How Users Evaluate Each
Other in Social Media




Recommendations

Recommender Systems drive the Web!
Anything can be recommended:

9/10/2012

Advertising messages
Investment choices
Restaurants

News articles

Music tracks

Movies

TV programs

Books

Clothes

Tags
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Future friends (Social
network sites)
Courses in e-learning
Online mates (Dating)
Supermarket goods
Drug components
Research papers
Citations

Code modules
Programmers



Evaluations Drive RecSys

Success of recommender systems
heavily depends on people expressing ‘
their attitudes and opinions NETFLIX
: amazoncom.
Buying
L A

Clicking I=| stackoverflow

A\

: velpry
Rating a product |®tfm

Pressing a “like” button m
(T Tube;
News for Nerds. Stuff that matters.

Writing a comment, a review EplnlonSc - ml““"m
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The most common and
traditional form of evaluations:
Users evaluate items

Movies, books, music, products, ...

Users ltems

= MDD = amazoncom. AL

Traditional view of Recommender

Systems: Systems then attempt to predict

how much you may like a certain product
Collaborative filtering [Resnick et al. ‘94]

Latent space models [Koren-Bell-Volinsky '09]
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The Social Transformation

Online friendships CouchSurfing activity
[Ugander-Karrer-Backstrom-Marlow, “11] [Lauterbach-Truong-Shah-Adamic, ‘09]

Social Transformation of Computing

Technological networks intertwined with social
Profound transformation in:

How information is produced and shared
How people interact and communicate
The scope of CS as a discipline
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Social Recommendations

A different view of Recommender Systems:
Systems that help people find information
that will interest them, by facilitating social
and conceptual connections
Recommendations in online communities
In communities people express opinions:
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“ 5 -;j The Free Encyclopedia
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Epinions.con
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User-User Evaluations

Many on-line settings where one person
expresses an opinion about another
(or about another’s content)

[Kamvar-Schlosser-Garcia-Molina ‘03]
[Adamic-Glance '04]

[Cosley et al. ‘05, Burke-Kraut ‘O8]

[Danescu-Niculescu-Mizil et al. ‘09,
Borgs-Chayes-Kalai- Malekian-Tennenholtz “10]
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Natural Analogies

Science

Natural analogies to how evaluation
works in scientific communities:

Acceptance of papers to conferences
and journals

Funding of grant proposals

Who gets hired, who receives awards, ...
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U-U Evaluations: Some Issues

Need to understand ways in which
humans evaluate each other

What factors play role?
What biases arise?

New forms of evaluations & feedback
Allowing for interactions between users
Computing composite opinion of a community

Using audience composition as a way to
extract (implicit) evaluations
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This Talk: Setting

People evaluate each other:

User to user [ICWSM "10]

User to content (created by
another member of a community) [WSDM "12]
Where online does this explicitly

occur on a large scale?
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This Talk: Data

Wikipedia adminship elections
Support/Oppose (120k votes in English) .~
4 languages: EN, GER, FR, SP

Stack Overflow Q&A community
Upvote/Downvote (7.5M votes)

Epinions product reviews ;

Ratings of others’ product reviews (13 M)
5 = positive, 1-4 = negative
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This Talk: Overview

Questions:

What ingredients/factors lead
people when they evaluate each other?

How do we create a composite
description that accurately reflects
cumulative opinion of the community?

How to use audience
composition as a way to extract evaluations?
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Human Evaluations

What drives human evaluations?

®

Status and Similarity are two fundamental
drivers behind human evaluations
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Definitions

Status
Level of recognition, merit, achievement,
reputation in the community
Wikipedia: # edits, # barnstars

Stack Overflow: # answers
User-user Similarity

Overlapping topical interests of A and B
Wikipedia: Cosine similarity of the articles edited
Stack Overflow: Cosine similarity of users evaluated
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Relative vs. Absolute Assessment

(1) Prob. that B receives a positive
evaluation depends primarily on the
characteristics of B

There is some objective criteria for
user B to receive a positive evaluation
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Relative vs. Absolute Assessment

(2) Prob. that B receives a positive
evaluation depends on relationship
between the characteristics of A and B

User A compares herself to user B
and then makes the evaluation
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[WSDM *12]

Effects of Status

Each curve is fixed status
difference: A =S,-S;

®—@ Delta from -1000 to -500
| |=—a Delta from -300 to -100
b Delta from 100 to 300
&4—a Delta from 500 to 1000

Fraction of positive evaluations (P(+))

Prob. of
positive eval. P(+) doesn’t ~* ¥ e

Target B status
depend on B’s status
Different Status difference

values of A result in remains salient even

different behavior asAand B acquire
more status
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Effects of Similarity

Evaluators are more supportive of
targets in their area

“The more similar you are, the more | like you”

More familiar evaluators know
weaknesses and are more harsh

“The more similar you are, the better | can
understand your weaknesses”
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[WSDM '12]

Effects of Similarity
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Similarity (percentile)

Prior interaction/ similarity boosts

positive evaluations
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[WSDM '12]

Status & Similarity

1.0 T , , .
@ @® Low similarity
> » Medium similarity
0.9 |- B B High similarity n

0.5
-—10000 —-5000 0 5000 10000
Status difference

Fraction of positive evaluations (P(+))

Status is a proxy for quality when evaluator

does not know the target
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[WSDM '12]

Status & Similarity

Who shows up to evaluate?

0.019 [ |
0.018
0.017
> [l
2 o1 Elite evaluators
= .
w

0 014 their area of

expertise

0.013 | .

0.012
-20000 -10000 0 10000 20000
Status difference

Selection effect in who gives the evaluation
If S,>S; then A and B are highly similar

9/10/2012 Jure Leskovec, Stanford University 23



What is P(+) as a function of @ = S,-S;?

Based on findings so far:
Monotonically decreasing

P(+)

|
-10 0 10
(Sa<Sp) (Sa=Sg) (Sp>Sg)

A, Status difference
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[ICWSM '10]

A Puzzle: The Mercy Bounce

What is P(+) as a function of @ = S,-S;?

0.88 ———r——————
é 0.86 —{ } - |
S 0.84 \ ) . )
o 082 | N \L“i |
= 08 |
E’” 0.78 |~ Baseline -
© 0.76 )
% 0.7 Especially m
= 0.72 1 negative ]
R 0.7 - BREIGH _

' X T T T

How can we explain this?
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[WSDM '12]

The Mercy Bounce

Not due to users being tough on each other
But due to the effects of 5|m|Iar|ty

1.0 0.019

o
©

o
©
Similarity

o
~

o
»

Fraction of positive evaluations (P(+))

0.5 | | | | 0.012 Y ' . : :
‘210000 -5000 0 5000 10000 -20000 -10000 0 10000 20000
Status difference Status difference

So: High-status evaluators tend to be more
favorably dlsposed
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Aggregating Evaluations

So far: Properties of individual evaluations
But: Evaluations need to be “summarized”
Determining rankings of users or items

Multiple evaluations lead to a group decision

How to aggregate user evaluations to
obtain the opinion of the community?
Can we guess community’s opinion

from a small fraction of the makeup
of the community?
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BaIIOt_innd Prediction [WSDM ‘12]

Predict Wikipedia adminship election
results without seeing the votes

Observe identities of the first k (=5)
people voting (but not how they voted)

Want to predict the election outcome

Promotion vs. no promotion

Don’t see the votes (just voters)
Only see first 5 voters (out of ~50)
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[WSDM '12]

Ballot-blind: The Model

ile)

Want to model prob. user A
votes + in election of user B

t
o

Similarity (percen

0000000000000000000000

P(A=+|B) = Pa d(AB,SB)

P, ... empirical fraction of + votes of A

d(S,4) ... avg. deviation in fraction of + votes

When As evaluate B from a particular (S,4)
guadrant, how does this change their behavior

Predict ‘elected’ if: Z,’f:l P(A; =+|B) > w
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Ballot-blind Prediction

Number of voters seen|| Accuracy
S 71.4%
10 75.0%
all 75.6%

Theme: Learning from implicit feedback

Audience composition tells us
something about their reaction
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[WWW *10]

Evaluations in a Context

Evaluations form a signed network

Network provides a context in
which signed edges are formed

What can we say about the edges?
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Status Theory

Status in a network [Davis-Leinhardt ’68]
A = B :: B has status than A
A — B :: B has status than A

(Note the notion of status is now implicit)

Apply this principle transitively over paths
Can replace each A= Bwith A<= B

Obtain an all-positive network with same
status interpretation
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Structural Balance

Start with the intuition [Heider '46]

The of my IS my
The of IS my
The of IS my
The of my IS my

Look at signhed triangles:

Loy £od%
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Status vs. Balance

Status = Hierarchy

All-positive directed network
should be (approximately) acyclic

Balance = Coalitions

Balance ignores directions and

implies that subgraph of negative
edges should be (approximately)

bipartite
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Status vs. Balance

Aggregate tendency toward Status

Theories are at work at different levels:

Balance more applicable on reciprocated links
Design implication:
“I agree with you” vs. “| respect you.”
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Global Structure

Intuitive picture of social
network in terms of
densely linked clusters

number of shared neighbors
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Embeddedness

. 0.9;13 Epinions - i
. %.r 0.9 R - R EEEEEEIEHEHEEEEHE__;
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[WWW *10]

Application: Predicting Signs

How will A evaluate B?
Predicting edge signs

Count the triads in which
edge A — B is embedded: 16 features

Train Logistic Regression
Predictive accuracy: “90%
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[WWW *10]

Application: Predicting Signs

How generalizable are the
results across the datasets?

Trust/Distrust

Nearly perfect generalization
of the models even though

evaluations have very
different meaning

All23 Epinions | Slashdot | Wikipedia
Epinions 0.9342 0.9289 0.7722
Slashdot 0.9249 0.9351 0.7717
Wikipedia 0.9272 0.9260 0.8021
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Negative information helﬁwéw"m]

Suppose we are only interested in
predicting whether there is a

or
Does knowing negative edges help?

O
O ’Z,+ ! O-VO
Q\% O

Features Epinions | Slashdot | Wikipedia
" Positive edges 0.5612 [ 0.5579 0.6983
Positive and negative edges 0.5911 0.5953 0.7114
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Conclusions and Reflections

General challenge: In many situations,
opinions and evaluations are expressed,
but the underlying principles driving
them may not be obvious

Basic models provide a vocabulary for
dissecting the fundamental ingredients

Relative assessment: Status
Prior interaction: Similarity
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Conclusions and Reflections

Dimensions of an opinion:
Status vs. Similarity

Agreement with the statement vs.
Statement is technically correct

On-line domains: People are applying
multiple dimensions of evaluation, but the
interfaces they use collapse them

to a single dimension
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Future Directions

How communities form collective
judgments in social applications?

Audience composition predicts audience’s
reaction
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Conclusion

Evaluations create incentives
(and sometimes unfair evaluations can
produce better outcomes)

Trust issues: Why should | trust another
user, or the community as a whole?

An opportunity to understand the range of
forces at work, and use this to inform the
design of new applications
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