How Users Evaluate Each Other in Social Media

Jure Leskovec

Stanford University

Including joint work with Ashton Anderson, Dan Huttenlocher, Dan Jurafsky, Jon Kleinberg, and Julian McAuley

Recommendations

Recommender Systems drive the Web!

Anything can be recommended:

- Advertising messages
- Investment choices
- Restaurants
- News articles
- Music tracks
- Movies
- TV programs
- Books
- Clothes

- Future friends (Social network sites)
- Courses in e-learning
- Online mates (Dating)
- Supermarket goods
- Drug components
- Research papers
- Citations
- Code modules
- Programmers

Evaluations Drive RecSys

- Success of recommender systems heavily depends on people expressing their <u>attitudes</u> and <u>opinions</u>
 - Through <u>consumption</u>:
 - Buying
 - Clicking
 - Through <u>actions</u>:
 - Rating a product
 - Pressing a "like" button
 - Through <u>text</u>:
 - Writing a comment, a review

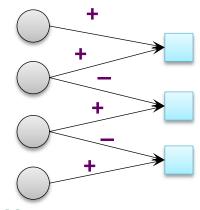
Earth's Biagest Movie Database

A Common View

 The most common and traditional form of evaluations:
 Users evaluate items

Movies, books, music, products, ...

amazon.com.



Earth's Biggest Movie Database**

Users

Items

 Traditional view of Recommender
 Systems: Systems then attempt to predict how much you may like a certain product

NETFLIX

- Collaborative filtering [Resnick et al. '94]
- Latent space models [Koren-Bell-Volinsky '09]

The Social Transformation

Online friendships [Ugander-Karrer-Backstrom-Marlow, '11]

CouchSurfing activity [Lauterbach-Truong-Shah-Adamic, '09]

Social Transformation of Computing

Technological networks intertwined with social
 Profound transformation in:

- How information is produced and shared
- How people interact and communicate

The scope of CS as a discipline

Social Recommendations

- A different view of Recommender Systems: Systems that help people find information that will interest them, by facilitating social and conceptual connections
- Recommendations in online communities
- In communities people express opinions:
 - About other community members

stack**overflow**

About content created by other members of the community AHOO ANSWERS

User-User Evaluations

- Many on-line settings where one person expresses an opinion about another (or about another's content)
 - I trust you [Kamvar-Schlosser-Garcia-Molina '03]
 - I agree with you [Adamic-Glance '04]
 - I vote in favor of admitting you into the community [Cosley et al. '05, Burke-Kraut '08]
 - I find your answer/opinion helpful [Danescu-Niculescu-Mizil et al. '09, Borgs-Chayes-Kalai- Malekian-Tennenholtz '10]

Natural Analogies

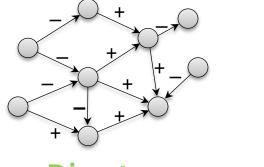
- Natural analogies to how evaluation works in scientific communities:
 - Acceptance of papers to conferences and journals
 - Funding of grant proposals
 - Who gets hired, who receives awards, ...

U-U Evaluations: Some Issues

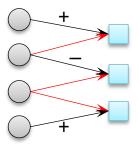
- Need to understand ways in which humans evaluate each other
 - What factors play role?
 - What biases arise?
- New forms of evaluations & feedback
 - Allowing for interactions between users
 - Computing composite opinion of a community
 - Using audience composition as a way to extract (implicit) evaluations

This Talk: Setting

People evaluate each other:



Direct



Indirect

Direct: User to user [ICWSM '10]

Indirect: User to content (created by another member of a community) [WSDM '12]
 Where online does this explicitly occur on a large scale?

This Talk: Data

Wikipedia adminship elections

- Support/Oppose (120k votes in English)
- 4 languages: EN, GER, FR, SP
- Stack Overflow Q&A community
 - Upvote/Downvote (7.5M votes)
- Epinions product reviews
 - Ratings of others' product reviews (13M)
 - 5 = positive, 1-4 = negative

This Talk: Overview

Questions:

I) Factors: What ingredients/factors lead people when they evaluate each other?

- 2) Synthesis: How do we create a composite description that accurately reflects cumulative opinion of the community?
- 3) Implicit feedback: How to use audience composition as a way to extract evaluations?

Human Evaluations

What drives human evaluations?

- How do properties of evaluator A and target B affect A's vote?
 - Status and Similarity are two fundamental drivers behind human evaluations

Definitions

Status

- Level of recognition, merit, achievement, reputation in the community
 - Wikipedia: # edits, # barnstars
 - Stack Overflow: # answers
- User-user Similarity
 - Overlapping topical interests of A and B
 - Wikipedia: Cosine similarity of the articles edited
 - Stack Overflow: Cosine similarity of users evaluated

Relative vs. Absolute Assessment

How do properties of evaluator A and target B affect A's vote?

- Two natural (but competing) hypotheses:
 - (1) Prob. that B receives a positive evaluation depends primarily on the characteristics of B
 - There is some objective criteria for user B to receive a positive evaluation

Relative vs. Absolute Assessment

How do properties of evaluator A and target B affect A's vote?

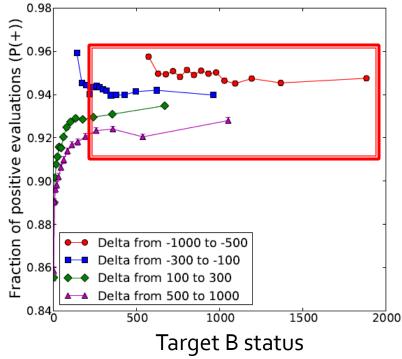
- Two natural (but competing) hypotheses:
 - (2) Prob. that B receives a positive evaluation depends on relationship between the characteristics of A and B
 - User A compares herself to user B and then makes the evaluation

Effects of Status

- How does status of B affect A's evaluation?
 - Each curve is fixed status difference: $\Delta = S_A S_B$

Observations:

- Flat curves: Prob. of positive eval. P(+) doesn't depend on B's status
- Different levels: Different values of ∆ result in different behavior



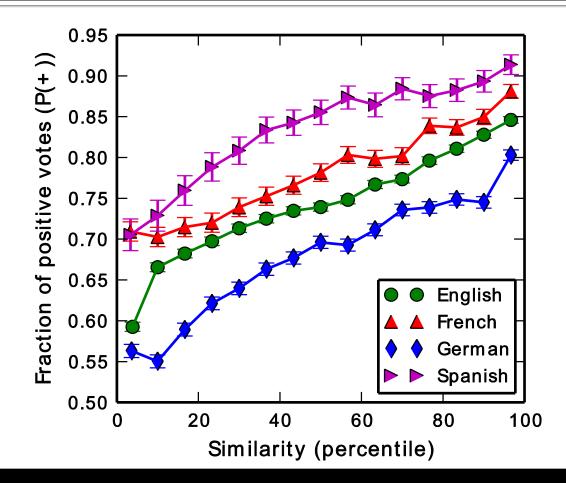
Status **difference** remains salient even as A and B acquire more status

Effects of Similarity

- How does prior interaction shape evaluations? 2 hypotheses:
 - (1) Evaluators are more supportive of targets in their area
 - "The more similar you are, the more I like you"
 - (2) More familiar evaluators know weaknesses and are more harsh
 - "The more similar you are, the better I can understand your weaknesses"

[WSDM `12]

Effects of Similarity



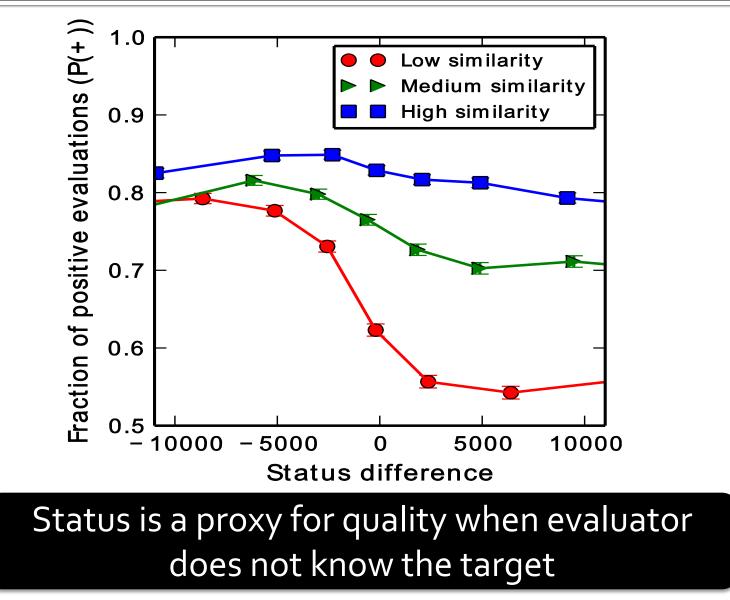
Prior interaction/ similarity boosts positive evaluations

9/10/2012

Jure Leskovec, Stanford University

21

Status & Similarity



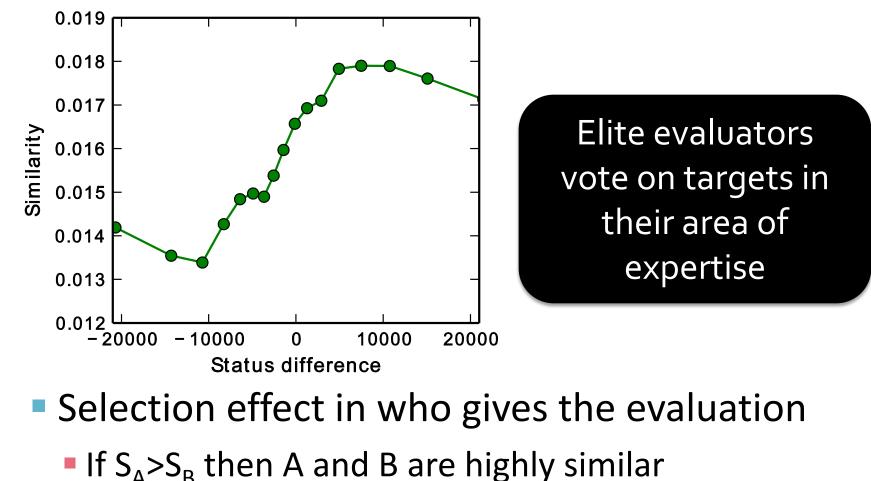
9/10/2012

Jure Leskovec, Stanford University

22

Status & Similarity

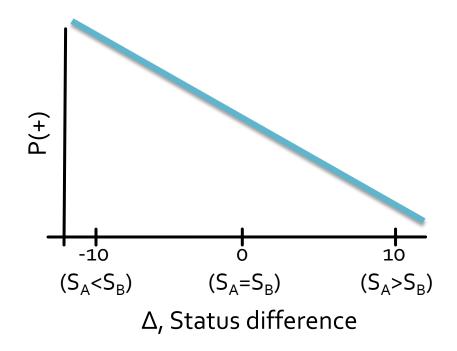
Who shows up to evaluate?



A Puzzle

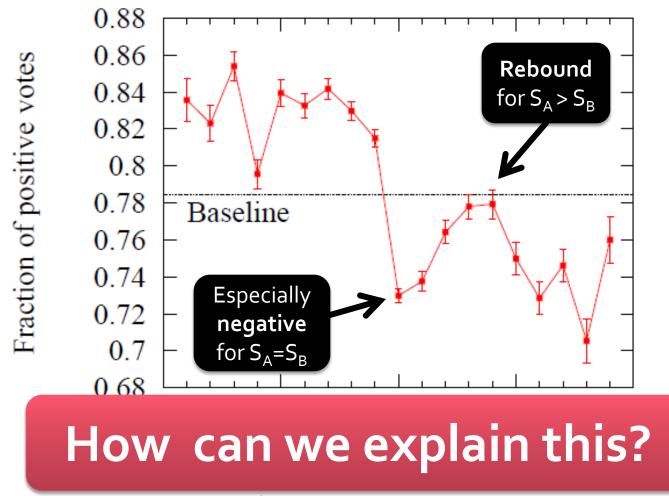
• What is P(+) as a function of $P = S_A - S_B$?

Based on findings so far: Monotonically decreasing



A Puzzle: The Mercy Bounce

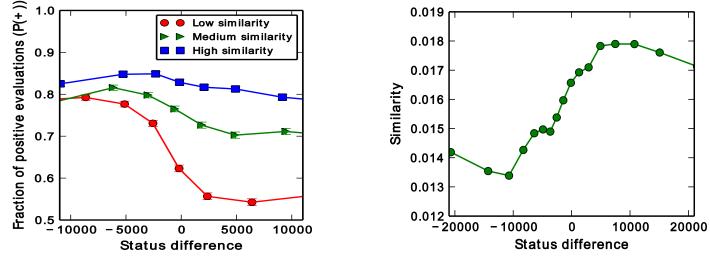
• What is P(+) as a function of $P = S_A - S_B$?



The Mercy Bounce

Why low evals. of users of same status?

- Not due to users being tough on each other
- But due to the effects of similarity



So: High-status evaluators tend to be more favorably disposed

Aggregating Evaluations

- So far: Properties of individual evaluations
- But: Evaluations need to be "summarized"
 - Determining rankings of users or items
 - Multiple evaluations lead to a group decision
- How to aggregate user evaluations to obtain the opinion of the community?
 - Can we guess community's opinion from a small fraction of the makeup of the community?

Ballot-blind Prediction

- Predict Wikipedia adminship election results without seeing the votes
 - Observe identities of the first k (=5) people voting (but *not* how they voted)
 - Want to predict the election outcome
 - Promotion vs. no promotion
- Why is it hard?
 - Don't see the votes (just voters)
 - Only see first 5 voters (out of ~50)

[WSDM `12]

В

10000

20000

0

Status difference (Delta)

100

80

60

40

20

Similarity (percentile)

Ballot-blind: The Model

- Want to model prob. user A votes + in election of user B
 Our model:
 - $P(A = +|B) = P_A + d(\Delta_B, S_B)^{\text{Status d}}$
 - P_A ... empirical fraction of + votes of A
 - $d(S,\Delta)$... avg. deviation in fraction of + votes
 - When As evaluate B from a particular (S,Δ) quadrant, how does this change their behavior

[WSDM `12]

Ballot-blind Prediction

Based on only who showed to vote predict the outcome of the election

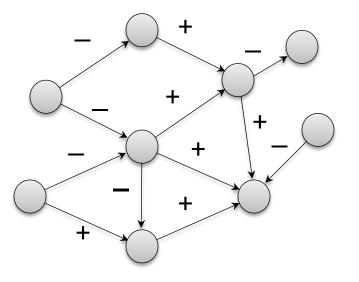
Number of voters seen Accuracy

	5	71.4%
	10	75.0%
	all	75.6%
Other me	thods:	

Theme: Learning from implicit feedback Audience composition tells us something about their reaction

Evaluations in a Context

Evaluations form a signed network



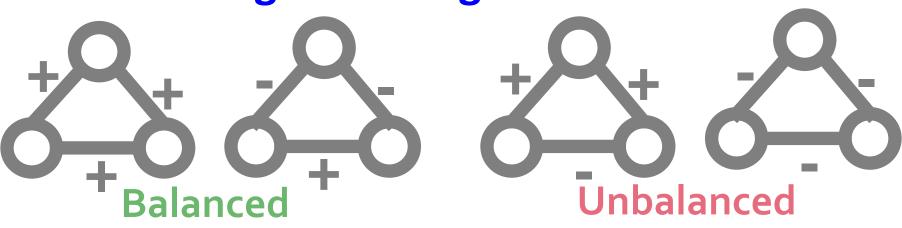
Network provides a context in which signed edges are formed What can we say about the edges?

Status Theory

- Status in a network [Davis-Leinhardt '68]
 - $A \xrightarrow{+} B :: B$ has **higher** status than A
 - A \rightarrow B :: B has **lower** status than A
 - (Note the notion of status is now implicit)
 - Apply this principle transitively over paths
 - Can replace each $A \longrightarrow B$ with $A \xleftarrow{+} B$
 - Obtain an all-positive network with same status interpretation

Structural Balance

- Start with the intuition [Heider '46]
 - The friend of my friend is my friend
 - The enemy of enemy is my friend
 - The enemy of friend is my enemy
- The friend of my enemy is my enemy
 Look at signed triangles:



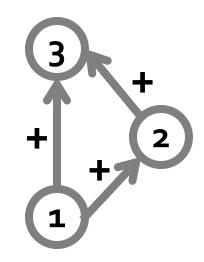
Status vs. Balance

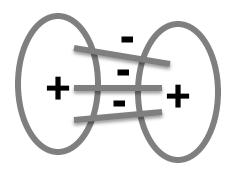
At a global level:

- Status ⇒ Hierarchy
 - All-positive directed network should be (approximately) acyclic

■ Balance ⇒ Coalitions

 Balance ignores directions and implies that subgraph of negative edges should be (approximately)
 bipartite





Status vs. Balance

Aggregate tendency toward Status

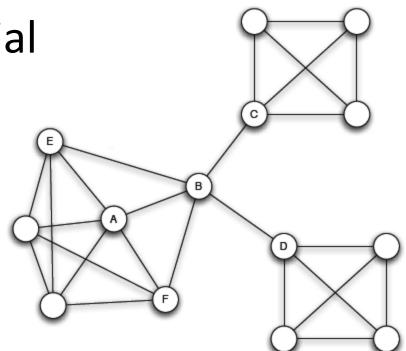
Theories are at work at different levels:

- Balance more applicable on reciprocated links
- Design implication:
 - "I agree with you" vs. "I respect you."

[CHI '10]

Global Structure

- Intuitive picture of social network in terms of densely linked clusters
- How do link
 structure and signs
 interact?

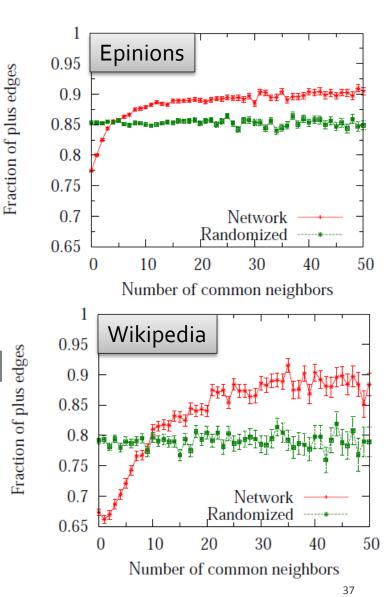


Embeddedness of an edge (A,B): number of shared neighbors

Embeddedness

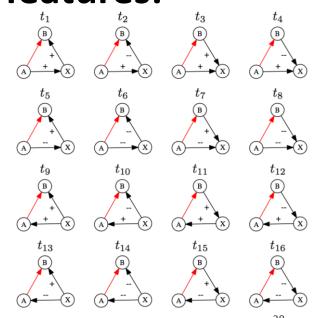
Embeddedness of ties:

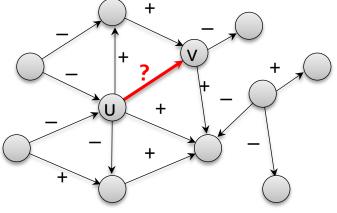
- Embedded ties tend to be more positive
- A natural connection to triadic closure based
 social capital [Coleman '88] §
 - Public display of signs (votes) in Wikipedia further strengthens this



Application: Predicting Signs

- How will A evaluate B?
 Predicting edge signs
 Model:
 - Count the triads in which
 edge A → B is embedded: 16 features:
 - Train Logistic Regression
- Predictive accuracy: ~90%
 Evaluations can be modeled from the local network structure alone!





Application: Predicting Signs

- How generalizable are the results across the datasets?
 - Epinions: Trust/Distrust

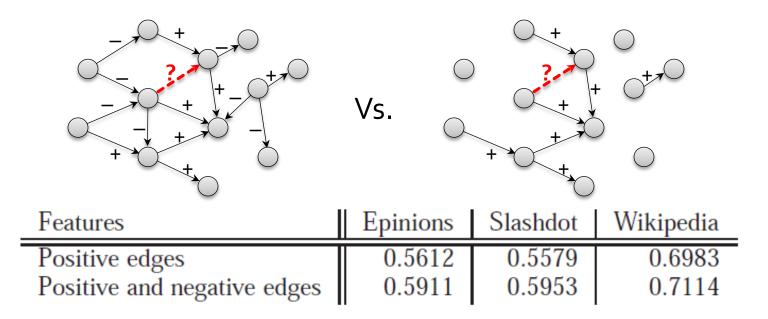
Nearly perfect generalization of the models even though evaluations have very different meaning

All23	Epinions	Slashdot	Wikipedia
Epinions	0.9342	0.9289	0.7722
Slashdot	0.9249	0.9351	0.7717
Wikipedia	0.9272	0.9260	0.8021

"

Negative information helps?

Suppose we are only interested in predicting whether there is a positive edge or no edge
 Does knowing negative edges help? YES!



Conclusions and Reflections

- General challenge: In many situations, opinions and evaluations are expressed, but the underlying principles driving them may not be obvious
- Basic models provide a vocabulary for dissecting the fundamental ingredients
 - Relative assessment: Status
 - Prior interaction: Similarity

Conclusions and Reflections

- Dimensions of an opinion:
 - Status vs. Similarity
 - Agreement with the statement vs.
 Statement is technically correct
- On-line domains: People are applying multiple dimensions of evaluation, but the interfaces they use collapse them to a single dimension

Future Directions

- How communities form collective judgments in social applications?
- Model outcomes of group decisions from small set of evaluations
 - Predict outcomes without explicit user feedback
 - Audience composition predicts audience's reaction

Conclusion

Evaluations create incentives

(and sometimes unfair evaluations can produce better outcomes)

Status and reputation mechanisms

Trust issues: Why should I trust another user, or the community as a whole?

An opportunity to understand the range of forces at work, and use this to inform the design of new applications

THANKS! Data + Code: http://snap.stanford.edu

1 2 4 "

A Stern

12.2

References

- <u>Signed Networks in Social Media</u> by J. Leskovec, D. Huttenlocher, J. Kleinberg. *CHI*, 2010.
- <u>Predicting Positive and Negative Links in Online Social Networks</u> by J. Leskovec, D. Huttenlocher, J. Kleinberg. WWW, 2010.
- Governance in Social Media: A case study of the Wikipedia promotion process by J. Leskovec, D. Huttenlocher, J. Kleinberg. *ICWSM*, 2010.
- <u>Effects of User Similarity in Social Media</u> by A. Anderson, D. Huttenlocher, J. Kleinberg, J. Leskovec. WSDM, 2012.
- <u>Discovering Value from Community Activity on Focused Question</u> <u>Answering Sites: A Case Study of Stack Overflow</u> by A. Anderson, D. Huttenlocher, J. Kleinberg, J. Leskovec. *KDD*, 2012.
- <u>Supervised Random Walks: Predicting and Recommending Links in Social</u> <u>Networks</u> by L. Backstrom, J. Leskovec. WSDM, 2011.