt) (10)

= Mtzt + f̄t + Tt + vec(Nt) (11)

where Mt = [vec(RtV1), ..., vec(RtVK)], zt = [z1,t, ..., zK,t]
T , f̄t = vec(RtS̄) and

Tt = vec(RtDt) = [(Rtdt)
T , ..., (Rtdt)

T ]T = [tT
t , ..., t

T
t ]T . Note that the marginal

distribution over shape — as well as its projection — is Gaussian:

p(ft|ψ) =

∫

p(ft|zt, ψ)p(zt|ψ)dzt (12)

= N (ft|Tt + f̄t;MtM
T
t + σ2I) (13)

where ψ encapsulates the model parameters S̄,Vk,Rt,Dt and σ2.

Let H̃ = [vec(S̄), vec(V1), ..., vec(VK)] and z̃t = [1, zT
t ]T . We can also rewrite the

shape equation as vec(RtSt) = (I ⊗ Rt)vec(St) = (I ⊗ Rt)H̃z̃t, by using the identity
vec(ABC) = (CT ⊗A)vec(B). The symbol ⊗ denotes Kronecker product.

2The vec operator stacks the columns of a matrix into a vector, e.g. vec

([

a0 a2

a1 a3

])

=

[a0, a1, a2, a3]
T . The operator is linear: vec(A + B) = vec(A) + vec(B), vec(αA) = αvec(A)

for any matrices A and B and scalar α.



3.2 Generalized EM algorithm.

Given a set of point tracks P (equivalently, f ), we can estimate the motion and deformation
model using EM; the algorithm is similar to EM for factor analysis [6].

The E-step. We estimate the distribution over zt given the current motion and shape
estimates, for each frame t. Defining q(zt) to be the distribution to be estimated in frame
t, it can be computed as

q(zt) = p(zt|ft, ψ) (14)

= N (zt|β(ft − f̄t −Tt); I− βMt) (15)

β = MT
t (MtM

T
t + σ2I)−1 (16)

The matrix inversion lemma may be used to accelerate the computation of β. We define
the expectations µt ≡ Eq[zt] and φt ≡ Eq[ztz

T
t ] and compute them as:

µt = β(ft − f̄t −Tt) (17)

φt = I− βMt + µtµ
T
t (18)

We also define µ̃t = E[z̃t] = [1, µT
t ]T and φ̃ = E[z̃tz̃

T
t ] =

[

1 µT
t

µt φt

]

.

The M-step. We estimate the motion parameters by minimizing

Q(P, ψ) = Eq(z1),...,q(zT )[− log p(P|ψ)] (19)

=
∑

t

Eq(zt)[||ft − vec(RtSt)−Tt)||2/(2σ2)] + 2JT log
√

2πσ2 (20)

This function is quadratic in the shape parameters (S̄,Vk), in the rigid motion parameters
(Rt,Tt) and in the gaussian noise variance parameter σ2. To update each of these param-
eters we compute the corresponding partial derivative of the expected log likelihood, set it
to zero and solve it. The parameter update rules are:

• Shape basis:

vec(H̃)←
(

∑

t

(φ̃t ⊗ (I⊗RT
t Rt))

)

−1

vec

(

∑

t

(I⊗Rt)
T (ft −Tt)µ̃

T
t

)

(21)

• Noise variance:

σ2 ← 1

2JT

∑

t

(||ft− f̄t−Tt||2−2(ft− f̄t−Tt)
T Mtµt + tr(MT

t Mtφt)) (22)

• Translation:

Tt ← (1⊗ I)
1

J

∑

j

(ftj −Rt(S̄j +
∑

k

Vkjµtk)) (23)

• Rotation:

Rt ← arg min
Rt

||Rt

∑

j

(H̃j φ̃tH̃
T
j )−

∑

j

((ftj − tt)µ̃
T
t H̃T

j )|| (24)

where H̃ = [H̃T
1 , ..., H̃

T
J ]T and ft = [ft1, ..., ftJ ].



Since the system of equations in Equation 21 is large and sparse, we solve it using conjugate
gradient. In Equation 24, we enforce orthonormality of rotations by parameterizing Rt

with exponential coordinates. We linearize the equation with respect to the exponential
coordinates, and solve the resulting quadratic.

If any of the point tracks are missing, they are also filled in during the M-step. Let f ∗t
denote the elements of a frame of tracking data that are not observed; they are estimated as

f∗t ← f̄∗t + M∗

tµt + T∗

t (25)

where (∗) indicates rows that correspond to the missing data.

In our M-step, we apply each of these updates once, although they could also be alternated.
Once EM has converged, the maximum likelihood shapes may be computed as St = S̄ +
∑

k Vkµt,k.

4 Learning dynamics

Many real deformations contain some temporal smoothness. We model temporal behavior
of deformations using a Linear Dynamical System (LDS). In this model, Equation 8 is
replaced with

z0 ∼ N (0; I) (26)

zt = Φzt−1 + n, n ∼ N (0;Q) (27)

where Φ is an arbitrary unknown K×K matrix, and Q is a K×K covariance matrix. For
certain estimates of Φ, this model corresponds to an assumption of continuously or slowly
changing shape. Since our model is a special form of Shumway and Stoffer’s algorithm
for LDS learning with EM [10], it is straightforward to adapt it to our needs. In the E-
step, we apply Shumway and Stoffer’s E-step to estimate µt, φt, and E[ztz

T
t−1], based on

Pt, S̄,Mt,Φ,Q, and σ2. In the M-step, we apply the same shape and motion updates as
in the previous section; additionally, we update Φ and Q in the same way as in Shumway
and Stoffer’s algorithm. In other words, this reconstruction algorithm learns 3D shape with
temporal smoothing, while learning the temporal smoothness term.

5 Experiments

We compared our algorithm with the iterative SFM algorithm presented by Torresani et
al. [13], which we will refer to as ILSQ (iterative least-squares) in the following discus-
sion3. ILSQ optimizes Equations 2 and 3 by alternating optimization of each of the un-
knowns (rotation, basis shapes, and coefficients). We also improved the algorithm by up-
dating the translations as well. When some data is missing, ILSQ optimizes with respect
to the available data. For both algorithms, the rigid motion is initialized by Tomasi-Kanade
[12], and random initialization of the shape basis and coefficients. For the algorithm pre-
sented in section 3, we adopted an annealing scheme that forces σ2 to remain large in
the initial steps of the optimization. We refer to our new algorithms as EM-Gaussian and
EM-LDS.

We tested the algorithms on a synthetic animation of a deforming shark in Figure 1. The
motion consists of rigid rotation plus deformations generated by K = 2 basis shapes. The
average reconstruction errors in Z for ILSQ and EM-Gaussian are respectively 7.10% and
2.50% on this sequence after 100 parameter updates.4 By enforcing temporal smoothness

3In our experience, ILSQ always performs better than the algorithm of Bregler et al. [4].
4All errors are computed in percentage points: the average distance of the reconstructed point to

the correct point divided by the size of the shape.
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Figure 1: Reconstructions of the shark sequence using the three algorithms. Each algorithm was
given 2D tracks as inputs; reconstructions are shown here from a different viewpoint than the inputs
to the algorithm. Ground-truth features are shown as green circles; reconstructions are blue dots. Note
that, although ILSQ gets approximately the correct shape in most cases, it misses details, whereas
EM gives very accurate results most of the time. Some of the deformation errors of EM-Gaussian
(e.g. for t=148) are corrected by EM-LDS through temporal smoothing.

EM-LDS was able to correct some of the deformation errors of EM-Gaussian. The average
Z error for EM-LDS on the shark sequence after 100 EM iterations is 1.24%. Videos of
the shark reconstructions and the Matlab software used for these experiments are available
from http://movement.stanford.edu/learning-nr-shape/ .

In highly-constrained cases — low-rank motion, no image noise, and no missing data —
ILSQ achieved reasonably good results. However, EM-Gaussian gave better results in
nearly every case, and dramatically better results in underconstrained cases. Figure 2(a)
and (b) show experimental results on another set of artificial data consisting of random
basis shapes. Figure 2(a) shows the results of reconstruction with missing data; the ILSQ
results degrade much faster as the percentage of missing data increases. Figure 2(b) shows
the effect of changing the complexity of the model, while leaving the complexity of the
data fixed. ILSQ yields poor results when the model complexity does not closely match the
data complexity, but EM-Gaussian yields reasonable results regardless.

6 Discussion and future work

We have described an approach to non-rigid structure-from-motion with a probabilistic
deformation model, and demonstrated its usefulness in the case of a Gaussian deformation
model. We expect that more sophisticated distributions can be used to model more complex
non-rigid shapes in video. More general graphical models with other correlations (such
as from audio data) could be built from this method. Our method is also applicable to
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Figure 2: Error comparison between ILSQ and EM-Gaussian on random basis shapes. (a) Increasing
missing data. As the percentage of missing feature tracks per frame increases, ILSQ degenerates
much more rapidly than EM-Gaussian. (b) ILSQ gives poor results when the model complexity does
not match the actual data complexity, whereas EM-Gaussian is relatively robust to this.

separating rigid from non-rigid motion in fully-observed data, as in Soatto and Yezzi’s
work [11]. Our models could easily be generalized to perspective projection, although the
optimization may be more difficult.
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