Stratifed
(MPoVL‘aMa

Sampling

Don Knuth, 31 January 2020

23 Feb 1975 — Lehmer = 70

10 Jan 2018 — Knuth = 80

31 Jan 2020 — Diaconis = 75

Mathematics
of
Computation

Volume 29 - Number 129

W

Special Issue ~ Dedicated to

DERRICK HENRY LEHMER

January 1975

S

Published by
American Mathematical Society
Providence - Rhode Island

Derrick Henry Lehmer

THE EDITORS of Mathematics of Computation are plecsed to
dedicate this issue to Derrick Henry Lehmer on the occasion of his
seventieth birthday, February 23, 1975.

Lehmer played a role in the founding of MTAC and was an active
member of the executive committee that produced the first issue in
January, 1943, under the editorship of R. C. Archibald. In the 1946 —
1949 volumes, Lehmer joined Archibald as an editor, while in the
1950 — 1954 volumes, Lehmer was the chairman of an enlarged
group of editors.

In an effort to keep this dedication a surprise and to keep the
issue modest in size, the editors did not inform all of the people who
would have liked to contribute articles to celebrate Lehmer's birthday.
In fact, the editors have postponed the publication of a paper jointly
authored by the dedicatee. To those who do not appear hers, we
apologize.

We must make mention of a special one, who wos not informed
about this issue —Emma Lehmer. She has also been ocssociofed with
this journal from its beginning and continues fo ossist us %o his day.
We are in her debt too!

The editors are also pleased to ocknowledge o #his ssve wos
made possible through the generous support ot wos recsiwed from

friends of the Lehmers.

Eugene Isaacson
for the editors

MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 129
JANUARY 1975, PAGES 121-136

Estimating the Efficiency of Backtrack Programs*

By Donald E. Knuth

To Derrick H. Lehmer on his 70th birthday, February 23, 1975

Abstract. One of the chief difficulties associated with the so-called backtracking tech-
nique for combinatorial problems has been our inability to predict the efficiency of a
given algorithm, or to compare the efficiencies of different approaches, without actu-
ally writing and running the programs. This paper presents a simple method which pro-
duces reasonable estimates for most applications, requiring only a modest amount of
hand calculation. The method should prove to be of considerable utility in connection

with D. H. Lehmer’s branch-and-bound approach to combinatorial optimization.

The majority of all combinatorial computing applications can apparently be han-
dled only by what amounts to an exhaustive search through all possibilities. Such
searches can readily be performed by using a well-known “depth-first” procedure which
R. J. Walker [21] has aptly called backtracking. (See Lehmer [16], Golomb and
Baumert [6], and Wells [22] for general discussions of this technique, together with
numerous interesting examples.)

Sometimes a backtrack program will run to completion in less than a second,
while other applications seem to go on forever. The author once waited all night for
the output from such a program, only to discover that the answers would not be forth-
coming for about 10% centuries. A “slight increase” in one of the parameters of a
backtrack routine might slow down the total running time by a factor of a thousand;
conversely, a “‘minor improvement’ to the algorithm might cause a hundredfold im-
provement in speed; and a sophisticated “major improvement” might actually make
the program ten times slower. These great discrepancies in execution time are charac-
teristic of backtrack programs, yet it is usually not obvious what will happen until the
algorithm has been coded and run on a machine.

Faced with these uncertainties, the author worked out a simple estimation pro-
cedure in 1962, designed to predict backtrack behavior in any given situation. This
procedure was mentioned briefly in a survey article a few years later [8]; and during
subsequent years, extensive computer experimentation has confirmed its utility. Several

ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS 133

move solutions of Figure 5, stating that “il est probablement impossible de dénombrer
la quantité de ces tours; . . . vraisemblablement, on ne peut effectuer plus de 35 coups.”
Later [3, p. 20], [4, p. 35] he stated without proof that 35 is maximum.

Vl\\ //7 ,/ W\\\ //4 /14
78%98 Db f L
SAL 2 Tanwly

P / - / /

28 71D ZA7AN el 4a
%" 4 N A A AL/
ILZALA NNV L

20 LA S)

FIGURE 5. Uncrossed knight’s tours

The backtrack method provides a way to test his assertion; we may begin the
tour in any of 10 essentially different squares, then continue by making knight’s moves
that do not cross previous ones, until reaching an impasse. But backtrack trees that
extend across 30 levels or more can be extremely large; even if we assume an average
of only 3 consistent choices at every stage, out of at most 7 possible knight moves to
new squares, we are faced with a tree of about 330 = 205,891,132,094,649 nodes,
and we would never finish. Actually 320 = 3.486,784,401 is nearer the upper limit
of feasibility, since it is not at all simple to test whether or not one move crosses
another. It is certainly not clear a priori that an exhaustive backirack search is eco-
nomically feasible.

The simple procedure of Section 3 was therefore used to estimate the number of
nodes in the tree, using c(¢f) = 1 for all z. Here are the estimated tree sizes found in
the first ten independent experiments:

1571717091 209749511
315291281 58736818301
8231 311
1793651 259271
59761491 6071489081

The mean value is 6,696,688,822. The next sequence of ten experiments gave the es-
timates

567911 238413491
L 6697691
569585831 5848873631
Il 161

411 140296511

for an average of only 680,443,586, although the four extremely low estimates make

ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS

TABLE 1. Estimates after 1000 random walks

k Estimate, N,’c True value, N,
0 1.0 1
1 10.0 10
2 42.8 42
3 255.0 254
4 991.4 968
5 4352.2 4215
6 16014.4 15646
7 59948.8 56435
8 190528.7 182520
9 580450.8 574555
10 1652568.7 1606422
11 4424403.9 4376153
12 9897781.4 10396490
13 22047261.5 23978392
14 44392865.5 47667686
15 92464977.5 91377173
16 145815116.2 150084206
17 238608697.6 235901901
18 253061952.9 315123658
19 355460520.9 399772215
20 348542887.6 427209856
21 328849873.9 429189112
22 340682204.1 358868304
23 429508177.9 278831518
24 318416025.6 177916192
25 38610432.0 103894319
26 75769344.0 49302574
2 74317824.0 21049968
28 0.0 7153880
29 0.0 2129212
30 0.0 522186
31 0.0 109254
32 0.0 18862
33 0.0 2710
34 0.0 346
35 0.0 50
36 0.0 8
Total 312337551 %1 3137317290

135

N
)

1

Sequentlal 1mportance samphng for estlmatmg the number of __ Aow
perfect matchings in bipartite graphs:
An ongoing conversation with Laci

PERSI DIACONIS* W M Y
Departments of Mathematics and Statistics ’
Stanford University '

Abstract :

Sequential importance sampling offers an alternative way to approxfn‘lately evaluate the
permanent. It is a stochastic algorithm which seems to work in practice but has eluded analysis.
This paper offers examples where the analysis can be carried out and the first g_‘r\leral bounds for
the sample size required. This uses a novel importance sampling proof of Bregman s inequality
due to Lovasz.

Introduction

Let G = (V,W, E) be a bipartite graph with |V| = |[W| = n and E a set of edges from V to W.
Let M be the set of perfect matchings. Assume throughout that M is non-empty. There is a large
literature on computing and approximating M = |M]|. See [4] for background and applications
in statistics. The magisterial [12] covers every aspect of matching theory. This paper studies an
importance sampling algorithm for Monte Carlo approximation of M.

; ! YW
1 1 { me:‘s { ;
f ; \
£ ;
2 22 7 i {2
~ 4 |
3 3’]
i & 4 L
4 4

Figure 1: Fibonacci matchings

The number of perfect matchings is the Fibonacci number Fr11. Indeed, 1 can only be matched
to 1’ or 2°. If it is matched to 1’ the deleted graph is A,_;. If it is matched to 2’, then 2 must be
matched to 1’ and the deleted graph is A,_5. These matchings are illustrated in Figure 1. Thus
there are five perfect matchings consistent with A4; these are shown in Table 1 along with their
associated probabilities if the vertices are tried in order 1, 2, 3, 4 for P, (m) and 2, 3, 4, 1 for Py().
For larger n the possible matching probabilities can be quite different. In what follows the vertex

e A

order 1,2,...,n is studied. By 4h: way +he yern Yok, Rz CLL3%5Y) I alse of ratuesd

f

Table 1: Perfect matchings
m|1234 2134 1324 1243 2143
B0 e Ta ik T
)L Ve HE s Gs 1 /3
Figure 2 shows a histogram of 1000 7; when @, then F,,; = 89. The mean of 86.72

is reasonable but the minimum of 24, maximum of 288, and standard deviation of 45.3 give an
indication of large variability. *No | s o

¢ VZ.Yar

r

7

t::‘ t ')'<\,f,';

Left to right:

Z....]
[17. .] 27. .]
217. . 237..
[1327.] [1347.] 2137.] [2147.] [2347.]

A

[12347] [12357] [12437] [12457] [13247] [13257] [13457] [21347] [21357] [21437] [21457] [23457]

[12345] [12354] [12435] [13245] [13254] [21345] [21354] [21435]

Left to right:

Z....]
[17. .] 27. .]
217. . 237..
[1327.] [1347.] 2137.] [2147.] [2347.]

A

[12347] [12357] [12437] [12457] [13247] [13257] [13457] [21347] [21357] [21437] [21457] [23457]

[12345] [12354] [12435] [13245] [13254] [21345] [21354] [21435]

Easy to show:
2F;11 + F; — 1 nodes on level | > 0;

2F, 43 —n — 1 nodes total.

“Random” order:

[1723.][1724.][1725.][1?34.][1?35.] [2734.][2735.] [1?743.

[1745.]

[2743.]

[2745.]

[13247] [13257] [12347] [12357] [21347] [21357] [12437] [12457] [13457] [21437| [21457] [23457

[13245] [13254] [12345] [12354] [21345] [21354] [12435

21453

“Random” order:

[1723.][1724.](1725.][1734.][1735.][2734.][2735.] [1743.] [1745.]

[2743.]

[2745.]

[13247] [13257] [12347] [12357] [21347] [21357] [12437] [12457] [13457] [21437| [21457] [23457

[13245] [13254] [12345] [12354] [21345] [21354] [12435]

Theorem (Ira Gessel, Philippe Jacquet, January 2020):

Average tree size, over all n! orders,
is ~ cy/n - a”,

where o ~ 1.71995 is the real root of 1123 — 1822 —x — 1 = 0.

21453

11 0F A ¥ ub’ 1 B ol
' Srave <HS P e
Lelis TTCAT A5 vk
- T { o (“J’uf/r s 7 :
= E d”’h?ba'L gl 2
IAM MPUT. b\ o @1992 Soc;ety or Indusmal andApphed Mathematlcs
Vol. 21, No. 2, pp. 295-315, April 1992 2 fav : -8 ey - Moot A7 51 o007
(Zds! A [3 PR AL ‘3.4 LC)\' ¢ SR
Lo Dowx € Podris Wor
L »,«[:y T L ITA) & £ Fo 3 AR N pr AL e
Ly v \ 'P\C\.- A mitawCa |z (| 35S

HEURISTIC SAMPLING: A METHOD FOR PREDICTING
THE PERFORMANCE OF TREE SEARCHING PROGRAMS*

PANG C. CHEN'

Abstract. Determining the feasibility of a particular search program is important in practical situations,
especially when the computation involved can easily require days, or even years. To help make such predictions,
a simple procedure based on a stratified sampling approach is presented. This new method, which is called
heuristic sampling, is a generalization of Knuth’s original algorithm for estimating the efficiency of backtrack
programs. With the aid of simple heuristics, this method can produce significantly more accurate cost estimates
for commonly used tree search algorithms such as depth-first, breadth-first, best-first, and iterative-deepening.

Key words. heuristics, stratified sampling, search tree, feasibility testing, cost estimation, Monte Carlo
method, analysis of algorithms

AMS(MOS) subject classifications. 68Q25, 65C05

1. Introduction. Tree searching [8]is a general, easily implemented problem-solving
technique. Unfortunately, the efficiency of tree searching programs is usually difficult
to analyze, even at a rudimentary level. Without analytic cost information, the typical
course is to let the computer run until it either finishes the job or exhausts our patience.
Switching to a more computational sampling approach provides a less haphazard alter-
native: We gain accuracy in understanding particular search programs and thus design
better ones.

The sampling method that we will discuss generalizes an algorithm of Knuth [5]
for estimating properties of a backtrack tree. Starting at the root, Knuth’s algorithm
extends a partial path by expanding the end node and picking a child according to a
uniform distribution. It then forms an unbiased estimate of the tree property using the
branching degrees along the randomly selected path. According to Knuth, this simple
estimation procedure worked consistently well in his experiments. But as a refinement,
Knuth also suggested the technique of importance sampling [2] in which the child is
selected according to a weighted distribution, with the weight of each child being an
estimate of the property of the corresponding subtree.

HEURISTIC SAMPLING 309
TABLE 1
Estimated tree profiles.

Level ho hi ho Actual
0 1 1 1 1
1 10 10 10 10
2 43 42 34 42
3 257 196 204 251
4 1005 918 864 968
5 4267 3734 3604 4215
6 15684 14026 13724 15646
1/ 57443 46873 51326 56435
8 184017 126007 174680 182520
9 583197 445188 611950 574555
10 1608183 1613621 1832792 1606422
11 4371678 4679457 5106228 4376153
12 9920481 16793389 11767976 10396422
13 22507886 37750158 25507044 23978392
14 47054083 31161416 47574616 47667686
15 95846027 64365367 83428348 91377173
16 156085563 106268997 130208416 150084206
17 256650972 205655280 192462996 235901901
18 344261889 306859328 252526926 315123658
19 451703678 382647057 280613374 399772215
20 324806815 372852597 277536920 427209856
21 253992102 426672714 272541294 429189112
22 237855139 239446386 288235830 358868304
23 106973568 352833124 226878632 278831518
24 80018150 195532658 138579650 177916192
25 28304640 57001796 87525874 103894319
26 0 72444273 40045814 49302574
27 0 19732265 16732876 21049968
28 0 151248453 9984256 7153880
29 0 0 2985372 2129212
30 0 0 787150 522186
31 0 0 138532 109254
32 0 0 13210 18862
33 0 0 588 2710
34 0 0 588 346
85 0 0 0 50
36 0 0 0 8
total 2422806779 | 3046195329 | 2393871699 | 3137317290

std dev | 10672087188 | 2331712470 878149488

cost 11503 10875 11345

trials 1000 40 5

The Pi graph (an infinite graph on the nonnegative integers):

let 7’s binary digits be
TOTIT2MITATETeTM7TTRTYT 107117112713 - - - —
11001001000011...; then

j—kand) <k < Titk(k—1)/2 = 1.

OO OO RO
—_—_ O R R OO
ORrPRPROOOOoO
—_ O RO OO O
ORRrRFRrROOoOO RO
== O === OO
OO RPRORREFRE
OO OO O

(1347] (2347}
[12347] [12437] 13247] [21347] 21437
[12357] 13257] [21357]
[12457] [13457] [21457]{23457}
(12345} {12354} {12435 [13245] {13254] [21345] [21354] [21435]

fresh start

be careful

doomed

{i}

{i}

{3

—~— —~— —— = —— = —— —— —— —— =
o~ [ae A « m < - <+ N < ™M < < 0 0 A 0 M 0 <
—— —— —— —— —— —— —— —— —— —— ——
[ae)
o
- p ©o>
1o.J..
0 0
=t
o
[ae)
o
(2] 9Mv
™~ o NG
@) —
o <ef
o~ o
) 070..3
p= o mef:
— o =<>
0 L]
o
o KMV
onVS
o I~
pe 192
= o N>
Q i
—o wef
0 0>
o o
P €
[0 O
—
o
OOKQ
-
p~ 192
i 1\\ — 020
o
— o <&
o
3..2
=) — o <>
OOK&.
o g o
0
p &
™ 0 <>
@) —
o oo
o
~° o
(] — — ° ”
o e
[o
o cwoef
"o oo
0)\\ — e =
o
— o <
o M o
= o oo
[N}
—o <€
o o
e
o
o
i i — OSMV
o ™
S <
04‘.2
- - 0 o>
o
— o ~%
O N
Mvp).
1)\ — Mv OOO‘.
o <
o [=)
3 loAmv
o o
O o 7.

S = N0

Chen subsets:
a subset S of the search tree T’

is a Chen subset if

i) S is not empty.

ii) If s € S, then 5 € S. (5 denotes the parent of s.)

iii) If s € S, then s’ € S for some node s’ with h(s) = h(s').
iv) If s€ S and s’ € S and s # &', then h(s) # h(s').

Ol W N~ O

a subset S of the search tree T’
is a Chen subset if

i) S is not empty.

ii) If s € S, then 5 € S. (5 denotes the parent of s.)

iii) If s € S, then s’ € S for some node s’ with h(s) = h(s').
)

iv) If s€ S and s’ € S and s # &', then h(s) # h(s').

0 0
1 1
2 2
3 3
4 4
5 5
0 0
1 1
2 2
3 3
4 4
5 5
0 0
1 1
2 2
3 3
4 4
5 5
0 0
1 1
2 2
3 3
4 4
5 5

U W N~ O

