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Supplementary Text

In this Supplementary Text, we present a detailed discussion of the datasets and their analysis. The text is orga-

nized as follows. We first describe in detail all biological data we used: the protein-protein interaction dataset

(Section S1), phylogenetic information (Section S2), taxonomic information (Section S3), and ecological infor-

mation about species (Section S4). We then derive our interactome resilience approach introduced in the main

text, provide additional explanations and examples, and discuss interactome resilience in more detail than in

the main text (Section S5). We also describe our analyses of protein network neighborhoods (Section S6) and

the different statistical tests and controls (Section S7). Finally, we present our analyses of the impact of data

biases and false positives on our main results (Section S8).

We then present supplementary figures (Figure S1-Figure S10) and tables (Table S1-Table S5).

S1 Protein-protein interaction dataset

In this section, we describe how we compile the protein-protein interaction dataset.

S1.1 Protein-protein interaction network data

In building the interactomes, we rely only on physical protein-protein interactions that are experimentally sup-

ported or manually curated, hence we do not include interactions extracted from gene expression data, evo-

lutionary considerations, and computational predictions. In order to obtain the interactomes as complete as

currently feasible, we combine several kinds of physical protein-protein interactions (1), including regulatory

interactions, binary interactions derived from yeast-two-hybrid high-throughput datasets, metabolic enzyme-

coupled interactions, protein complexes, kinase-substrate pairs, and signaling interactions.

Compilation of the protein-protein interaction dataset. We collect and reassess experimental and cu-
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rated data on protein-protein interactions, known pathways, and protein complexes from the raw STRING

(Search Tool for the Retrieval of Interacting Genes/Proteins) database (http://string-db.org, obtained “License

of STRING for Scientific Purposes” from the European Molecular Biology Laboratory (EMBL); March 16,

2016) (2, 3). Broadly, the STRING database integrates information on protein-protein interactions by consol-

idating known and predicted protein-protein association data for a large number of organisms/species. The

associations in STRING include physical (direct) interactions, as well as functional (indirect) interactions, as

long as both are specific and biologically meaningful. In this study, however, we specifically focus on physical

interactions and thus we exclude functional (indirect) associations from the analysis. We combine the following

protein-protein interaction data:

(a) Experimentally supported interactions: Interactions derived from experiments in the laboratory, includ-

ing biochemical, biophysical, and genetic assays. Data is populated mainly from the primary protein-

protein interaction databases organized in The International Molecular Exchange Consortium (IMEx)

consortium (4) and The Biological General Repository for Interaction Datasets (BioGRID) (5).

(b) Human expert-curated interactions: Interactions that have been asserted by human expert curators. Data

is populated mainly based on known pathways and protein complexes from curated databases. Included

are: regulatory interactions from the TRANScription FACtor (TRANSFAC) database (6), which lists in-

teractions derived from the presence of a transcription factor binding site in the promoter region of a cer-

tain gene; metabolic enzyme-coupled interactions from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (7), which lists interactions derived from coupled enzymes that share adjacent re-

actions; and protein complexes from the Comprehensive Resource of Mammalian Protein Complexes

(CORUM) database (8), which lists protein complexes consisting of multiple gene products.

The union of all interactions obtained from (a)-(b) yields the protein-protein interaction dataset used in this

study. The dataset contains 8,762,166 protein-protein interactions defined on 1,450,633 proteins that span

1,840 distinct species (1,539 bacteria, 111 archaea, and 190 eukarya). This dataset is used to construct the

interactomes as described in the following paragraphs.
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The protein-protein interaction dataset has two appealing features:

(a) It is a quality-controlled dataset as it only includes protein-protein interactions that are supported by

either experiments or curated databases rather than computational predictions. More specifically, we

discard information that does not represent a strong indication for physical protein-protein interactions,

such as information derived from: (i) systematic co-expression analysis (e.g., pairs of proteins that are

consistently similar in their expression), (ii) shared signals across genomes (e.g., pairs of proteins that are

observed in each other’s genome neighborhood such as in the case of conserved and co-transcribed oper-

ons), and (iii) automated text-mining of the scientific literature (e.g., pairs of proteins that are frequently

mentioned together in the same paper, abstract or even sentence).

(b) It is a species-specific dataset as it only includes interactions that were specifically measured in species.

This means the dataset does not include computationally predicted protein-protein interactions generated

by techniques that transfer information between species using gene orthology (e.g., (9)). More specif-

ically, we discard information on interactions obtained by: (i) computational transfer of interactions

between organisms based on gene orthology (e.g., pairs of proteins that have highly similar phylogenetic

distributions of orthologs, i.e., if their orthologs tend to be observed as ’present’ or ’absent’ in the same

subsets of organisms), and (ii) computational transfer of interactions between closely related organisms

(e.g., pairs of proteins for which there is at least one organism where their respective orthologs have fused

into a single, protein-coding gene).

Note that the protein-protein interaction dataset is available through http://snap.stanford.edu/tree-of-life.

Construction of interactomes. We take the protein-protein interaction dataset and use it to construct protein-

protein interaction networks, called interactomes (1,10–12), for a variety of species. In particular, we represent

each species s by its interactome, a network G(s) = (V (s), E(s)) in which nodes V (s) represent proteins

(protein-coding genes) and edges E(s) represent protein-protein interactions specifically documented in that

species. Following earlier literature on the analysis of interactome data (e.g., (1, 10–12)), we treat the interac-
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tomes as undirected and unweighted (binary) networks.

S1.2 Biases in the protein-protein interaction dataset

Currently available protein-protein interaction information is highly biased and only covers a relatively small

portion of the proteome, even for the highly studied model organisms and human (11). In this study we consider

and address two types of data biases and show that our key findings cannot be attributed to these data biases:

(a) Inter-species data bias: Currently available interactomes vary considerably across different species in

how well they recapitulate physical relationships between proteins. This variability comes from the fact

that certain species represent major model organisms,1 which have been widely studied, usually because

they are easy to maintain and breed in a laboratory setting and have particular experimental advantages.

As a result, major model organisms can have interactomes that are more extensively documented with

many characterized protein-protein interactions; however, little can be known about interactomes of or-

ganisms that are less widely used in biological research.

(b) Intra-species data bias: The situation is further complicated by the uneven quality and investigative bi-

ases involving experimental interactome mapping pipelines (e.g., a bias in a species towards studying

interactions involving proteins encoded by genes that are highly expressed in certain cell lines or associ-

ated with certain phenotypes/diseases (11)). In particular, this variability means that current interactomes

are prone to selection and investigative biases, such as those related to the selection of proteins and the

interaction density (number of interactions/edges present in the interactome) (see Figure S8). This vari-

ability could potentially indicate that selection and investigative biases, and not fundamental biological

properties, underlie the network structure of interactomes.

Next, we describe the analyses performed to address the inter-species data bias.
1Model organisms are non-human species that are used in the laboratory to help scientists understand biological processes. Ten

most popular model organisms in the U.S. according to NIH: https://publications.nigms.nih.gov/thenewgenetics/poster.pdf.

S7

https://publications.nigms.nih.gov/thenewgenetics/poster.pdf


Addressing inter-species data bias towards highly investigated species. To address the inter-species bias

towards major model organisms and highly investigated species we proceed as follows. We consider the number

of publications in the NCBI Pubmed database (https://www.ncbi.nlm.nih.gov/pubmed) as a proxy measure

that allows us to systematically and objectively determine how highly studied (i.e., “popular”) a particular

species is in biotechnological areas of research. In particular, we use the NCBI Entrez Programming Utilities

(http://www.ncbi.nlm.nih.gov/books/NBK25501, February 2018) to obtain publication information for each of

1,840 species (Figure S7). This analysis reveals a substantial publication bias towards major model organisms

and other highly studied species, indicating that current protein-protein interaction data might be prone to

notable selection and investigative biases. To prevent interactomes in the long tail of less studied species to bias

the main results of this study we perform all subsequent analyses on 171 species with at least 1,000 publications

in the NCBI Pubmed (Figure S7 and Table S4). Furthermore, we investigate popularity of species as a possible

confounding factor for interactome resilience (see Table S1 and Section S8).

We address the intra-species biases by studying various factors that could possibly confound the main results

of this study and show that the relationships between evolution and interactome resilience cannot be explained

by any of these biological and non-biological factors. We describe these analysis in Section S8.

S2 The tree of life dataset

So far, we described the interactomes used in this study. We proceed with an overview of the tree of life and

phylogenetic analyses. We first discuss the phylogenetic tree of species represented in our dataset. We then

describe how we extract phylogenetic taxonomy and lineage information for each species.
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S2.1 Phylogenetic tree of species

We consider a high-resolution phylogenetic tree that we obtain based on the Hug et al. (13) study. Hug et al. (13)

have constructed a phylogenetic tree that has dramatically expanded previous efforts by making use of genomes

from public databases as well as newly reconstructed genomes recovered from a variety of environments. The

tree includes bacteria, archaea, and eukarya and captures the diversity within each major lineage (14).

We here briefly overview the approach Hug et al. (13) used to construct the tree and refer the reader to (13) for a

detailed description of the full approach. First, an alignment was generated from all SSU rRNA genes available

from the genomes of the species included in the dataset. All SSU rRNA genes longer than 600 bp were aligned

using the SINA alignment algorithm (15, 16). The full alignment was stripped of columns containing 95% or

more gaps, generating a final alignment containing 1,871 taxa and 1,947 alignment positions. A maximum

likelihood tree was then inferred as described in (13), with the RAxML run using the GTRCAT model of

evolution. In particular, the RAxML inference included the calculation of 300 bootstrap iterations (extended

majority rules-based bootstrapping criterion), with 100 randomly sampled to determine support values.

Hug et al. (13) note that the tree calculated using SSU rRNA gene sequence information recapitulates expected

organism groupings at most taxonomic levels and is largely congruent with the tree calculated using ribosomal

protein sequences. We thus use this phylogenetic tree for all the analyses in this study. In particular, we

use the phylogenetic tree to characterize evolution for each species. Given a species s, its evolution ts is

calculated as the total branch length (i.e., nucleotide substitutions per site) from the root of the tree to the leaf

representing species s. We establish correspondences between leaf taxa in the tree and species, for which we

have interactomes (Section S1), using the NCBI Taxonomy database, which we describe next.

We share the processed data with the community with this publication (http://snap.stanford.edu/tree-of-life).
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S2.2 The NCBI Taxonomy database

Phylogenetic taxonomy information, species names, and taxonomic lineages for all species in our dataset are

extracted from the NCBI Taxonomy database (https://www.ncbi.nlm.nih.gov/taxonomy) (17). The taxonomy

database is manually curated by a group of scientists at the NCBI who use the current taxonomic literature to

maintain a phylogenetic taxonomy for organisms represented in the sequence databases. The data was accessed

programmatically through the NCBI Taxonomy Browser and was processed in August 2016. Species were

identified by their Taxonomy IDs. For example, H. sapiens, S. cerevisiae, M. musculus, and D. discoideum

are assigned Taxonomy IDs 9606, 4932, 10090, and 44689, respectively (See Table S4 for more details). The

obtained information2 for each species include the species’ common name and synonyms, full lineage informa-

tion, published genome sequence information (i.e., sequences represented in the NCBI nucleotide and protein

sequence databases), the list of all domains within the NCBI Entrez system, and the list of various external

information resources that are species-specific (i.e., the NCBI LinkOut record).

We share the processed data with the community with this publication (http://snap.stanford.edu/tree-of-life).

S3 Information on clusters of orthologous genes and protein families

Information on protein families is extracted from an updated and extended version of the COG (Clusters of Or-

thologous Groups (18, 19)) database, which is maintained at the eggNOG (Evolutionary Genealogy of Henes:

Non-supervised Orthologous Groups) (20). The eggNOG extends the COG methodology (21) to produce

genome-wide orthology inferences, which are further adjusted to provide lineage-specific resolution. In partic-

ular, the eggNOG relies on UniProt/Swiss-Prot (22), Ensembl (23), and other public databases for information

on protein sequences. All obtained genomes and proteomes are subjected to quality controls that prevent the

inclusion of partial or draft genomes. In eggNOG, for any genomes not yet present in the COG database, or-
2For example, https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10090 (accessed in August 2018)

shows the resource at the NCBI Taxonomy database for M. musculus.
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thology assignments are made by an automatic method resembling the COG procedure. This results not only in

the addition of new genes to COGs but also in the creation of a number of additional orthologous groups (i.e.,

NOGs, non-supervised orthologous groups). Essentially, the orthology assignment procedure is based on an

all-against-all pairwise Smith-Waterman comparison (24) of protein sequences from the selected species. The

comparison uses these Smith-Waterman alignments and compositional adjustment of the scores, as in BLAST,

to prevent spurious hits between low-complexity sequence regions. It also allows for recent duplications within

the genome and includes a clean-up step to join remaining genes by simple bidirectional hits. Using this infor-

mation on shared protein sequences, proteins are then categorized into protein families.

We use the eggNOG to compile a dataset of protein families involving species considered in this study (Sec-

tion S1). A protein family is defined as a set of orthologous proteins (protein-coding genes) spanning multiple

species. In total, we obtain 2,224 protein families, with an average of 38 proteins originating from 12 species

in each family. Altogether, 81,673 distinct proteins are involved in these families.

We share the processed data with the community with this publication (http://snap.stanford.edu/tree-of-life).

S4 Information on natural environments of species

To study the relationship between interactome resilience and ecology of species we compile a dataset of ecolog-

ical characteristics for a large number of bacterial species. The dataset covers 287 species out of 1,539 bacterial

species with some available interactome data (Section S1).

We use a previously described dataset about ecology for 287 species (25). Freilich et al. (25) used a combi-

nation of the reverse ecology framework to examine ecological strategies for coping with competition across

the microbial tree of life. First, Freilich et al. (25) calculated the biochemical environments of species using

the seed set framework. Next, they simulated the expected biosynthetic capacity of each species in every such

environment using the network expansion framework. Species was considered viable in a given environment
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if a set of essential metabolites were producible and found in the scope of the expanded network. From these

data, two measures were calculated for each species, which we use in our study:

(1) Co-habitation index: The co-habitation (CHS) index of a species denotes the number of other species

that co-populate each viable environment of the given species. This index serves as an indication of the

level of competition encountered by a species in its habitats. The index focuses on each species’ most

populated niche (i.e., maximal-CHS) representing the maximal level of competition a species encounters.

(2) Environmental scope index: The environmental scope index of a species is defined as the fraction of en-

vironments in which the species is viable. The index approximates environmental flexibility of a species;

species with high scores are generalists that can survive in a wide span of environments, whereas species

with low scores are specialists.

For each species, we also consider the following three environmental characteristics:

(1) The fraction of regulatory genes: The fraction of regulatory genes is the fraction of transcription factors

out of the total number of genes in the organism. This is an established indicator of environmental

variability of species’ habitats (26).

(2) Oxygen requirement: Bacterial species are divided into three groups (aerobic, anaerobic, and facultative)

according to their oxygen requirements. Oxygen-dependence annotations are retrieved from (25) and the

NCBI’s Entrez Genome Project database (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi).

(3) Ecological habitat: Bacterial species are divided into five groups according to their natural environ-

ments. Natural environments are categorized and ranked in the decreasing order of the environmental

complexity: terrestrial, multiple, aquatic, specialized, and host-cell habitats (i.e., host-associated) (27).

Annotations for environmental complexity are retrieved from (25) and the NCBI classification for bacte-

rial lifestyle (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi).

We share the processed data with the community with this publication (http://snap.stanford.edu/tree-of-life).
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S5 Additional information on interactome resilience

Next, we describe in detail our methodology for calculating the resilience of interactomes.

S5.1 Motivation and overview of the approach

Motivation for the approach. Our objective is to evaluate the topological stability, i.e., robustness, of interac-

tomes to network failures. Central to this objective is to improve our understanding of the effects of the failure

of individual interactome components on the performance of the whole interactome. Here, we focus on how

the network structure of an interactome changes as it is degraded through the removal of proteins/nodes. The

motivation for studying these effects is a fundamental observation that when a network is so fragmented by

the removal of nodes that the largest connected part of the network is sufficiently small (e.g., only 10% of the

size of the original network), then any sensible dynamical process will be unable to function on the fragmented

network in an effective way (28–30). For example, the removal of even a small number of proteins can com-

pletely fragment the interactome and lead to cell death and disease (31–33) (see Section S5.4 and Table S3).

The precise degree to which an interactome continues to function as individual proteins which constitute it are

degraded typically depends on key features of the dynamics of the interactome. To reveal these key features it

is crucial to understand the topological stability of the interactome and its resilience to failure of protein-protein

inteactions. For example, the resilience of the interactome to network failures might reveal how the organism

can continue to function when faced with mutations, environmental change, and internal noise, and how the

organism can acquire novel properties during evolution (34).

Overview of the approach. To quantify the resilience of a given interactome and to compare the resilience

of many interactomes with different sizes and connectivities we need an approach that addresses the following

two challenges:

(a) First, the approach needs to be sensitive to subtle changes in the network structure in the sense that it can
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capture situations in which the network suffers a significant damage without completely collapsing.

(b) Second, the approach needs to take into account the size and connectivity of the original network so that

resilience values of networks with different sizes can be compared.

Methodologically, our approach uses network science to quantify resilience of interactomes for all species in

our dataset. We describe the interactome of each species by the connectivity of its connected components, i.e.,

subnetworks in which any two nodes/proteins can reach each other by a path of edges/interactions. When a

certain fraction of proteins out of all proteins in the species’ interactome fail and are removed from the interac-

tome we measure how the interactome becomes fragmented and how this fragmentation affects the interactome

connectivity. We characterize the fragmentation by modifying Shannon diversity, which is a well-established

and popular diversity index in the literature (35–38). We vary network failure rate and for each given failure rate

analyze the fragmented interactome. The final resilience value then represents the topological stability of the

interactome across all possible failure rates. We use this approach to obtain the resilience of every interactome

in the protein-protein interaction dataset.

In the following subsections, we describe in detail our methodology.

Related work on robustness of complex networked systems. The study of the effects of the failure of in-

dividual components on the performance of a whole networked system has received considerable attention in

recent years (e.g., (28–30, 39)). The detailed motivation for studying these effects depends on the particular

networked system under consideration. For example, it is clearly important to know how the failure of routers

on the Internet affects the overall function of the network (28). Similarly, if the network in question is a contact

network on which a disease can spread, then it is critical to understand how the removal of nodes from the

network (e.g., through vaccination) affects the spread of the disease (40). A common measure for robustness

of networks is the percolation threshold (transition), which is defined in terms of the critical fraction of failures

at which the systems completely collapses (28). However, Schneider et al. (30) showed that this measure may

not be useful in many realistic cases. This measure, for example, ignores situations in which the network is sig-
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nificantly fragmented but still keeps its integrity. Besides the percolation threshold, there are other robustness

measures based, for example, on the shortest path (29), on the graph spectrum (41) or on the size of the largest

connected component (30). These measures are, however, less frequently used for being too complex or less

intuitive (30). Furthermore, they ignore situations in which the network suffers a big damage without becoming

completely fragmented and are unable to measure network fragmentation across all possible failure rates.

S5.2 Modified Shannon diversity

We first describe how we measure fragmentation of a given interactome at a particular network failure rate. For

this we use a well-established Shannon diversity index (35–38), which is also known as the Shannon-Wiener

index, the Shannon-Weaver index, or the Shannon entropy, which we modify to ensure that the resilience

of interactomes with different numbers of proteins can be compared. In the next section, we describe how

we integrate these measurements across all possible failure rates and obtain the final value for interactome

resilience.

Let us consider the interactome/network G(s) = (V (s), E(s)) of species s with N proteins/nodes V (s) and M

interactions/edgesE(s). Here, species s is any given species from our dataset (Section S1). Let f ∈ [0, 1] denote

network failure rate. This rate represents a fraction f nodes out of the total number of nodes in the network

whose all interactions undergo a failure. That is, f = 0 represents a situation when all of the nodes function

properly and there are not any failures, and, conversely, f = 1 represents a situation when all nodes fail and the

network becomes completely fragmented. Upon failure of a particular node all of its interactions disappear, they

are removed from the network, and the node is isolated from the rest of the network. Determining which nodes

exactly will fail depends on a particular node removal strategy. This study studies resilience of interactomes

under the removal of nodes uniformly at random (i.e., a strategy representing random mutations in the context

of biology) or in decreasing order determined based on some external information source (i.e., a gene list

containing information about gene essentiality). See Figure S1 for a detailed example.
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When network G(s) is subjected to a failure rate f it gets fragmented into a number of isolated network compo-

nents of varying sizes (Figure S1). We quantify the connectivity of the fragmented network G(s)
f by calculating

Shannon diversity (35, 37) on the resulting set of isolated components. In particular, let {C1, C2, . . . , Ck} be k

isolated components in the fragmented network G(s)
f . Let Ci be the size of component Ci, Ci = |Ci|, i.e., Ci is

the number of nodes that belong to Ci. We first calculate the entropy of the resulting set of components:

H(G
(s)
f ) = −

k∑
i=1

pi log pi, (1)

where pi = Ci/N is the proportion of nodes belonging to component Ci. Necessarily, 0 ≤ pi ≤ 1 and∑k
i=1 pi = 1. We can interpret pi as the probability of seeing a node from component Ci when sampling

one node from the fragmented network G(s)
f . That is, Equation 1 quantifies the uncertainty in predicting the

component identity of an individual node that is taken at random from the interactome and is also known as

(unnormalized) Shannon diversity (42, 43). Finally, to correct for differences in network sizes, we modify

Shannon diversity as follows:

Hmsh(G
(s)
f ) = H(G

(s)
f )/ logN. (2)

The normalization factor 1/ logN ensures that the resilience of networks with different numbers of nodes can

be compared (see Section S5.3). Equation 2 represents the final formula used in this study to characterize

how interactome G(s) fragments at a given failure rate f . We refer interested readers to (36, 44) for a detailed

discussion of entropy and diversity indices. The range of possible Hmsh values is between 0 to 1, where these

limits correspond, respectively, to a connected network in which any two nodes are connected by a path of

edges and a completely fragmented network in which each node forms its own component. See Figure S2 for a

detailed example.
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S5.3 Interactome resilience

So far, we described how to characterize the response of a given interactome at a particular network failure

rate f . Next, we discuss how to measure the response of that interactome across all possible failure rates and,

finally, how to calculate the resilience of species s’s interactome.

Given a species s, we determine the resilience of that species’ interactome G(s) as follows. We vary network

failure rate f with a one-percent step in the whole range of possible values and for each value of f evaluate

modified Shannon diversity Hmsh of the fragmented network G(s)
f using Equation 2. That is, we calculate Hmsh

as a function of failure rate f , which allows us to quantify how fragmentation of the network depends on the

fraction of nodes removed. In particular, we start with the full network G(s) and f = 0. For each next possible

value of f = qN/N · 100%, for q = 0.01, 0.02, . . . , 1 (N is the total number of nodes in the interactome of

species s), we remove an additional one-percent of the total number of nodes uniformly at random from the

current network. We then use Hmsh (Equation 2) to calculate the fragmentation of the resulting network G(s)
f .

The whole procedure is then repeated for the next value of f with the resulting network as the input. The

final result of this procedure is a resilience curve that represents fragmentation of the network at each possible

failure rate. Because modified Shannon diversity Hmsh is normalized, the resilience curve is monotonically

increasing (i.e., when increasing the failure rate, the interactome can only become more fragmented), it reaches

its minimum value of 0 at f = 0 (i.e., the interactome is connected) and its maximum value of 1 at f = 1

(i.e., the interactome is completely fragmented). See Figure S3 for a detailed example and interpretation.

Finally, the interactome resilience for species s is obtained as one minus the area under the resilience curve

(Resilience = 1− AUC). Formally, the interactome resilience for species s is calculated as:

Resilience(G(s)) = 1−
∫ 1

0
Hmsh(G

(s)
f ) df. (3)

The interactome resilience thus takes values between 0 and 1; a higher value implies a more resilient interac-

tome.
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We just described our approach (Section S5.2-Section S5.3) for calculating the interactome resilience of a

particular species s. We note that we use this methodology to calculate the resilience of every interactome in

our dataset. The interactome resilience values for all species are shown in Table S5.

S5.4 Removal of nodes representing essential protein-coding genes

Network failures as described above represent a situation in which randomly selected proteins from the inter-

actome fail (e.g., by random mutations or environmental factors such as availability of resources). Apart from

eliminating the proteins randomly, another particularly interesting procedure is to remove proteins in the order

determined based on essentiality information. Such a procedure represents an adversarial agent that attempts to

deliberately damage the interactome by preferentially targeting proteins that have a vital role in the survival of

the organism (32). To investigate how vulnerable the interactomes are to these targeted attacks (28) we conduct

a series of additional analyses. First, we identify six species in our dataset (i.e., humans, S. cerevisiae, M.

musculus, D. melanogaster, C. elegans, A. thaliana) for which we obtain genome-wide information on gene

essentiality (i.e., whether a particular protein-coding gene is essential or not). We then use our methodology

(Section S5.2-Section S5.3) together with this information to calculate a resilience value for each interactome.

As proteins are selected and removed from the interactome based on whether they are encoded by essential

genes, the calculated resilience values represent the attack vulnerability of the interactomes. That is, a lower

value indicates a greater vulnerability of an interactome to attacks on essential genes.

Results. Results of these analyses are shown in Table S3. Across six species, including humans, S. cerevisiae,

M. musculus and others for which genome-wide essentiality information exists, we find that interactomes are

significantly less resilient to failures of essential genes than to failures of random genes (p value < 1 · 10−4;

permutation test). This finding demonstrates that interactomes have a topological structure that is error-tolerant

but extremely vulnerable to targeted attacks on essential genes. That is, when essential genes are targeted,

a typical interactome becomes rapidly fragmented and breaks into many small isolated components. This
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decrease in resilience provides evidence for the topological instability of interactomes to targeted attacks on

essential genes. We note that these results are in agreement with our current understanding that essential genes

tend to encode for proteins that play a vital role in maintaining the interactome’ connectivity (32, 45). These

results also provide further empirical motivation for our study of interactome resilience as failures of proteins

can affect the interactome to the extent that the interactome loses its biological function and the disrupted

interactions increase the risk of diseases (33).

S6 Additional information on analysis of protein network neighborhoods

Next, we present a detailed discussion of our methodology for the analysis of protein network neighborhoods

and describe the different statistical tests and controls.

S6.1 Protein network neighborhoods

For each species, we construct a separate protein network neighborhood for every protein in that species’

interactome. Consider the interactome G(s) of species s and a protein/node u ∈ V (G(s)) that is part of the

interactome. The u’s network neighborhood Nk(u) is a centered graph (46). In particular, Nk(u) is centered at

u and is a subgraph of the interactome G(s) that consists of u, its k-hop neighbors in the interactome, and all of

the interactions/edges between them. See Figure S4 for a detailed example.

Protein network neighborhoods are thus built around a particular protein designated as a central node u. To

construct a network neighborhood for a particular protein in a particular species, we begin by taking all the

other proteins with whom the central protein u interacts, either directly (if k = 1) or both directly and indirectly

(if k > 1) Finally, we note all interactions among those other proteins. The result is a mini-network or k-hop

neighborhood surrounding u that can reveal something biologically meaningful from u’s perspective. Motivated

by previous observations (47, 48) that first- and second-order neighbors are most informative of individual
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proteins, we use in this study k = 1 and k = 2. There are several more or less obvious but interesting

properties of protein network neighborhoods, which follow from the centered graph theory:

(1) In terms of density, protein network neighborhoods have two extremals: the minimal star graph and the

maximal complete graph (where all possible edges are present).

(2) Protein network neighborhoods are, of course, connected; that is, there is a sequence of nodes and

edges—a path—from any node to all others.

(3) The longest shortest path linking any pair of nodes is less than or equal to k+1: this is called the diameter

of the network neighborhood.

(4) Any shortest path connecting a pair of nodes has, according to (3) above, length equal to either 1, 2, . . . , k+

1. Specifically, in the case ofN1(u), if a path has a length of 2, the end nodes are in different components

that are linked by a mid-point, which is the central node u. Since path lengths form a partition in a net-

work neighborhood, we can examine the structure of these components and the pattern of connectivity by

counting either one. In this study, the structure of these components, as well as the connectivity pattern

are used, which we describe next.

S6.2 Analyses of protein network neighborhoods

We characterize each protein’s network neighborhood (Figure S4) by calculating two network metrics, which

we describe next. Results of these analyses are shown in Figure 3 in the main text.

Isolated components of a protein network neighborhood. The metric is defined as the number of connected

components that arise when the central node u is removed from the neighborhood and it is normalized by u’s

degree:

IC(u) =
n

du
, (4)

where n = |{C1, C2, . . . , Cn}| represents the number of isolated network components in the fragmented version
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of network neighborhood N2(u) and du = |N1(u)| represents node u’s degree. Note that n is always bounded

from above by du. The metric thus takes values in [1/maxu du, 1] and a higher value indicates a greater

fragmentation of the protein network neighborhood. See Figure S5 for a detailed example.

Effective size of a protein network neighborhood. We start with a brief overview of the concept of structural

holes in network science and then proceed with the definition of the network metric. Network structural holes

are “gaps” that exist between different areas of a network, that is, network areas that have few edges/interactions

between them. The foundational work of this concept (49) highlights network structural holes as a mechanism

that, at a local level, can be seen as a separation between nonredundant nodes within a given network neigh-

borhood (Figure S5). In particular, to identify network structural holes, one begins at the local level with a

network neighborhood. Taking a central node u of the neighborhood, a redundant neighbor of u is one that is

also connected to other neighbors of u. This means that when u is connected to non-redundant neighbors, u sits

on a “bridge” between those separate areas of its local network neighborhood. The task of identifying structural

holes is thus a matter of identifying neighbors of u that are not connected to each other (49–51).

Given a central node u, the notion of redundancy captures the extent to which another node v in u’s neighbor-

hood is related to some third node w that is also a part of u’s neighborhood. Such neighbors are redundant to

the extent that they lead to the same nodes, and so provide similar functional/information benefits (49). Gaining

a handle on which neighbors of u are redundant in u’s neighborhood helps us understand the extent to which

u is connected to disparate or unconnected (i.e., non-redundant) neighbors, and thus it illuminates the bridging

potential of u in the network. This bridging potential is captured by the effective size of u’s neighborhood or

the “true” size of u’s network absent of redundant neighbors.

Following (49), we define effective size mathematically as follows. The effective size of u’s network neighbor-

hood is the sum of the non-redundant portion of u’s connections over all u’s neighbors:

ES(u) =
∑

v∈N1(u)

(1− 1/du
∑

w∈N1(u)

evw) = du − 1/du
∑

v∈N1(u)

∑
w∈N1(u)

evw), w 6= u, v (5)
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where evw = 1 if nodes v and w are connected and is 0 otherwise. Note that the first summation covers all

neighbors v in u’s local network, and the second sum covers all intermediary connections w between u and v.

Note also that ES is always bounded from above by du and that ES achieves the maximum value exactly when

u’s network neighborhood N1(u) is a star graph. We thus normalize the metric by dividing its value by du,

so that the metric takes values in [0, 1], and that a higher value indicates a larger effective size of the network

neighborhood. See Figure S5 for a detailed example.

S7 Additional information on analysis of interactome networks

Next, we present a detailed discussion of our network-based methodology and describe the different statistical

tests and controls.

S7.1 Protein-protein interaction rewiring rates (IRR)

We develop an approach to quantify protein-protein interaction rewiring based on analogy to simple models of

sequence evolution and use it to conduct a systematic study on all the interactomes. Results of these analyses

are shown in Figure 4 in the main text. Next, we describe the approach.

Calculating interaction rewiring rates (IRR). We use a consistent method to calculate interaction rewiring

rates comparing protein network neighborhoods of two orthologous proteins across species. First, orthology

relationships between proteins/nodes in species are established (Section S3). For a network motif m of interest

(e.g., a simple edge/interaction, a triangle, a square), we then count the number of instances of that network

motif in each of the two compared protein network neighborhoods. We use these counts to then calculate the

fraction of possible instances of m that exist in the neighborhood. For example, when m is a triangle involving

the central node u, this gives us the probability that two neighbors of node u are connected with each other (i.e.,

triangle clustering (52)). In another example, when m is a square touching the central node u, this gives us the
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probability that two neighbors of node u share a common neighbor different from u (i.e., square clustering (53)).

This means that these calculated values are directly comparable between protein network neighborhoods, even

if neighborhoods are of different sizes and connectivities. Finally, the following equation is used to calculate

the interaction rewiring rate for a pair of protein network neighborhoods:

IRR(m;u, v) = log2
m(u)

m(v)
, (6)

where u and v are the proteins whose neighborhoods are compared. Here, m(u) (m(v)) denotes the fraction of

possible instances of m that exist in the neighborhood of u (v), that is, it represents the probability of observing

m in the neighborhood of u. Here, given two proteins from different organisms, u is selected as the protein

from the organism with more nucleotide substitutions per site, i.e., tspecies(u) > tspecies(v). Interaction rewiring

rate IRR(m;u, v) thus measures the fold change between the probability of m occurring in the neighborhood

of protein u relative to the probability of the same motif occurring in the neighborhood of an evolutionarily

younger orthologous protein v. A IRR value greater than 0 means that the motif m becomes more abundant

with the evolution and vice versa. We compute the rates IRR for all orthologous protein pairs and summarize

the values by reporting the mean, median, and other statistics.

Importantly, Equation 6 specifies an instantaneous rewiring rate, which we use to compare networks between

closely related species (i.e., tspecies(u) − tspecies(v) < 0.1). We note that the instantaneous rewiring rate is

preferred over average rewiring rate (i.e., IRR(m;u, v) = log2(m(u)/m(v))/(tspecies(u) − tspecies(v))) because

of the following reasons (54). For evolutionarily distant species, network rewiring approaches saturation and is

hard to compare. This is because new network structural changes happen on top of previous changes, which then

have only little effect on the rewiring. In particular, Shou et al. (54) found that similar to nucleotide sequences

(i.e., Jukes-Cantor model), biological networks show a decreased rate of change at large evolutionary distances

because of saturation in potential substitutions. For these reasons, the interaction rewiring rates in this study

are based on the comparison of networks between closely related species using instantaneous rewiring rates.
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Conducting randomization-test procedures. To evaluate the statistical significance of the obtained values of

IRR we use two complementary random models:

(1) Randomized evolutionary distances: For network neighborhoods of two orthologous proteins (u, v), ran-

domize information on the evolution of each protein’s originating species. This means that the protein u

in the numerator of Equation 6 can sometimes come from the organism with fewer nucleotide substitu-

tions per site than the protein v in the denominator of Equation 6, i.e., tspecies(u) < tspecies(v). This model

tests for whether interactions rewire in a way that is independent of species’ evolution, i.e., the amount

of genetic change a species has undergone.

(2) Randomized orthologous relationships: First, randomize orthologous relationships between proteins.

Use the new randomized relationships to calculate interaction rewiring rates as described in the previ-

ous paragraph. This model tests for whether there exists a global mechanism, which is independent of

orthologous relationships, that determines how interactions rewire.

The statistical significance of an observed difference between the values of IRR and the randomized counterpart

IRRrandomized is given by the p value from a two-sample Kolmogorov-Smirnov test.

S7.2 Interactome network null models

We also explore whether the resilience of interactomes could be the result of a particular structure intrinsic

to interactome networks (e.g., (1)). Using the configuration model (55, 56) we construct 171,000 randomized

versions of the interactomes, i.e., 1,000 randomized interactomes for each of 171 species. The randomized

interactomes have the same number of proteins/nodes and interactions/edges, and the same node degrees as the

actual interactomes, but have randomized interactions (i.e., degree preserving randomization (57)).

Results. We find that 171 out of 171 species have interactomes whose resilience is statistically significant with

respect to the random expectation, hence the interactome resilience cannot be attributed to structural network
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properties alone. We also compare the distribution resilience for bacterial and eukaryotic interactomes with

the distribution of resilience for random interactome counterparts. Again, we find that the observed differences

between the interactomes and their randomized counterparts cannot be explained solely by network size and

degree distribution (Figure S9).

S7.3 Estimating the size of the whole human interactome

Next, we describe how our network-based methodology can be used to estimate the size of the whole human

interactome from the currently available (incomplete) network data. The actual size of the whole human inter-

actome is currently unclear and its estimation is a highly non-trivial task. It will likely remain so until most

of the interactome becomes accessible to experimental technologies and we get a fairly complete description

of the interactome. The interest in knowing the size of the whole human interactome, i.e., the number of

protein-protein interactions in humans, stems from a surprising result of genome-sequencing projects that the

number of genes in species as diverse as fruit flies, nematodes, and humans does not reflect our perception of

their relative complexity (58). In other words, very different organisms have a surprisingly similar number of

genes (59). For example, C. elegans has a similar number of genes as humans, whereas rice and maize have

even more genes than humans. It was quickly suggested that the biological complexity of organisms is not

reflected merely by the number of genes but by the number of physiologically relevant interactions and that the

structure of interactome is one of the crucial factors underlying the complexity of organisms (58, 60, 61).

To address this challenging question, many studies attempted to provide statistical estimates of the size of the

whole human interactome based on currently available partial subnet data (e.g., (11, 58, 62–64)) and show that

the estimated sizes correlate much better with the apparent biological complexity of different organisms. In

contrast to some previous studies (e.g., (58, 63)), the main objective of our study was not to develop a new

statistical procedure to estimate the size of the whole interactome. Nevertheless, we are able to obtain an

estimate of the size of the whole human interactome that is in surprisingly good agreement with the previous

estimates by simply using interaction rewiring rates (IRR, see Section S7.1).
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Interactome size as a by-product of interaction rewiring rates (IRR). In addition to using IRR, our approach

uses information about a reference organism, which can be any organism for which a fairly extensive description

of the interactome is available. We use S. cerevisiae as a reference organism as we are beginning to have a

fairly complete description of its interactome. To estimate the interactome size of a given organism, we then

extrapolate interactome size of the reference by using two pieces of information about the organism of interest:

the number of protein-coding genes and the evolution of the organism (as defined in Section S2). Note that the

latter information is available for any organism with a completed genome sequencing project. Next, we discuss

in detail the method for estimating the size of the whole interactome.

Calculating an estimate of the human interactome size. Our goal is to calculate an estimate for the number of

protein-protein interactions in humans. We take S. cerevisiae as a reference organism. Let ty = 3.736 indicate

the evolution of yeast (Section S2), Ny = 5,800 represent the number of yeast genes (63), and My = 52,500

represent the mean projected number of interactions in the yeast interactome (see Table 2 in (63)).

To estimate the human interactome size, we need the number of human protein-coding genes and character-

ization of the evolution of humans. Let th = 3.997 indicate the evolution of humans (Section S2) and let

Nh = 20,400 represent the number of human protein-coding genes based on the number of protein-coding

genes in the Ensembl GRCh38.p123. Next, we use these data to calculate the number of protein-protein inter-

actions in humans, Mh.

Our method makes two important assumptions that can be relaxed without any change to the approach as a

whole. Following Stumpf et al. (58) and taking into account present experimental methods, we ignore multiple

splice variants per gene. Second, to make the method applicable to as many organisms as possible we want to

use an unconstrained network model of edges/interactions. We use the Erdös-Renyi model, which is defined as

a random graph with N nodes where each possible edge has a probability p of existing. The model does not

impose any constraints on how the edges are distributed among the nodes. We make use of two well-known
3This genome assembly corresponds to GenBank Assembly ID GCA 000001405.27. The assembly is available at

http://www.ncbi.nlm.nih.gov/genome/assembly/?term=GCA 000001405.27.
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facts about Erdös-Renyi graphs (65): the expected number of edges in an Erdös-Renyi graph is: M =
(
N
2

)
p,

and its expected mean degree is: A = Np. In what follows, we use the subscript to denote organism name.

The calculation consists of four steps. First, we takeMy andNy and compute the probability py of each possible

edge/interaction in yeast as: py =My/
(
Ny

2

)
= 0.00312. Second, we calculate the expected mean degree in the

yeast interactome as: Ay = Ny py = 18.107. Third, we use the expected mean degree Ay and the rewiring rate

of an individual edges/proteins, IRR = −0.215 (Section S7.1 and Figure 4), to calculate the expected mean

degree Ah in the human interactome as: Ah = 2IRR(m1)Ay = 15.600. We use the resulting Ah to compute the

probability ph of each possible edge/interaction in human as: ph = Ah/Nh = 0.000765. Finally, we obtain

Mh as: Mh =
(
Nh
2

)
ph = 159,109. Thus, the projected human interactome size is approximately 160,000

interactions.

Taken together, the projected interactome size is generated by a simple, very approximate, but surprisingly

effective, statistical arguments that extrapolate the yeast interactome to the human interactome. However, this

prediction is in surprisingly good agreement with three previous estimates of the size of the human interac-

tome (62–64), which range from Mh = 150,000 to Mh = 370,000 interactions and are generated by rather

involved statistical procedures.

S8 Additional analyses on possible confounding factors

Next, we present a detailed discussion of our statistical methodology and describe how we control for possi-

ble confounding factors when determining the relationship between evolution and interactome resilience (see

Figure 1 in the main text).
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S8.1 Confounding factors and partial correlation analyses

One key question is whether our main results could be an artifactual finding arising due to the uneven size

of interactome networks, broad-tailed degree distributions, the presence of high-degree nodes (hubs), or other

network structural and genomic properties of species. To answer this question, we design a causal model (Fig-

ure S8) that we use to systematically study alternative hypotheses that could potentially explain the relationship

between evolution and interactome resilience.

Next, we describe in detail the statistical procedures used to perform these analyses. Evolution and interactome

resilience (shown in Figure 1) are correlated, however, it is difficult to say why this relationship exists. One

reason for the difficulty is the likely presence of confounding factors. In particular, some third variable, a

confounder Z, may be producing changes in both evolution and interactome resilience and thus could lead

to artifactual findings. In what follows, we describe the statistical procedures that allow us to show that the

relationship between evolution and interactome resilience is not confounded by any of the several possible

confounders listed in Figure S8.

Let E represent a vector of evolutionary information (i.e., nucleotide substitutions per site) for all the species in

our dataset (Section S2) and let R represent a vector of corresponding interactome resilience values. Addition-

ally, let Z denote a vector of values of a particular confounding factor (e.g., the number of interactions/edges

in each interactome; see Figure S8 and Table S1 for the full list of confounding factors). Partial correlation

is a procedure that uses multiple regression to determine what the correlation between E and R would be

(hypothetically) if they were not each correlated with the third variable, a possible confounding factor Z. Al-

ternatively, we say that partial correlation allows us to determine what the correlation between E and R would

be (hypothetically) if the third variable Z were held constant. More specifically, we use the following statistical

procedures:

(1) Parametric partial measure of association: We use the linear regression approach (66) to compute the

partial correlation rER|Z . In particular, takingE andR and a possible confounding factor Z the algorithm
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can be summarized as follows: 1) perform a linear least-squares regression with E as the target and Z

as the predictor, 2) calculate the residuals in Step #1, 3) perform a linear least-squares regression with R

as the target and Z as the predictor, 4) calculate the residuals in Step #3, and 5) calculate the correlation

coefficient between the residuals from Steps #2 and #4. The result is the partial correlation rER|Z between

E and R while controlling for the effect of Z.

(2) Nonparametric partial measure of association: We consider partial rank correlation (Spearman’s partial

ρ) (67–69) to compute the partial rank correlation coefficient ρER|Z between evolutionE and interactome

resilience R given the effect of a confounding factor Z. Partial rank correlation ρER|Z is the rank cor-

relation between E and R after removing the effect of F and can be computed based on standard rank

correlations ρ between the three variables E, R, and Z as follows:

ρER|Z =
ρER − ρEZρRZ√

(1− ρ2EZ)(1− ρ2RZ)
(7)

with ρY X denoting the rank correlation between X and Y . As with the standard rank correlation coeffi-

cient, a value ρER|Z of +1 indicates a perfect positive linear relationship, a value ρER|Z of −1 indicates a

perfect negative linear relationship, and a value ρER|Z of 0 indicates no linear relationship.

Results. Results of these analyses are shown in Table S1. Taken together, we find that within the limitations

imposed by the incomplete interactome data, the relationship between evolution and interactome resilience

systematically persists when the effects of possible confounding factors are removed. For any given confounder

Z in Table S1 (e.g., interactome density, genome size), we find that partial correlation values (rER|Z and ρER|Z

for any Z) are substantial and significantly larger than zero. This finding indicates that a significant relationship

between evolution E and interactome resilience R exists even if we control for Z, that is, if we statistically

hold Z constant. In other words, the confounders only partly account for the relationship between evolution

and interactome resilience and cannot explain the observed relationship. Based on that, we conclude that our

main results are not direct effects of various properties of species’ genomes, such as genome size and the
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number of protein-coding genes. Furthermore, our main results are not direct effects of various properties of

species’ interactomes, such as network size, the number of interactions in each species, and the presence of

hubs in the interactome networks.

S8.2 Comparison with unbiased datasets

We complement our analysis using only interactions from well controlled and completely unbiased high-

throughput yeast-two-hybrid (Y2H) datasets (11, 31, 62, 64, 70–74). These data are particularly suited to ad-

dressing the effects of incompleteness systematically because all possible pairwise combinations of a given

set of proteins have been tested in an unbiased fashion on the same platform. We systematically explore how

our main results are affected when only these high-throughput protein-protein interaction data from human

and yeast are used. We note that these additional experiments do not require any change to our interactome

resilience methodology (Section S5), as the methodology can be used to compare the resilience of interactomes

that can be of vastly different sizes.

Using only yeast-two-hybrid (Y2H) protein-protein interaction data. We compiled five distinct S. cerevisiae

protein-protein interaction datasets (31, 70, 71, 73, 74) and four distinct H. sapiens protein-protein interaction

datasets (11, 62, 64, 72), each dataset resulting from a high-throughput yeast-two-hybrid assay. Each dataset

represents an unbiased systematic screen because all pairwise combinations between a set of proteins were

interrogated (i.e., all pairwise interactions within a set of proteins were tested). Since interactome data are

prone to investigative biases (Section S1), we use these unbiased datasets to systematically address the effects

of investigative biases.

Our aim is to study how the values of interactome resilience change when only unbiased high-throughput data

are used to quantify the resilience instead of the full species’ interactomes (i.e., data described in Section S1).

To this aim, we use our interactome resilience methodology with each of these nine additional high-throughput

Y2H datasets. We then compare the results obtained on these datasets with the results obtained on the full
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interactome data. In particular, we systematically compare each (S. cerevisiae, H. sapiens) high-throughput

Y2H dataset pair with the (S. cerevisiae, H. sapiens) full interactome dataset pair. We examine whether the

values of interactome resilience are consistent across these dataset pairs. That is, we ask the following question:

If S. cerevisiae has higher interactome resilience than H. sapiens on the full data, does it also have higher

interactome resilience when only the high-throughput Y2H data are used?

Results. Results of these analyses are shown in Table S2. Based on these results, we conclude that within the

limitations imposed by the current protein-protein interaction data the interactome resilience continues to exist

in unbiased high-throughput data (i.e. in 17/20=85% dataset pairs) and that our main findings can be reproduced

even in much sparser/smaller high-throughput interaction datasets from Y2H.
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Figure S1: Characterizing fragmentation of the interactome into isolated components upon node re-
moval. (a) Shown is a hypothetical interactome whose nodes represent proteins and edges indicate physical
protein-protein interactions (PPIs). The interactome network has N = 83 nodes and is (initially) connected,
i.e., one can traverse from one node to any other node in the network following the edges. In this example, 11
nodes are selected at random and their PPIs are removed from the interactome. This results in a fragmented
interactome with 21 isolated components (in grey). Highlighted are two isolated components whose sizes are
C1 = 12 (orange), and C2 = 6 (blue). (b) The fragmentation of the interactome is characterized by isolated
components and quantified by modified Shannon diversity Hmsh (Section S5). The plot shows the fractional
size of each isolated component, i.e., Ci/N . Using information about fractional component sizes as input to
the normalized entropy formula, we obtain Hmsh = 0.584.
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Figure S2: Quantifying fragmentation of the interactome using modified Shannon diversity. Graphical
explanation of modified Shannon diversity, a measure used to characterize how the interactome fragments into
isolated components at a given network failure rate. Shown are two hypothetical interactomes whose nodes
represent proteins and edges indicate physical protein-protein interactions (PPIs). The interactome networks
have the same number of nodes (N = 41) and the same number of edges (E = 65) but different connectivi-
ties, i.e., edges connect different node pairs in each network. This example illustrates how interactomes with
different connectivities can fragment in different ways even though they are subjected to the same failure rate
(i.e., the same number of nodes removed from each interactome). (a) In this interactome, 6 nodes are selected
at random and their PPIs are removed from the interactome. The interactome get fragmented into 14 isolated
components (in grey), which are relatively small and of approximately equal size. Even the largest isolated
component contains less than 10% of the nodes as seen in the plot. Because of that, modified Shannon diversity
Hmsh describing fragmentation of the interactome is high, Hmsh = 0.658 (Section S5). (b) As in the previous
interactome, 6 nodes are selected at random and their PPIs are removed from the interactome resulting in 14
isolated components. However, the interactome falls apart into a few large isolated components (the largest
isolated component contains more than 50% of the nodes) and a few small broken-off components. Because of
that, modified Shannon diversity Hmsh is lower than in (a), Hmsh = 0.509.



Low interactome resilience

High interactome resilience

Network failure rate, f

Isolated components of varying sizes

Only a few interactions removed Many interactions removed

M
od

ifi
ed

 S
ha

nn
on

di
ve

rs
ity

, H
m

sh

0 1
0

1

Resilience = 1- AUCResilience = 1- AUC

Input
interactome

Completely
fragmented
interactome

a

b

Resilience curve

Figure S3: Interactome resilience. Graphical definition of interactome resilience using modified Shannon
diversity (see Figure S2 for the explanation of modified Shannon diversity). (a) Resilience summarizes response
of the interactome to failures across all possible failure rates f, f ∈ [0, 1]. Fragmentation of a highly resilient
interactome follows the following scenario (in red; from left to right). For a small failure rate f , the interactome
breaks into one (or, only a few) large components and a few small broken-off components. The size of the
largest component slowly decreases as f increases. That is, the increasing failure rate leads to the isolation
of small components only and the interactome slowly deflates as these small components break off one by
one. Thus, the interactome stays together as a large component for very high values of f , providing evidence
of the topological stability of the interactome under failures. A non-resilient interactome follows a different
scenario under failures (in blue; from left to right). For a small failure rate f , components of different sizes
break off, although there are still a few relatively large components. These isolated components then quickly
break into small fragments and large components completely disappear. At even higher f the components are
further fragmented into single nodes or components of size two. Ultimately, when f = 1, the interactome
is completely fragmented into N isolated components, each containing exactly one node. (b) Quantitatively,
fragmentation of the interactome at each value of f is calculated using modified Shannon diversity (Figure S1
and Figure S2). Repeating this calculation for various values of f results in a resilience curve (Section S5).
The resilience curve is monotonically increasing (i.e., when increasing the failure rate, the interactome can only
get more fragmented), it reaches its minimum value of 0 at f = 0 (i.e., the interactome is connected) and its
maximum value of 1 at f = 1 (i.e., the interactome is completely fragmented). Resilience of the interactome
is then obtained as one minus the area under the resilience curve (Resilience = 1 − AUC). As a result, the
interactome resilience takes values between 0 and 1, a higher value implies a more resilient interactome.
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Figure S4: Protein network neighborhoods in the interactome. Shown is a hypothetical interactome whose
nodes represent proteins and edges indicate physical protein-protein interactions (PPIs). To investigate network
structural changes in local protein neighborhoods (46), we decompose a species’ interactome into local protein
networks, using a 2-hop subnetwork centered around each protein in a given species (i.e., N2(u) for node u).
The subnetwork is then used as a local representation of the protein’s direct and nearby interactions in the
species’ interactome (see also Section S7). Highlighted are 1-hop (in yellow) and 2-hop (in green) protein
network neighborhoods for two nodes, u and v.
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Figure S5: Characterization of protein network neighborhoods. Shown are network neighborhoods (Fig-
ure S4) of four hypothetical proteins, u, v, w, and z. The neighborhoods are characterized through two network
metrics as follows (see also Section S7). (a) Isolated components metric (IC) is defined as the number of isolated
components n that arise when the central node is removed from the neighborhood. The metric is normalized
by degree of the central node (i.e., du, dv) such that its maximum value is 1 and that a higher value indicates a
greater fragmentation of the neighborhood. (b) Effective size metric (ES) captures the bridging potential of the
central node, i.e., the “true” size of the node’s neighborhood absent of redundant neighbors (49–51). Taking a
central node w of the neighborhood, a redundant neighbor of w is one that is also connected to other neighbors
of w. This means that when w is connected to non-redundant neighbors, w sits on a “bridge” between those
separate areas of the local network neighborhood that are known as network structural holes (49). The ES met-
ric is mathematically defined as the sum of the non-redundant portion of the central node’s connections over all
the neighbors N1. Shown is an example that illustrates computation of ES for node z.
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Figure S6: Square network motifs of protein-protein interactions. (a) Shown is a 2-hop protein network
neighborhood (Figure S4) of protein A in the interactome of Organism 1. Highlighted (in green) is an instance
of a square network motif on nodes A, X1, X2, and B. (b) An illustration of the positive rate of change in the
number of square network motifs (see Figure 4 in the main text for results on the protein-protein interaction
dataset). There is one instance of a square network motif in the network neighborhood of proteinA in Organism
1. However, there are four instances of a square network motif in the network neighborhood of protein A′, an
evolutionarily older ortholog of A that is found in Organism 2. These additional instances are due to interaction
rewiring (i.e., two rewired/new PPIs/edges in Organism 2 are shown as dashed lines). (c) 3D structural illustra-
tion of our finding that proteins in evolutionarily older species have on average more square network motifs than
proteins in evolutionarily younger species (see main text). To illustrate our finding with existing 3D structural
data, we selected two human proteins from the Protein Data Bank (PDB) (75), RAC3 and CDC42, interacting
with some of their partners through the same shared interface. While these two proteins are not known to in-
teract with each other, we expect them to share some additional interacting partners, interacting with the same
shared interface. Physical PPIs often require complementary interfaces. As a result, RAC3 and CDC42 with
similar interfaces share many neighbors. Yet, it is not known if RAC3 and CDC42 directly interact with each
other. Instead, additional interaction partner of RAC3 (protein PAK4) is also shared with protein CDC42 (in
red). Besides PAK4, CDC42 has an additional interacting partner, PAK1, that potentially interact with RAC3
through the same interface. This detailed example illustrates that our finding on the positive rate of change in
the number od square motifs agrees with structural and evolutionary arguments (10, 76, 77).
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Figure S7: Publication bias towards model organisms and highly studied species. Shown is the num-
ber of publications in the NCBI Pubmed database (https://www.ncbi.nlm.nih.gov/pubmed) for each of 1,840
species. The publication data was obtained in February 2018. We used BioPython (78) and Entrez Pro-
gramming Utilities (http://www.ncbi.nlm.nih.gov/books/NBK25501) to access the NCBI over programming
interface and then used the NCBI’s ESearch utility (https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi) to
search and retrieve primary publication IDs and term translations based on species’ names (i.e., db=’pubmed’,
term=’species name’ or term=’species name [MeSH Terms]’). The plot reveals a substantial publication bias
towards prominent model organisms and other highly studied species, suggesting that current protein-protein
interaction data might be prone to notable selection and investigative biases (1, 11); hence we perform all anal-
yses using only data from species that have at least 1,000 publications (dashed line; see also Section S1 and
Table S5).

S38



Evolution (nucleotide substitutions 
per DNA site)

Random effects

Interactome resilience

- Publication count
- Genome size (Mb)
- Distinct protein-coding genes
- Interactome size (#nodes)
- Interactome size (#edges)
- Interactome diameter
- Interactome density
- Average number of interacting partners
- Maximum number of interacting partners

a.
b.

c.

Figure S8: Causal model for alternative hypotheses to explain the relationship between evolution and
interactome resilience. One hypothesis, represented by arrow a, is that interactomes become more resilient
during evolution, indicating that a species’ position in the tree of life is predictive of how robust the species’
interactome is to network failures. Secondary hypotheses, represented by arrows b and c, are that non-biological
(e.g., the amount of research on a given species, the number of documented protein-protein interactions in a
species) and other biological factors (e.g., genome size, the number of a species’ protein-coding genes) have
a greater effect on a species’ interactome and therefore better explain the resilience of the interactome. The
secondary hypotheses can be rejected because these non-biological and biological factors cannot explain the
observed relationship between evolution and interactome resilience (Table S1), indicating that our main results
are not direct effects of various properties of species’ genomes and interactome networks (Section S8).
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Figure S9: Relationship between evolution and interactome resilience under random expectation. We
use two complementary null models (in (a) and (b)) to evaluate the statistical significance of the observed re-
lationship between evolution and interactome resilience (R2 = 0.36; see Figure 1 in the main text). (a) For
a statistical evaluation of the observed relationship, we use a permutation model with the null hypothesis that
the number of nucleotide substitutions per site (i.e., evolution) of a species is randomly drawn from the space
of all possible nucleotide substitution rates. Comparing the observed relationship with random expectation,
we find no significant association between randomized evolution and interactome resilience (R2 = 0.00). (b)
In a complementary random control, we use a configuration network model (see Section S7 for full details)
with the null hypothesis that interactome of a species is randomly drawn from the space of all networks with
identical sizes and degree distributions as the true species’ interactome. Comparing the observed relationship
with random expectation, we again find that the observed relationship cannot be explained solely by network
size and degree distribution (R2 = 0.09 for random interactomes vs. R2 = 0.36 for true interactomes). (c)
The distribution of the resilience for bacterial interactomes. Resilience of naturally occurring interactomes is
significantly shifted to higher values compared to the random expectation (p value < 3 · 10−10; denotes the
significance of the difference of distributions using a non-parametric two-sided Mann-Whitney rank test). The
expected distribution for random interactomes of identical sizes and degree distributions is shown in grey; the
lines represent Gaussian kernel density estimates. (d) The distribution of the resilience for eukaryotic interac-
tomes. Again, resilience of naturally occurring interactomes is significantly shifted to higher values compared
to the random expectation (p value < 5 · 10−8; denotes the significance of the difference of distributions using
a non-parametric two-sided Mann-Whitney rank test).
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Figure S10: Interactome resilience for species from the same taxonomic groups. (a) Species from the
same domain have more similar interactome resilience than species from different domains (p value = 6 ·
10−11). Error bars indicate 95% bootstrap confidence interval. (b) Species from the same taxonomic group
(i.e., supergroups or phyla) have similar interactome resilience. Furthermore, species in taxonomic groups with
more nucleotide substitutions per site tend to have more resilient interactome. This observation is consistent
with the main finding that a greater amount of genetic change is associated with a more resilient interactome
structure. Taxonomic groups are defined based on the NCBI Taxonomy database (17) and the supergroups/phyla
deliniated by Hug et al. (13) (Section S2). To obtain a higher resolution of the lineages, this analysis considers
species with at least 500 publications in the NCBI Pubmed database (this gives 246 species; see also Figure S7).
The bars, representing taxonomic groups, are ordered by the median evolution of species in each group. Colors
indicate the assignment of taxonomic groups to domains; error bars indicate 95% bootstrap confidence interval.
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Supplementary Tables

Table S1: Analysis of possible confounding factors for interactome resilience. We investigate the relation-
ship between evolution (E) and interactome resilience (R) after removing the effects of possible confounding
factors (Z). We perform a partial correlation analysis (Section S8) to investigate the extent to which our re-
sults could be explained by other biological and non-biological factors, such as genome size and the number of
documented protein-protein interactions. To this aim, we quantify the relationship between evolution and in-
teractome resilience while a particular confounding factor is held constant. The parametric and nonparametric
partial measures of association indicate a significant correlation between evolution and interactome resilience
that does not depend on and cannot be explained by these biological and non-biological factors. As with the
standard (rank) correlation coefficient, a value (i.e., rER|Z and ρER|Z) of +1 indicates a perfect positive linear
relationship, a value of -1 indicates a perfect negative linear relationship, and a value of 0 indicates no linear
relationship after removing the effect of a possible confounding factor.

Parametric partial Nonparametric partial
Possible confounding factor (Z) measure of association measure of association

rER|Z R
2
ER|Z p value ρER|Z p value

Publication count 0.545 0.30 5.15 · 10−10 0.519 4.73 · 10−9
Genome size (Mb) 0.472 0.22 2.19 · 10−7 0.289 3.06 · 10−2
Distinct protein-coding genes 0.359 0.13 1.02 · 10−4 0.185 4.01 · 10−2
Interactome size (#nodes) 0.496 0.25 2.49 · 10−8 0.426 2.81 · 10−6
Interactome size (#edges) 0.507 0.26 1.16 · 10−8 0.390 2.09 · 10−5
Interactome diameter 0.497 0.25 2.46 · 10−8 0.484 6.24 · 10−8
Interactome density 0.547 0.30 4.14 · 10−10 0.506 1.18 · 10−8
Average number of interacting partners (avg. node degree) 0.434 0.19 1.69 · 10−6 0.178 6.03 · 10−5
Maximum number of interacting partners (max. node degree) 0.500 0.25 1.89 · 10−8 0.311 8.23 · 10−4

S42



Table S2: Quality-controlled analysis of interactome data generated by yeast two-hybrid (Y2H) assays.
The protein-protein interaction dataset is prone to investigative biases (Section S1). We explore how our results
are affected when only unbiased high-throughput data are used to quantify interactome resilience (Section S8).
The table shows how interactome resilience of H. sapiens and S. cerevisiae relate to each other when only
high-throughput interactions from various yeast two-hybrid assays are used instead of the full species’ interac-
tomes. The symbol ‘+‘ indicates the relationship between H. sapiens and S. cerevisiae persists also in the high-
throughput Y2H data. The symbol ‘–‘ indicates the relationship in the high-throughput Y2H data is reversed
relative to the relationship observed in the full species’ interactomes. In other words, symbol ‘–‘ indicates an
inconsistency: S. cerevisiae has higher interactome resilience than H. sapiens according to the full data but it
has lower interactome resilience than H. sapiens when only the high-throughput Y2H data are used. Based on
these results, we conclude that within the limitations imposed by the current protein-protein interaction data the
interactome resilience continues to exist in unbiased high-throughput data (i.e., in 17/20 dataset combinations)
and that the values of interactome resilience correlate strongly between different combinations of data sources.

High-throughput Y2H assays
H. sapiens

Rual et al. (62) Stelzl et al. (72) Venkatesan et al. (64) Rolland et al. (11)

S. cerevisiae

Ito et al. (70) + + + +
Krogan et al. (71) + + + +

Yu et al. (31) + + – +
Sahasranaman et al. (73) – + + +

Porter et al. (74) – + + +
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Table S3: Resilience of species’ interactomes to network failure of essential protein-coding genes. Es-
sential protein-coding genes are indispensable for survival of an organism and are therefore considered a
foundation of life. For example, in S. cerevisiae, these are genes whose mutant organisms are not viable
(“inviability” phenotype is represented by APO:0000112 ontological term in the Yeast Phenotype Ontology,
https://www.yeastgenome.org/ontology/phenotype/ypo), meaning that a mutant organism is not able to grow
under standard growth conditions. This means that visible yeast colonies are not formed from single cells on
plates rich with nutrients under normal atmospheric conditions (79). As another example, essential genes in
bacteria constitute a minimal genome and encode proteins with essential functions, such as phosphate trans-
port, that play key roles in organism survival (80). We obtain information on essential genes for six species. For
each species, we quantify the resilience of species’ interactome with respect to failure of essential genes in that
species (Section S5). We find that interactomes are significantly less resilient to failures of essential genes than
to failures of random genes/proteins (p value < 1 · 10−4; permutation test). This finding is consistent across
species and demonstrates that interactomes have a topological structure that is error-tolerant but extremely
vulnerable to targeted attacks on essential genes. When essential genes are targeted the interactomes become
rapidly fragmented and break into many small isolated components. This decrease in resilience provides evi-
dence for the topological instability of interactomes to targeted attacks on essential genes. See Section S5.4 for
a detailed discussion. ‘Reference’ indicates the source of gene essentiality information; ‘#essential‘ shows the
number essential protein-coding genes; a lower value in ‘Essential’ column indicates a greater vulnerability of
the interactome to attacks on essential genes.

Node removal strategy
Species Reference #essential Random Essential p value

S. cerevisiae Cherry et al. (79), Giaver et al. (81) 1,110 0.471 0.132 < 1 · 10−4
H. sapiens Luo et al. (82), Wang et al. (83), Hart et al. (84) 8,256 0.461 0.102 < 1 · 10−4
M. musculus Luo et al. (82), Dickinson et al. (85) 2,443 0.447 0.156 < 1 · 10−4
D. melanogaster Luo et al. (82) 339 0.424 0.169 < 1 · 10−4
C. elegans Luo et al. (82), Kamath et al. (86) 294 0.421 0.214 < 1 · 10−4
A. thaliana Luo et al. (82), Meinke et al. (87) 356 0.430 0.187 < 1 · 10−4

S44

https://www.yeastgenome.org/ontology/phenotype/ypo


Table S4: Summary of dataset statistics for species and their genomes. Summary of genome statis-
tics for 114 species. Species are ordered by the number of protein-coding genes. Taxon ID refers to taxon
identifiers of species based on the NCBI Taxonomy database (https://www.ncbi.nlm.nih.gov/taxonomy). As-
sembly accession refers to GenBank assembly accession identifiers based on the NCBI Assembly database
(https://www.ncbi.nlm.nih.gov/assembly). Table continued on next page.

Species Taxon ID Assembly accession Status Size (Mb) #genes (↓)

Glycine max 3847 GCA.000004515.3 Chromosome 978.972 46,824
Oryza sativa Indica 39946 GCA.001305255.1 Chromosome 352.121 40,745
Zea mays 4577 GCA.000005005.6 Chromosome 2135.080 39,498
Oryza sativa Japonica 39947 GCA.001433935.1 Chromosome 374.423 35,825
Solanum lycopersicum 4081 GCA.000188115.2 Chromosome 823.786 34,675
Sorghum bicolor 4558 GCA.000003195.3 Chromosome 709.345 34,496
Vitis vinifera 29760 GCA.000003745.2 Chromosome 486.197 29,927
Arabidopsis thaliana 3702 GCA.000001735.1 Chromosome 119.668 27,416
Danio rerio 7955 GCA.000002035.4 Chromosome 1679.200 26,163
Rattus norvegicus 10116 GCA.000001895.4 Chromosome 2870.180 22,941
Mus musculus 10090 GCA.000001635.8 Chromosome 2818.970 22,668
Macaca mulatta 9544 GCA.000772875.3 Chromosome 3236.220 21,905
Sus scrofa 9823 GCA.000003025.6 Chromosome 2501.910 21,630
Oreochromis niloticus 8128 GCA.001858045.2 Chromosome 1009.860 21,437
Callithrix jacchus 9483 GCA.000004665.1 Chromosome 2914.960 20,993
Caenorhabditis elegans 6239 GCA.000002985.3 Complete Genome 100.286 20,517
Homo sapiens 9606 GCA.000001405.26 Chromosome 3253.850 20,457
Equus caballus 9796 GCA.002863925.1 Chromosome 2506.970 20,449
Bos taurus 9913 GCA.000003055.5 Chromosome 2670.140 19,994
Oryzias latipes 8090 GCA.002234675.1 Chromosome 734.057 19,686
Felis catus 9685 GCA.000181335.4 Chromosome 2521.860 19,493
Oryctolagus cuniculus 9986 GCA.000003625.1 Chromosome 2737.460 19,018
Pan troglodytes 9598 GCA.000001515.5 Chromosome 3231.170 18,759
Gallus gallus 9031 GCA.000002315.3 Chromosome 1230.260 16,736
Ciona intestinalis 7719 GCA.000224145.2 Chromosome 115.227 16,658
Tribolium castaneum 7070 GCA.000002335.3 Chromosome 165.944 16,524
Aedes aegypti 7159 GCA.002204515.1 Chromosome 1278.730 15,998
Drosophila melanogaster 7227 GCA.000001215.4 Chromosome 143.726 13,937
Schistosoma mansoni 6183 GCA.000237925.2 Chromosome 364.538 11,770
Apis mellifera 7460 GCA.000002195.1 Chromosome 250.287 10,694
Leishmania braziliensis 420245 GCA.000002845.2 Chromosome 32.069 8,160
Leishmania infantum 435258 GCA.000002875.2 Chromosome 32.122 8,150
Leishmania donovani 5661 GCA.000227135.2 Chromosome 32.445 8,032
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Streptomyces coelicolor 100226 GCA.000203835.1 Complete Genome 9.055 7,768
Streptomyces griseus 455632 GCA.000010605.1 Complete Genome 8.546 7,136
Mycobacterium smegmatis 246196 GCA.000015005.1 Complete Genome 6.988 6,717
Saccharomyces cerevisiae 4932 GCA.001051215.1 Complete Genome 12.086 6,692
Cryptococcus neoformans B 283643 GCA.000149385.1 Chromosome 19.700 6,578
Streptomyces sp. SirexAAE 862751 GCA.000177195.2 Complete Genome 7.414 6,357
Microcystis aeruginosa 449447 GCA.000010625.1 Complete Genome 5.843 6,312
Agrobacterium radiobacter 311403 GCA.000016265.1 Complete Genome 7.273 6,107
Corynebacterium glutamicum 196627 GCA.000011325.1 Complete Genome 3.309 6,050
Vibrio harveyi 338187 GCA.000017705.1 Complete Genome 6.058 5,921
Lactobacillus rhamnosus 568703 GCA.000026505.1 Complete Genome 3.010 5,747
Burkholderia pseudomallei 272560 GCA.000011545.1 Complete Genome 7.248 5,728
Pseudomonas aeruginosa 208964 GCA.000006765.1 Complete Genome 6.264 5,571
Mycobacterium gilvum 350054 GCA.000016365.1 Complete Genome 5.983 5,241
Schizosaccharomyces pombe 4896 GCA.000002945.2 Chromosome 12.591 5,144
Bacillus megaterium 545693 GCA.000025825.1 Complete Genome 5.523 5,116
Pseudomonas syringae syringae 205918 GCA.000012245.1 Complete Genome 6.094 5,089
Plasmodium vivax 5855 GCA.000002415.2 Chromosome 27.014 5,050
Enterobacter aerogenes 1028307 GCA.000215745.1 Complete Genome 5.280 4,912
Plasmodium berghei 5821 GCA.900044335.1 Chromosome 18.811 4,881
Vibrio parahaemolyticus 223926 GCA.000196095.1 Complete Genome 5.166 4,832
Klebsiella pneumoniae 272620 GCA.000016305.1 Complete Genome 5.695 4,776
Shigella flexneri 198214 GCA.000006925.2 Complete Genome 4.829 4,439
Mycobacterium avium 262316 GCA.000007865.1 Complete Genome 4.830 4,350
Bacillus subtilis 168 224308 GCA.000009045.1 Complete Genome 4.216 4,280
Aeromonas hydrophila 380703 GCA.000014805.1 Complete Genome 4.744 4,121
Stenotrophomonas maltophilia R5513 391008 GCA.000020665.1 Complete Genome 4.574 4,039
Mycobacterium tuberculosis H37Rv 83332 GCA.000195955.2 Complete Genome 4.412 4,003
Yersinia enterocolitica 393305 GCA.000009345.1 Complete Genome 4.684 3,978
Cryptosporidium parvum 353152 GCA.000165345.1 Chromosome 9.102 3,805
Rhodospirillum rubrum 269796 GCA.000013085.1 Complete Genome 4.407 3,788
Vibrio fischeri 312309 GCA.000011805.1 Complete Genome 4.274 3,760
Vibrio anguillarum 882102 GCA.000217675.1 Complete Genome 4.052 3,732
Clostridium difficile 272563 GCA.000009205.1 Complete Genome 4.298 3,728
Enterobacter cloacae NCTC9394 718254 GCA.000210775.1 Chromosome 4.909 3,725
Proteus mirabilis 529507 GCA.000069965.1 Complete Genome 4.100 3,607
Rhodobacter capsulatus 272942 GCA.000021865.1 Complete Genome 3.872 3,493
Bordetella pertussis 257313 GCA.000195715.1 Complete Genome 4.086 3,436
Sinorhizobium meliloti 266834 GCA.000006965.1 Complete Genome 6.692 3,359
Enterococcus faecalis 226185 GCA.000007785.1 Complete Genome 3.360 3,112
Rhodobacter sphaeroides ATCC17025 349102 GCA.000016405.1 Complete Genome 4.557 3,111
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Brucella melitensis 224914 GCA.000007125.1 Complete Genome 3.295 3,083
Lactobacillus casei 543734 GCA.000026485.1 Complete Genome 3.079 3,015
Lactobacillus plantarum 220668 GCA.000203855.3 Complete Genome 3.349 3,007
Brucella abortus 430066 GCA.000018725.1 Complete Genome 3.284 3,000
Listeria innocua 272626 GCA.000195795.1 Complete Genome 3.093 2,968
Synechococcus sp. JA23Ba213 321332 GCA.000013225.1 Complete Genome 3.047 2,862
Thiobacillus denitrificans 292415 GCA.000012745.1 Complete Genome 2.910 2,827
Sulfolobus tokodaii 273063 GCA.000011205.1 Complete Genome 2.695 2,826
Sulfolobus islandicus 930945 GCA.000189555.1 Complete Genome 2.523 2,644
Flavobacteriaceae bacterium 351910 531844 GCA.000023725.1 Complete Genome 2.768 2,534
Aggregatibacter actinomycetemcomitans 694569 GCA.000163615.3 Complete Genome 2.309 2,432
Corynebacterium diphtheriae 698964 GCA.000255275.1 Complete Genome 2.531 2,322
Lactococcus lactis lactis 272623 GCA.000006865.1 Complete Genome 2.366 2,321
Streptococcus suis 391295 GCA.000014305.1 Complete Genome 2.096 2,186
Streptococcus agalactiae 211110 GCA.000196055.1 Complete Genome 2.211 2,094
Fusobacterium nucleatum nucleatum 190304 GCA.000007325.1 Complete Genome 2.175 2,063
Neisseria meningitidis 122586 GCA.000008805.1 Complete Genome 2.272 2,063
Pasteurella multocida 272843 GCA.000006825.1 Complete Genome 2.257 2,012
Francisella sp. TX077308 573569 GCA.000219045.1 Complete Genome 2.036 1,976
Chlamydophila psittaci 331636 GCA.000204255.1 Complete Genome 1.179 1,970
Streptococcus mutans 210007 GCA.000007465.2 Complete Genome 2.033 1,960
Thermotoga maritima 243274 GCA.000008545.1 Complete Genome 1.861 1,858
Coxiella burnetii 227377 GCA.000007765.2 Complete Genome 2.033 1,817
Streptococcus pyogenes 160490 GCA.000006785.2 Complete Genome 1.852 1,696
Borrelia afzelii 390236 GCA.000222835.1 Complete Genome 1.404 1,675
Haemophilus influenzae 71421 GCA.000027305.1 Complete Genome 1.830 1,657
Mycobacterium leprae 272631 GCA.000195855.1 Complete Genome 3.268 1,605
Francisella tularensis tularensis 177416 GCA.000008985.1 Complete Genome 1.893 1,604
Helicobacter pylori SouthAfrica7 907239 GCA.000185245.1 Complete Genome 1.680 1,543
Bartonella henselae 283166 GCA.000046705.1 Complete Genome 1.931 1,488
Anaplasma phagocytophilum 212042 GCA.000013125.1 Complete Genome 1.471 1,264
Orientia tsutsugamushi 357244 GCA.000063545.1 Complete Genome 2.127 1,182
Treponema pallidum 243276 GCA.000410535.2 Chromosome 1.140 1,036
Anaplasma marginale StMaries 234826 GCA.000011945.1 Complete Genome 1.198 948
Chlamydia trachomatis 272561 GCA.000008725.1 Complete Genome 1.043 895
Borrelia garinii 290434 GCA.000196215.1 Complete Genome 0.987 829
Borrelia burgdorferi 224326 GCA.000008685.2 Complete Genome 1.521 753
Mycoplasma putrefaciens 743965 GCA.000224105.1 Complete Genome 0.833 650
Mycoplasma pneumoniae 722438 GCA.000143945.1 Complete Genome 0.811 629
Ureaplasma parvum 273119 GCA.000006625.1 Complete Genome 0.752 614
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Table S5: Summary of interactome resilience and dataset statistics for species and interactomes.
Summary of dataset statistics for the 171 species with more than 1000 publications in the NCBI Pubmed
(Figure S7; Section S1). Species are ordered by the interactome resilience (Section S5). Domain and
group refer to taxonomic information of species (Section S2) based on the NCBI Taxonomy database
(https://www.ncbi.nlm.nih.gov/taxonomy) and Hug et al. (13). Table continued on next page.

Species Domain Group Pub. count #nodes #edges Resilience (↓)

Saccharomyces cerevisiae Eukaryota Opisthokonta 96,928 6,011 207,622 0.471
Homo sapiens Eukaryota Opisthokonta 16,887,538 16,439 440,135 0.461
Glycine max Eukaryota Viridiplantae 19,004 5,785 89,538 0.457
Oryza sativa Japonica Eukaryota Viridiplantae 1,639 1,787 54,247 0.453
Bos taurus Eukaryota Opisthokonta 328,217 8,615 276,128 0.453
Sus scrofa Eukaryota Opisthokonta 17,660 8,201 143,516 0.450
Callithrix jacchus Eukaryota Opisthokonta 3,486 327 946 0.448
Rattus norvegicus Eukaryota Opisthokonta 1,536,193 9,439 261,737 0.447
Mus musculus Eukaryota Opisthokonta 1,399,668 12,498 354,458 0.447
Oryctolagus cuniculus Eukaryota Opisthokonta 331,624 292 844 0.447
Magnaporthe grisea Eukaryota Opisthokonta 1,192 26 68 0.446
Oreochromis niloticus Eukaryota Opisthokonta 4,060 32 55 0.444
Aspergillus terreus Eukaryota Opisthokonta 1,396 45 138 0.444
Danio rerio Eukaryota Opisthokonta 23,531 7,377 145,449 0.443
Cavia porcellus Eukaryota Opisthokonta 138,133 165 268 0.441
Oryza sativa Indica Eukaryota Viridiplantae 1,597 105 224 0.441
Solanum lycopersicum Eukaryota Viridiplantae 10,259 3,601 32,470 0.440
Mustela putorius Eukaryota Opisthokonta 5,403 173 254 0.439
Oryzias latipes Eukaryota Opisthokonta 2,281 4,134 35,414 0.439
Physcomitrella patens Eukaryota Viridiplantae 1,050 3,190 31,790 0.438
Gallus gallus Eukaryota Opisthokonta 112,314 5,208 70,943 0.437
Sorghum bicolor Eukaryota Viridiplantae 1,775 3,503 26,577 0.435
Felis catus Eukaryota Opisthokonta 131,626 5,285 44,325 0.434
Ailuropoda melanoleuca Eukaryota Opisthokonta 2,111 5,034 41,328 0.433
Giardia lamblia Eukaryota Fornicata 2,474 238 453 0.433
Schizosaccharomyces pombe Eukaryota Opisthokonta 9,409 4,125 47,984 0.431
Arabidopsis thaliana Eukaryota Viridiplantae 45,738 11,256 167,771 0.430
Equus caballus Eukaryota Opisthokonta 64,851 5,395 45,074 0.430
Solanum tuberosum Eukaryota Viridiplantae 7,683 3,239 27,478 0.429
Vitis vinifera Eukaryota Viridiplantae 6,986 3,418 28,243 0.427
Hordeum vulgare Eukaryota Viridiplantae 8,527 50 152 0.424
Ixodes scapularis Eukaryota Opisthokonta 3,801 2,052 12,610 0.424
Drosophila melanogaster Eukaryota Opisthokonta 41,416 10,132 116,906 0.424
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Gorilla gorilla Eukaryota Opisthokonta 1,803 5,309 41,774 0.423
Trypanosoma cruzi Eukaryota Euglenozoa 10,781 1,267 5,258 0.422
Pan troglodytes Eukaryota Opisthokonta 8,981 5,166 39,642 0.422
Caenorhabditis elegans Eukaryota Opisthokonta 19,285 8,091 82,152 0.421
Dictyostelium discoideum Eukaryota Amoebozoa 7,004 2,065 24,430 0.420
Macaca mulatta Eukaryota Opisthokonta 38,314 5,003 37,070 0.419
Zea mays Eukaryota Viridiplantae 27,146 2,849 18,046 0.419
Aspergillus flavus Eukaryota Opisthokonta 2,348 1,668 9,044 0.416
Agrobacterium radiobacter Bacteria Proteobacteria 3,188 1,682 10,840 0.414
Streptomyces griseus Bacteria Terrabacteria group 1,208 1,432 9,882 0.413
Aspergillus fumigatus Eukaryota Opisthokonta 6,769 1,537 8,028 0.413
Tetrahymena thermophila Eukaryota Alveolata 1,147 1,093 5,323 0.411
Streptomyces coelicolor Bacteria Terrabacteria group 1,119 1,423 8,372 0.411
Coccidioides immitis Eukaryota Opisthokonta 1,290 1,193 4,438 0.410
Mycobacterium gilvum Bacteria Terrabacteria group 10,015 1,217 9,400 0.410
Bacillus subtilis 168 Bacteria Terrabacteria group 1,263 1,494 5,896 0.410
Trichinella spiralis Eukaryota Opisthokonta 1,452 1,453 5,511 0.410
Bacillus megaterium Bacteria Terrabacteria group 2,780 1,300 6,355 0.408
Leishmania major Eukaryota Euglenozoa 2,736 729 2,537 0.407
Aspergillus niger Eukaryota Opisthokonta 5,103 1,279 5,391 0.407
Burkholderia pseudomallei Bacteria Proteobacteria 1,865 1,583 8,485 0.406
Leishmania donovani Eukaryota Euglenozoa 4,165 655 2,031 0.406
Leishmania braziliensis Eukaryota Euglenozoa 18,380 735 2,490 0.405
Aspergillus oryzae Eukaryota Opisthokonta 1,669 1,400 6,125 0.405
Sinorhizobium meliloti Bacteria Proteobacteria 1,586 956 4,182 0.405
Enterobacter aerogenes Bacteria Proteobacteria 1,008 1,529 7,351 0.403
Leishmania infantum Eukaryota Euglenozoa 2,501 725 2,347 0.401
Cryptococcus neoformans B Eukaryota Opisthokonta 1,773 1,134 3,986 0.401
Bordetella pertussis Bacteria Proteobacteria 4,971 1,004 5,716 0.401
Plasmodium berghei Eukaryota Alveolata 4,767 428 1,056 0.400
Borrelia garinii Bacteria Spirochaetes 6,808 186 408 0.399
Pseudomonas aeruginosa Bacteria Proteobacteria 38,172 1,529 8,273 0.399
Plasmodium vivax Eukaryota Alveolata 4,715 462 1,212 0.398
Streptomyces sp. SirexAAE Bacteria Terrabacteria group 3,637 1,397 7,732 0.396
Rhodobacter capsulatus Bacteria Proteobacteria 1,060 1,026 4,844 0.394
Stenotrophomonas maltophilia R5513 Bacteria Proteobacteria 2,227 719 3,076 0.393
Trypanosoma brucei Eukaryota Euglenozoa 6,817 708 3,494 0.393
Vibrio parahaemolyticus Bacteria Proteobacteria 2,225 1,260 5,923 0.392
Pseudomonas syringae syringae Bacteria Proteobacteria 2,002 1,316 6,157 0.392
Penicillium chrysogenum Eukaryota Opisthokonta 1,231 1,597 7,358 0.392
Schistosoma mansoni Eukaryota Opisthokonta 9,526 958 3,520 0.391
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Pediculus humanus Eukaryota Opisthokonta 1,050 1,710 7,539 0.391
Aeromonas hydrophila Bacteria Proteobacteria 1,653 1,220 5,962 0.390
Plasmodium yoelii Eukaryota Alveolata 1,348 404 1,106 0.390
Treponema pallidum Bacteria Spirochaetes 3,696 664 1,625 0.389
Salmonella enterica RSK2980 Bacteria Proteobacteria 45,567 1,226 5,006 0.388
Chlamydomonas reinhardtii Eukaryota Viridiplantae 3,429 1,449 8,207 0.388
Aedes aegypti Eukaryota Opisthokonta 8,483 1,994 8,913 0.387
Sulfolobus islandicus Archaea TACK group 2,145 546 2,788 0.385
Vibrio fischeri Bacteria Proteobacteria 1,097 1,074 4,514 0.385
Bombyx mori Eukaryota Opisthokonta 6,582 1,732 8,521 0.384
Tribolium castaneum Eukaryota Opisthokonta 1,343 1,734 8,073 0.384
Lactobacillus casei Bacteria Terrabacteria group 4,753 758 3,162 0.384
Plasmodium falciparum Eukaryota Alveolata 26,907 1,688 4,634 0.383
Rhodospirillum rubrum Bacteria Proteobacteria 1,365 1,092 5,502 0.382
Corynebacterium diphtheriae Bacteria Terrabacteria group 2,405 617 2,112 0.382
Enterococcus faecalis Bacteria Terrabacteria group 9,751 745 2,587 0.380
Neurospora crassa Eukaryota Opisthokonta 5,302 1,364 5,028 0.380
Rhodobacter sphaeroides ATCC17025 Bacteria Proteobacteria 3,925 980 3,730 0.379
Thalassiobium sp. R2A62 Bacteria Proteobacteria 205,044 517 821 0.378
Culex quinquefasciatus Eukaryota Opisthokonta 2,815 1,846 8,800 0.376
Anopheles gambiae Eukaryota Opisthokonta 12,397 1,808 7,214 0.376
Aggregatibacter actinomycetemcomitans Bacteria Proteobacteria 2,593 703 2,173 0.375
Vibrio anguillarum Bacteria Proteobacteria 1,204 1,049 4,945 0.375
Streptococcus suis Bacteria Terrabacteria group 1,047 561 1,713 0.375
Shigella flexneri Bacteria Proteobacteria 3,516 1,230 5,039 0.374
Proteus mirabilis Bacteria Proteobacteria 3,330 934 3,709 0.373
Kluyveromyces lactis Eukaryota Opisthokonta 1,451 1,437 5,636 0.371
Pasteurella multocida Bacteria Proteobacteria 1,806 706 2,380 0.370
Ciona intestinalis Eukaryota Opisthokonta 1,113 1,372 5,432 0.370
Francisella sp. TX077308 Bacteria Proteobacteria 3,489 552 1,781 0.370
Apis mellifera Eukaryota Opisthokonta 4,156 1,561 6,583 0.369
Cryptosporidium parvum Eukaryota Alveolata 2,545 287 653 0.368
Lactobacillus plantarum Bacteria Terrabacteria group 1,889 774 2,885 0.368
Flavobacteriaceae bacterium 351910 Bacteria FCB group 4,471 491 1,624 0.366
Borrelia afzelii Bacteria Spirochaetes 6,808 83 70 0.364
Mycobacterium leprae Bacteria Terrabacteria group 5,447 479 1,464 0.358
Lactococcus lactis lactis Bacteria Terrabacteria group 5,716 542 1,684 0.358
Klebsiella pneumoniae Bacteria Proteobacteria 12,105 773 1,707 0.357
Anaplasma phagocytophilum Bacteria Proteobacteria 1,005 279 642 0.356
Candida glabrata Eukaryota Opisthokonta 1,309 1,423 5,421 0.356
Neisseria meningitidis Bacteria Proteobacteria 8,868 565 1,614 0.355
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Streptococcus mutans Bacteria Terrabacteria group 8,264 521 1,589 0.354
Streptococcus sp. 73H25AP Bacteria Terrabacteria group 99,893 257 326 0.354
Aerococcus viridans Bacteria Terrabacteria group 77,845 399 587 0.353
Gasterosteus aculeatus Eukaryota Opisthokonta 1,040 45 57 0.353
Thiobacillus denitrificans Bacteria Proteobacteria 1,082 775 2,553 0.352
Coxiella burnetii Bacteria Proteobacteria 2,111 458 1,291 0.351
Clostridiales bacterium Bacteria Terrabacteria group 32,957 385 1,019 0.350
Toxoplasma gondii Eukaryota Alveolata 12,356 596 1,739 0.349
Lactobacillus rhamnosus Bacteria Terrabacteria group 1,041 969 2,911 0.349
Synechococcus sp. JA23Ba213 Bacteria Terrabacteria group 1,292 686 2,034 0.347
Mycoplasma pneumoniae Bacteria Terrabacteria group 2,805 131 275 0.347
Mycobacterium smegmatis Bacteria Terrabacteria group 2,031 1,111 9,148 0.347
Brucella melitensis Bacteria Proteobacteria 1,287 684 1,465 0.346
Entamoeba histolytica Eukaryota Amoebozoa 5,656 641 1,402 0.344
Borrelia burgdorferi Bacteria Spirochaetes 3,168 186 361 0.344
Acinetobacter baumannii Bacteria Proteobacteria 3,979 576 976 0.344
Ureaplasma parvum Bacteria Terrabacteria group 2,244 113 275 0.343
Streptococcus pyogenes Bacteria Terrabacteria group 12,708 468 1,285 0.343
Helicobacter pylori SouthAfrica7 Bacteria Proteobacteria 40,918 419 1,010 0.334
Fusobacterium nucleatum nucleatum Bacteria Fusobacteria 2,567 537 1,395 0.331
Anaplasma marginale StMaries Bacteria Proteobacteria 1,155 299 669 0.328
Listeria innocua Bacteria Terrabacteria group 1,164 659 1,824 0.318
Chlamydia trachomatis Bacteria PVC group 11,229 224 443 0.317
Mycoplasma putrefaciens Bacteria Terrabacteria group 15,477 149 366 0.315
Orientia tsutsugamushi Bacteria Proteobacteria 1,055 183 370 0.311
Brucella abortus Bacteria Proteobacteria 4,826 444 1,001 0.310
Streptococcus agalactiae Bacteria Terrabacteria group 7,335 268 353 0.308
Bacillus sp. 2A57CT2 Bacteria Terrabacteria group 5,189 427 832 0.307
Staphylococcus epidermidis M23864W1 Bacteria Terrabacteria group 12,643 460 696 0.307
Enterobacter cloacae NCTC9394 Bacteria Proteobacteria 4,436 476 668 0.306
Streptococcus sanguinis ATCC49296 Bacteria Terrabacteria group 2,991 342 559 0.306
Streptomyces sp. C Bacteria Terrabacteria group 1,027 680 1,348 0.305
Streptococcus sp. F0418 Bacteria Terrabacteria group 99,893 192 203 0.303
Chlamydophila psittaci Bacteria PVC group 1,816 339 569 0.302
Propionibacterium acnes HL037PA2 Bacteria Terrabacteria group 4,710 389 524 0.301
Vibrio harveyi Bacteria Proteobacteria 1,458 642 1,296 0.301
Yersinia enterocolitica Bacteria Proteobacteria 3,646 718 1,213 0.297
Clostridium difficile Bacteria Terrabacteria group 7,728 475 739 0.295
Microcystis aeruginosa Bacteria Terrabacteria group 1,451 418 799 0.294
Streptococcus mitis ATCC6249 Bacteria Terrabacteria group 1,684 329 504 0.292
Paenibacillus sp. HGF7 Bacteria Terrabacteria group 1,986 468 807 0.292
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Mycobacterium avium Bacteria Terrabacteria group 4,755 369 893 0.290
Mycobacterium tuberculosis H37Rv Bacteria Terrabacteria group 45,016 511 932 0.284
Thermotoga maritima Bacteria Thermotogae 1,108 288 316 0.283
Francisella tularensis tularensis Bacteria Proteobacteria 3,151 261 368 0.280
Sulfolobus tokodaii Archaea TACK group 2,145 257 388 0.279
Acinetobacter sp. ATCC27244 Bacteria Proteobacteria 1,351 393 731 0.274
Streptococcus mitis F0392 Bacteria Terrabacteria group 1,684 259 292 0.272
Enterobacteriaceae bacterium Bacteria Proteobacteria 374,291 662 1,121 0.271
Haemophilus influenzae Bacteria Proteobacteria 13,238 356 660 0.267
Anaerococcus tetradius Bacteria Terrabacteria group 1,334 244 267 0.264
Streptococcus mitis SK321 Bacteria Terrabacteria group 1,684 215 215 0.260
Corynebacterium glutamicum Bacteria Terrabacteria group 1,299 519 615 0.258
Clostridium sp. 7243FAA Bacteria Terrabacteria group 1,247 182 176 0.255
Bartonella henselae Bacteria Proteobacteria 1,231 208 318 0.245
Moraxella catarrhalis Bacteria Proteobacteria 1,868 286 316 0.222
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