Challenges in Mining Large-Scale Network Data

Jure Leskovec (@jure)

Stanford University

Including joint work with L. Backstrom, D. Huttenlocher, M. Gomez-Rodriguez, J. Kleinberg, J. McAuley, S. Myers

Data Mining & Networks

- Data mining has rich history and methods for analyzing ...
 - ... tabular data
 - ... textual data
 - ... time series & streams
 - ... market baskets

Bag of features

What about relations and dependencies?

Network: A First Class Citizen

Networks allow for modeling dependencies!

Networks are a general language for describing realworld systems

Infrastructure

Economy

Human cell

Brain

Friends & Family

Internet

Media & Information

Society

Network!

Network!

The Life of Networks

Networks, why now?

Transformation of Computing

Online friendships
[Ugander-Karrer-Backstrom-Marlow, '11]

- Web: a Social and a Technological network
- Profound transformation in:
 - How knowledge is produced and shared
 - How people interact and communicate
 - The scope of CS as a discipline

Mining Network Data

- Network data brings several questions:
 - Working with network data is messy
 - Not just "wiring diagrams" but also dynamics and data (features, attributes) on nodes and edges
 - Computational challenges
 - Large scale network data
 - Algorithmic models as vocabulary for expressing complex scientific questions
 - Social science, physics, biology

Plan for the Talk

- Plan for the talk:
 - Algorithms for network data
 - Part 1) How to we make online social networks more useful
 - Finding Friends
 - Organizing Friends
 - Part 2) Web as sensor into society
 - Understanding Social Media Content

Finding Friends

 Growing body of research captures dynamics of social network graphs

[Latanzi, Sivakumar '08] [Zheleva, Sharara, Getoor '09] [Kumar, Novak, Tomkins '06] [Kossinets, Watts '06] [L., Kleinberg, Faloutsos '05]

- What links will occur next? [LibenNowell, Kleinberg '03]
 - Networks + many other features:
 Location, School, Job, Hobbies, Interests, etc.

Friend Recommendation

- Learn to recommend potential friends
- Facebook link creation [Backstrom, L. '11]
 - 92% of new friendships on FB are friend-of-a-friend
 - Triadic closure [Granovetter, '73]
 - More common friends helps:
 - Social capital [Coleman, '88]

Supervised Link Prediction

Goal: Given a user s, recommend friends

- Positive: Nodes to which s links to in the future
- Negative: Nodes to which s does not link
- Supervised ranking problem:
 - Assign higher scores to positive nodes than to negative nodes

Supervised Link Prediction

- Q: How to combine network structure and node and edge features?
- A: Combine PageRank with Supervised learning
 - PageRank is great to capture importances of nodes based on the network structure
 - Supervised learning is great with features
- Idea: Use node and edge features to "guide" the random walk

Supervised Random Walks

(want strong edges to point

towards **positive** nodes)

Run Random
Walk with
Restarts on the
weighted graph

RWR assigns an importance score (visiting probability) to every node

Recommend top *k* nodes with highest score

Q: How to set edge strengths?

 Idea: Set edge strengths such that SRW correctly ranks the nodes on the training data

SRW: Learning

Goal: Learn an edge strength function

$$f_{\theta}(x, y) = \exp(-\sum_{i} \theta_{i} \cdot \psi_{i}(x, y))$$

- $\psi(x, y)$... features of edge (x, y)
- \bullet_{i} ... parameter vector we want to learn
- Find $f_{\theta}(u, v)$ based on training data:

$$arg\ min_{ heta} \sum_{p \in P} \sum_{n \in N} \delta(r_p < r_n) + \lambda ||\theta||^2$$
Penalty for violating constraint $r_p > r_n$
Positive Negative nodes respect to score of node r on a

Jure Leskovec, ICDM 2012

 r_x ... score of node x on a weighted graph with edge weights $f_{\theta}(x, y)$

Data: Facebook

Facebook Iceland network

- 174,000 nodes (55% of population)
- Avg. degree 168
- Avg. person added 26 friends/month

- Node: Age, Gender, School
- Edge: Age of an edge, Communication, Profile visits, Co-tagged photos

Link Prediction

- Results on Facebook Iceland:
 - Correctly predicts 8 out of 20 (40%) new friends
 - 2.3x improvement over previous FB-PYMK

Fraction of friending based on recommendations

SRW: Further Questions

- Supervised Random Walks are a general framework for ranking nodes on a graph
 - There is nothing specific to link prediction here
 - Can use any features to learn the ranking
- Applications: Social recommendations, ranking, filtering
 - Friends: Trust, Homophily
 - Others: Experts, People like you
- Link sentiment: Positive vs. Negative

Jure Leskovec, ICDM 2012 27

Friends and Foes

- Not just if you link to someone but also what do you think of them
- ?
- Start with the intuition [Heider '46]
 - The friend of my friend is my friend
 - The enemy of enemy is my friend
 - The enemy of friend is my enemy
 - The friend of my enemy is my enemy

Friends and Foes

Model:

- Count the triads in which edge u → v is embedded:
 16 features
- Train Logistic Regression
- Predictive accuracy: >90%
- Signs can be modeled from the local network structure alone!

Organizing Friends

friends under the same advisor CS department friends family members college friends ego' u'alters' v_i highschool friends

Discover circles and why they exist

Discovering Social Circles

Why is it useful?

- Organize friend lists
- Control privacy and access
- Filter and organize content

"On Facebook 273 people know I am a dog. The rest can only see my limited profile."

• All social networks have this feature:

- Facebook (groups), Twitter (lists), G+ (circles)
- But circles have to be created manually!

Social Circles: Connections

 Connections to graph partitioning & community detection

[Karypis, Kumar '98][Girvan, Newman '02][Dhillon, Guan, Kulis '07][Yang, Sun, Pandit, Chawla, Han '11]

... but we can also use node profile information!

Q: How to cluster using <u>network</u> as well as <u>node feature</u> information?

Model of Social Circles

- Suppose we know all the circles
- For a given circle C model edge prob.:

$$p(x,y) \propto \exp(-\sum_{i} \theta_{ci} \cdot \psi_{i}(x,y))$$

- $\psi(x,y)$... is edge feature vector describing (x,y)
 - lacktriangle Are $oldsymbol{x}$ and $oldsymbol{y}$ from same school, same town, same age, ...
- $lacktriangledown heta_c$... parameters that we aim to estimate
 - lacktriangle High $oldsymbol{ heta}_{ci}$ means being similar in $oldsymbol{i}$ is important for circle $oldsymbol{c}$

Example:

$$\boldsymbol{\psi}(\boldsymbol{x},\boldsymbol{y}) = \begin{bmatrix} 1 & work : position : Cryptanalyst \\ 1 & work : location : GC\&CS \\ 0 & work : location : Royal Navy \\ 1 & education : name : Cambridge \\ 1 & education : type : College \\ 0 & education : name : Princeton \\ 0 & education : type : Graduate School \end{bmatrix} \boldsymbol{\theta}_{\boldsymbol{c}} = \begin{bmatrix} 1.4 \\ 0 \\ 0 \\ 0 \\ 0.3 \\ 0 \\ 0.2 \\ 1.1 \end{bmatrix}$$

Circle Discovery

- Given graph G and edge features $\psi(x,y)$
- Want to discover...
 - Member nodes of each circle C
 - lacktriangle Circle similarity function parameters $oldsymbol{ heta}_c$

...such that we maximize the likelihood of the observed network:

$$P(G; C) = \prod_{(x,y)\in G} p(x,y) \cdot \prod_{(x,y)\notin G} 1 - p(x,y)$$

Experiments: Facebook

- Given only the network (no labels) try to find the circles. How well are we doing?
 - Ask people to hand label the circles. Compare

Experiments: Facebook

- How well do we recover human circles?
- Social circles of a particular person:

Circles: Further Questions

- Beyond graph partitioning
 - Overlapping clustering of networks with node/edge attributes [Yoshida '10] [McAuley, L. '12]
- Temporal dynamics of circles and groups
 - Predict group evolution over time
 [Kairam, Wang, L. '12] [Ducheneaut, Yee, Nickell, Moore '07]
- Modeling circles of non-friends
 - Node role discovery in networks
 [Henderson, Gallagher, Li, Akoglu, Eliassi-Rad, Tong, Faloutsos, '11]

Social Networks & Mobility

- What's the relation between human mobility and social networks?
 - Location-based online social networks
 - Brightkite, Gowalla: 10m check-ins
 - Cell phones
 - Portugal: 500M calls
 - In terms of mobility the datasets are indistinguishable!

Modeling Mobility

Goal: Model and predict human movement patterns

Location Entropy

Observation:

- Low location entropy at night/morning
- Higher entropy over the weekend
- 3 ingredients of the model:
 - Spatial, Temporal, Social

Modeling Mobility

Spatial model: Home vs. Work Location

Temporal model: Mobility Home vs. Work

Example: Gowalla User

Weekend Mobility

- Social network plays particularly important role on weekends
- Include social network into the model
 - Prob. that user visits location X depends on:
 - Distance(X, F)
 - Time since a friend was at location F
 - F = Friend's last known location

Mobility: Results

 Cellphones: Whenever user receives or makes a call predict her location

G ... model by Gonzalez&Barabasi **RW**... predict last known location **MF**... predict most frequent location

PMM... periodic mobility model **PSMM**... periodic social mobility model

Diffusion in Networks

 Information flows from a node to node like an epidemic

How does information transmitted by mainstream media interact with social networks?

Obscure tech story Small tech blog **Engadget** Wired Slashdot **NYT BBC CNN**

Jure Leskovec, ICDM 2012 45

Diffusion in Online Media

- Since August 2008 we have been collecting 30M articles/day: 6B articles, 20TB of data
- Challenge:

How to track information as it spreads?

Jure Leskovec, ICDM 2012 46

Meme-tracking

- Goal: Trace textual phrases that spread through many news articles
- Challenge 1: Phrases mutate!

Mutations of a meme about the **Higgs boson particle**.

Finding Mutational Variants

- Goal: Find mutational variants of a phrase
- Objective:
 - In a DAG of approx. phrase inclusion,

delete min total edge weight such that

each component has a single "sink"

The Algorithm

- Challenge 2: 20TB of data!
- Solution: Incremental phrase clustering
 - Phrases arrive in a stream
 - Simultaneously cluster the graph and attach new phrases to the graph

- Dynamically remove completed clusters
- Overall, it takes 1 server, 60GB memory and 4 days to process 6B documents

Memes over Time

Visualization of 1 month of data from October 2012

Browse all 4 years of data at http://snap.stanford.edu/nifty

Jure Leskovec, ICDM 2012 50

Do blogs lead mass media?

Do blogs lead mass media in reporting news? Blogs trail for 2.5h

Inferring Diffusion Networks

- Challenge 3: Information network is hidden
- Goal: Infer the information diffusion network
 - There is a hidden network, and
 - We only see times when nodes get "infected"

- Yellow info: (a,1), (c,2), (b,3), (e,4)
- Blue info: (c,1), (a,4), (b,5), (d,6)

Jure Leskovec, ICDM 2012 52

Inferring Networks

Virus propagation

Viruses propagate through the network

Process

We observe

It's hidden

We only observe when people get sick

But NOT who **infected** them

Word of mouth & Viral marketing

Recommendations and influence propagate

We only observe when people buy products

But NOT who **influenced** them

Can we infer the underlying network?

Yes, convex optimization problem!

[Gomez-Rodriguez, L., Krause, '10, Myers, L., '10]

News Diffusion Network

News Diffusion Network

Information Diffusion

Observe times when nodes adopt the

Towards the Model

Results: Different Topics

	max P(k)	k at max P(k)	Duration (hours)	% Ext. Exposures
Politics (25)	0.0007 +/- 0.0001	4.59 +/- 0.76	51.24 +/- 16.66	47.38 +/- 6.12
World (824)	0.0013 +/- 0.0000	2.97 +/- 0.10	43.54 +/- 2.94	26.07 +/- 1.19
Entertain. (117)	0.0015 +/- 0.0002	3.52 +/- 0.28	89.89 +/- 16.13	17.87 +/- 2.51
Sports (24)	0.0010 +/- 0.0003	4.76 +/- 0.83	87.85 +/- 38.03	43.88 +/- 6.97
Health (81)	0.0016 +/- 0.0002	3.25 +/- 0.30	100.09 +/- 17.57	18.81 +/- 3.33
Tech. (226)	0.0013 +/- 0.0001	3.00 + - 0.16	83.05 +/- 8.73	18.36 +/- 1.80
Business (298)	0.0015 +/- 0.0001	3.18 +/- 0.16	49.61 +/- 5.14	22.27 +/- 1.79
Science (106)	0.0012 +/- 0.0002	4.06 +/- 0.30	135.28 +/- 16.19	20.53 +/- 2.78
Travel (16)	0.0005 +/- 0.0001	2.33 + - 0.29	151.73 +/- 39.70	39.99 +/- 6.60
Art (32)	0.0006 +/- 0.0001	5.26 +/- 0.66	188.55 +/- 48.17	27.54 +/- 5.30
Edu. (31)	0.0009 +/- 0.0001	3.77 +/- 0.51	130.53 +/- 38.63	21.45 +/- 6.40

More details: Myers, Zhu, L.: Information diffusion and external influence in networks, *KDD* 2012.

Diffusion: Further Questions

- Can we recognize fundamental patterns of human behavior from raw digital traces?
- Can such analysis help identify dynamics of polarization? [Adamic, Glance '05]
- Connections to mutation of information:
 - How does attitude and sentiment change in different parts of the network?
 - How does information change in different parts of the network?

Networks: What's beyond?

What's beyond?

Networks are a natural language for reasoning about problems spanning society, technology and information

Conclusion & Reflections

- Only recently has large scale network data become available
 - Opportunity for large scale analyses
 - Benefits of working with massive data
 - Observe "invisible" patterns
- Lots of interesting networks questions both in CS as well as in general science
 - Need scalable algorithms & models

Towards the Model of You

- Social networks implicit for millenia are being recorded in our information systems
- Software has a complete trace of your activities — and increasingly knows more about your behavior than you do
- Models based on algorithmic ideas will be crucial in understanding these developments

Towards the Model of You

- From models of populations to models of individuals
 - Distributions over millions of people leave open several possibilities:
 - Individual are highly diverse, and the distribution only appears in aggregate, or
 - Each individual personally follows (a version of) the distribution
 - Recent studies suggests that sometimes the second option may in fact be true [Barabasi '05]

Network Data & Code

- Research on networks is both algorithmic and empirical
- Need to network data:
 - Stanford Large Network Dataset Collection
 - Over 60 large online networks with metadata
 - http://snap.stanford.edu/data
 - SNAP: Stanford Network Analysis Platform
 - A general purpose, high performance system for dynamic network manipulation and analysis
 - Can process 1B nodes, 10B edges
 - http://snap.stanford.edu

References

- Supervised Random Walks: Predicting and Recommending Links in Social Networks by L. Backstrom, J. Leskovec. ACM International Conference on Web Search and Data Mining (WSDM), 2011.
- Predicting Positive and Negative Links in Online Social Networks by J. Leskovec, D. Huttenlocher, J. Kleinberg. ACM WWW International conference on World Wide Web (WWW), 2010.
- <u>Learning to Discover Social Circles in Ego Networks</u> by J. McAuley, J. Leskovec. *Neural Information Processing Systems (NIPS)*, 2012.
- Defining and Evaluating Network Communities based on Ground-truth by J. Yang, J. Leskovec. IEEE International Conference On Data Mining (ICDM), 2012.
- The Life and Death of Online Groups: Predicting Group Growth and Longevity by S. Kairam, D. Wang, J. Leskovec. ACM International Conference on Web Search and Data Mining (WSDM), 2012.

References

- Meme-tracking and the Dynamics of the News Cycle by J. Leskovec, L. Backstrom, J. Kleinberg. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2009.
- Inferring Networks of Diffusion and Influence by M. Gomez-Rodriguez, J. Leskovec, A. Krause. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2010.
- On the Convexity of Latent Social Network Inference by S. A. Myers, J. Leskovec. Neural Information Processing Systems (NIPS), 2010.
- Structure and Dynamics of Information Pathways in Online Media by M. Gomez-Rodriguez, J. Leskovec, B. Schoelkopf. ACM International Conference on Web Search and Data Mining (WSDM), 2013.
- Modeling Information Diffusion in Implicit Networks by J. Yang, J. Leskovec. IEEE International Conference On Data Mining (ICDM), 2010.
- Information Diffusion and External Influence in Networks by S. Myers, C. Zhu, J. Leskovec. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2012.
- <u>Clash of the Contagions: Cooperation and Competition in Information</u>
 <u>Diffusion</u> by S. Myers, J. Leskovec. *IEEE International Conference On Data Mining (ICDM)*, 2012.