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 Social Transformation of Computing 
 Technological networks intertwined with social 

 Profound transformation in: 
 How knowledge is produced and shared 
 How people interact and communicate 
 The scope of CS as a discipline 
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Corporate e-mail communication 
[Adamic-Adar, ‘05] 

Online friendships  
[Ugander-Karrer-Backstrom-Marlow, ‘11] 



 Two issues for foundations of computing 
 (1) How do we design in this space? 

Combine social models with core ideas  
from computing 
 Complex networks:  

design, analysis, models 
 Algorithmic game theory:  

designing with incentives 
 Social media: reputation,  

recommendation, contagion 
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 Two issues for foundations of computing 
 (2) Science advanced when  

the invisible becomes visible. 
 Can we recognize fundamental  

patterns of human behavior  
from raw digital traces? 
 Can new computational  

models address long-standing  
social-science questions? 
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 We are surrounded by linked objects 
 Social networks: 
 Friendships/informal contacts among people 
 Collaboration in companies, organizations, … 

 Information networks: 
 Content creation, markets 
 People seeking information 

 

 Traditionally networks were hard to obtain 
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Now: Large on-line systems 
 

 Social networks: 
 On-line communities: Facebook, Twitter, ... 
 E-mail, blogging, electronic markets 

 Information networks:  
 Hypertext, Wikipedia, Web 
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What have we learned 
about these networks? 



 We know a lot about the structure 
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Network 
Property 

Social Networks 
(MSN [Leskovec,Horvitz ‘08]) 

Information Networks 
(Web [Broder et al. ‘00]) 

Connectivity: 
Well connected 

Giant component of  
99.9% nodes 

Giant component of  
90% nodes 

Degrees: 
Heavy-tailed Log-normal Power-law 

Diameter: 
Small 6-degrees of separation ~20 

Model 

Small-world Bow-tie 

In Out Core 
40% 



 We know much less about processes! 
 

 What process is common to both? 
 

 Navigation! 
 How people find their way  

through social networks? 
 How people find information  

on the Web, Wikipedia? 
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 Browsing the Web 
 

 Literature search 
 
 
 
 
 
 

 Consulting an encyclopedia 
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 Milgram’s small-world experiment [‘67] 
 People forward letters via friends to  

far-away targets they don’t know 
 Six steps on avg. → Six degrees of separation 
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Milgram experiment (Travers-Milgram ‘70) 
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You are here 

Get there! 



 Study navigation in social as well as 
information networks 
What is common? What differs? 
What are the design implications for 

computing applications and systems? 
 

 Common theme:  
Use large-scale online data to as a 
‘telescope’ into these processes 
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 Why should strangers be able to find 
short chains of acquaintances linking 
them together? 
Models for decentralized routing in  

social networks [Kleinberg ‘00,  
Watts-Dodds-Newman ‘02, ...] 
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Omaha, NE 
Council Bluffs, IA Pittsburgh, PA 

Boston, MA 

Sharon, MA 



 The MSN Messenger network: 
 180 million people, 1.3 billion edges 
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Fraction of country’s 
population on MSN: 
•Iceland: 35% 
•Spain: 28% 
•Netherlands, Canada, 
Sweden, Norway: 26% 
•France, UK: 18% 
•USA, Brazil: 8% 

[Leskovec-Horvitz, ‘08] 



 Avg. degree of separation = 6.6, mode=6 
 Long paths (>30) exist in the network 
 Network is robust to removal of hubs 
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 What are characteristics of short paths? 
   

 How hard is it to find them? 
 Strategy: S-T shortest-paths 
 Pick random S-T, run Dijkstra, examine the paths 
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Def: Node is lucrative, if it leads “closer” to T 

[Leskovec-Horvitz, ‘12] 
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High degree  
nodes 

Many good 
choices 

N
od

e 
D

eg
re

e 
# Lucrative N

odes 

S T 1 2 
Steps to-go to T 
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[Leskovec-Horvitz, ‘12] 



Probability of success 
if we forward to a 
random neighbor 
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strides towards T in 

steps 4 and 3 

S T 1 2 
Steps to-go to T 
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 How good are heuristics at navigation? 
 
 
 

 Heuristics: Jump to a node X chosen: 
 R: Random 
 G: min geo(𝑋𝑋,𝑇𝑇) 
 D: max deg (𝑋𝑋) 

 DG: min 𝑔𝑔𝑔𝑔𝑔𝑔(𝑋𝑋,𝑇𝑇)
deg2(𝑋𝑋)
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 Bottom line: 
 P(hit T in  

≤ 10 steps) = 0.001 
 P(get in 10km of T  

in ≤ 10 steps) = 1 
 

 Geography provides 
an important cue 
but fails in local 
neighborhoods 
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 How do these translate to navigation  
in information networks? 
Web-browsing 
 Encyclopedia navigation 

6/28/2012 Jure Leskovec, Stanford University 22 



23 

Understand how humans 
navigate Wikipedia 

Get an idea of how 
people connect concepts 

 Large-scale study of navigation  
in Wikipedia  
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[West-Leskovec, ‘12] 
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Goal-directed navigation of Wikipedia 
Optimal solution: 〈DIK-DIK, WATER, GERMANY, EINSTEIN〉 
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[West-Leskovec, ‘12] 
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[West et al., ‘09] 



 Graph: “Wikipedia Selection for schools” 
 4,000 articles, 120,000 links 
 Shortest paths between all pairs:  

median 3,   mean 3.2,   max 9 
 Wikispeedia 
 30,000 games since Aug 2009 
 9,400 distinct IP addresses 

 Important: 
 We know the target! 
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[West-Leskovec, ‘12] 



 Larger variance in human than opt. paths 
 Overall, humans not much worse than opt. 
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incl. back-clicks 
mode 4, median 5, mean 5.8 

excl. back-clicks 
mode 4, median 4, mean 4.9 

optimal solutions 
mode 3, median 3, mean 2.9 
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Distance to-go to the target Distance to-go to the target 

Only missions of SPL 3 



 For each path position: 
 Logistic regression to predict human choice 
 Inspect weights for similarity and degree 
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MUSIC 
current 

ORPHEUS 
not chosen by human 
(neg. example) 

... 

KOREA 
chosen by human 
(pos. example) KIMCHI 

target 



 For each path position: 
 Logistic regression to predict human choice 
 Inspect weights for content similarity & degree 
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 For each path position: 
 Logistic regression to predict human choice 
 Inspect weights for content similarity & degree 
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 Path: 
 ... → Water → Germany  →  Albert Einstein 

 Endgame strategy:  
Map last 3 articles to categories: 
        Science → Geography → People 

 Few popular endgame strategies 
 (Target category)³ typically most popular 

 Among non-target categories,  
Geography most popular 
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human game length – optimal game length 
 

optimal game length 

all games single-cat. most pop. multi-cat. 

geography 
people 

Overhead =  

technology 
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Can we build machines that 
navigate better than humans? 
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No common sense, only low-level 
knowledge such as word counts 

Common sense and 
high-level background knowledge 

Who is better? 



 An agent aims to navigate to target T 
 

 
 

 

 Agent is currently at node U and 
navigates to neighbor W s.t. 
𝑊𝑊 = arg max𝑈𝑈→𝑊𝑊 𝑉𝑉(𝑊𝑊|𝑈𝑈,𝑇𝑇)  
 Ideally: 𝑉𝑉(𝐸𝐸|𝑈𝑈,𝑇𝑇)  >  𝑉𝑉(𝐶𝐶|𝑈𝑈,𝑇𝑇) 

 What is the value function? 
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 (1) Human 
 (2) Similarity based (TXT): 
 𝑉𝑉 𝑊𝑊 𝑈𝑈,𝑇𝑇 = tf−idf(𝑊𝑊,𝑇𝑇) 
Go to W that is textually most similar to T 

 (3) Machine learning agents (ML): 
Use human/shortest paths to learn the value 

function 

 Support Vector Machines 
 Reinforcement Learning 
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 Features for the machine learning agents 
Inspired by analysis of human behavior 
 sim(next, target)  (TF-IDF cosine) 
 sim(current, next) 
 deg(next) 
 taxdist(next, target) (taxonomical distance) 
 linkcos(next, target)  (cosine similarity in  

     outgoing hyperlinks) 
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 Machine beats human! 
 But, machines can get terribly lost 
 Humans are sloppy (83% they miss a direct link) 
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H       ML       TXT  H       ML       TXT 
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Can we predict where the  
user is going? 



 Task: Given first few clicks 
 Predict the target player is trying to reach 
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given given 

to be predicted 



 Markov model of human navigation 
 

 
 

 
 Predict the most likely target 
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next current target params features 

given path prefix 



 Fit Θ in learning-to-rank setup [Weston et al. ‘10] 
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given given 

to be predicted & 
given for training 

initial Θ final Θ 

   training 
Kimchi 
Gopher 
… 
Albert Einstein 
… 

Albert Einstein 
… 
Football 
Orpheus 
... 



 Given choice of 2, choose true target 
 
 
 
 

 

 Rank articles such  
that true target gets  
high rank 
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chance 

2 clicks observed 
3 clicks observed 

 1 click observed 



 Humans manage to find their ways in 
large networks, despite having only 
local information 

 

 How do they do it? 
 

 Analyze large-scale data from the MSN 
network and Wikispeedia game 

 Answer: They leverage expectations 
about network connectivity, based on 
background knowledge 
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 Computational ideas play 2 crucial roles 
 Designing systems in this new space 
Modeling the social processes 

 

 Designing systems: Search engines 
 User click-trails for web search ranking 

[Bilenko-White, ‘08]  
Web revisitation patterns for  

crawling [Adar et al. ‘08] 
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 Designing systems: Navigational tools 
Is user lost? Where is she trying to go? 
 User facing tools and browsers:  

ScentTrails [Olston-Chi, ‘03] 

 Creating navigable networks 
 Navigable maps, ontologies 

[Helic-Strohmaier et al., ‘11] 
 Social browsing 
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 Models: How we search for information 
 Information scent [Chi et al., ‘01] 
 Information foraging [Pirolli, ‘99] 

 

 Networks facilitate new ways  
of interacting with information 
 Targeted search vs. Casual browsing 

 

 Can all this help us understand 
ourselves and each other any better? 
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