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Abstract—In networks, contagions such as information, pur-
chasing behaviors, and diseases, spread and diffuse from node
to node over the edges of the network. Moreover, in real-world
scenarios multiple contagions spread through the network
simultaneously. These contagions not only propagate at the
same time but they also interact and compete with each other
as they spread over the network.

While traditional empirical studies and models of diffusion
consider individual contagions as independent and thus spread-
ing in isolation, we study how different contagions interact
with each other as they spread through the network. We
develop a statistical model that allows for competition as well
as cooperation of different contagions in information diffusion.
Competing contagions decrease each other’s probability of
spreading, while cooperating contagions help each other in
being adopted throughout the network.

We evaluate our model on 18,000 contagions simultaneously
spreading through the Twitter network. Our model learns how
different contagions interact with each other and then uses
these interactions to more accurately predict the diffusion of
a contagion through the network. Moreover, the model also
provides a compelling hypothesis for the principles that govern
content interaction in information diffusion. Most importantly,
we find very strong effects of interactions between contagions.
Interactions cause a relative change in the spreading probabil-
ity of a contagion by 71% on the average.

I. INTRODUCTION

As we progress further into the information age, we are
constantly bombarded with information on an unparalleled
scale. Due to this abundance of information, we cannot
interact with or consume all the information to which we
are exposed. Rather, as we read newspapers, watch TV, or
browse news websites we are constantly making choices
about which pieces of media content to consume and adopt,
and which pieces to ignore. This is especially the case in
social media where the users are exposed to long streams
of posts from their friends and followers. Commonly, users
sequentially examine their stream of posts (i.e., the news
feed) and for each post decide whether to interact with it or
maybe even share the posts with their network friends. The
process of a user examining the input stream of posts and
sharing/forwarding some of them along the edges of their
network results in information cascades as content travels
from user to user across connections in these networks [20].

Much work has been done to understand how consumers
of media react and interact with different types of content.
This process has been studied both empirically [21], [28],

[29] as well as through mathematical models and simula-
tions [8], [22], [24]. However, most works studying this phe-
nomenon focus on a single piece of information, described
as a contagion, as it propagates like an epidemic along edges
of the network. While these models have been effective, they
do not capture the effects of multiple contagions cascading
through the network at the same time.

In the real-world there are multiple pieces of information
spreading through the network simultaneously. Moreover,
these pieces of information do not spread in isolation, in-
dependent of all other information currently diffusing in the
network. For example, consider two different news stories on
the same event that diffuse through the network at the same
time. One would imagine that two such contagions would
help each other diffusing in a sense that many users would
see both stories. This would make them think the news is
very important and thus they would be more likely to adopt
and share it. In this case two contagions cooperate as they
mutually help each other in spreading through the network.

On the other hand, imagine two very different but both
very interesting stories. For example, the same company
releasing a new exciting product, while also laying off a
number of its employees. Even though both stories are very
interesting by themselves, they would likely compete with
each other for attention — some people would notice the
release of a new product and completely overlook the lay-
offs, while others would discuss the layoffs while practically
ignoring the exciting new product the company developed.
Thus, even though many people would be exposed to both
stories, they would likely only chose to adopt and share one
of them. This is an example of competition, where one story
suppresses the other.

Given these examples, there is a clear opportunity to
extend the present understanding of information diffusion
in networks by jointly studying multiple contagions as they
simultaneously spread through the network. Thus, rather
than considering each contagion in isolation from all the
others, modeling the interactions between contagions could
lead to more predictive diffusion models and better influence
maximization strategies [13], [16].

Cooperation and competition in information diffusion.
We study how different pieces of content interact with each
other. Through empirical analysis of real-world social media



and the use of statistical modeling, we quantify relationships
between pieces of content as they simultaneously cascade,
or diffuse, across an actual large scale social network. The
model we develop provides fundamental insight into the way
one component of information can have a significant effect
on the way users perceive another component as they both
diffuse across the same social network.

We develop a statistical model that learns how different
contagions interact with each other and then use these
interactions to more accurately predict the diffusion of a
contagion through the network. We consider a setting where
a user examines pieces of content sequentially. A user
examines a piece of content and then decides whether to
interact with the content (e.g., share it with her neighbors in
the social network). The user then proceeds and examines
the next piece of content and makes the same decision again.
Under this setting our goal is to model the probability that
the user will adopt/share a particular piece of content X .
Generally, there are three types of signal that determine this
probability. First is the inherent interestingness of content
X (i.e., content virality), second is the inherent likelihood
of the user to share any kind of content X (i.e., user bias),
and third is the content interaction term that updates the
probability of sharing X based on what other content the
user has been exposed to in the past.

Our model considers all three signals. While the content
virality and the user bias can simply be modeled as per
user and per content parameters, modeling the interaction
term is more challenging. Not only is there potentially
significant interactions amongst any two contagions, but one
might expect that these interactions could change the farther
apart in time a user is exposed to either contagion. So the
influence another contagion may have on a user’s perception
may change considerably with each new contagion to which
she is exposed [26]. Because of this, our model considers
an entire sequence of contagions the user was exposed
to leading up to the current contagion X of interest. To
model the interactions between all contagions and how
these interactions change with the timing of the contagions
presents a major scalability challenge. For example, let K
be the number of contagions back we go into a user’s
exposure history. Thus, we need to model the probability
of infection for each contagion in our dataset, conditioned
on every possible sequence of contagions to which the
user could be exposed. In our experiments, we consider
W = 18, 000 different contagions, which means that there
are WK (≈ 1021 for K = 5) possible exposure sequences.

We address this challenge and propose a model where we
assume contagions probabilistically belong to multiple clus-
ters, and then we only need to estimate the cluster-to-cluster
interactions (quadratic in the number of clusters) rather than
the full contagion-to-contagion interaction matrix. Rather
than considering all possible exposure sequences, we con-
sider them as conditionally independent, which significantly

reduces the number of parameters. This leads to a highly
scalable model. We estimate its parameters through the
use of a stochastic gradient descent-based parameter fitting
method, and fit our model to large collections of contagions.

The applications of our model are quite compelling. Today
many social media sites consider inserting advertisements
in user’s social streams (e.g., “promoted” and “trending”
tweets and Facebook posts). Our model provides means to
optimize click-through rates by placing promoted content
in such positions that the preceding content enhances the
click-through probability. Similarly, many times one would
want to combat the spread of a particular negative piece
of information. Here our model suggests ways to create
a second contagion that suppresses the first. Experiments
show that the content interactions are very significant – the
adoption probability can be manipulated by up to 70% by
controlling the context in which the content appears.

Overview of results. We frame our work in the context of
Twitter. When a user logs on to Twitter, she sees the stream
of “tweets” posted by the other users she follows, and from
time to time she decides to interact with them by sharing a
tweet with her followers by “re-tweeting” it. In our particular
context, we examine how the re-tweet probability changes
based on what other tweets the user has just seen.

We focus on tweets that contain URLs (whether it be
a link to an online news article or to an amusing YouTube
video), and so in this manor a user can share a link with all of
their followers. If their followers enjoy the link then they can
in turn share it with all of their followers by re-tweeting it.
Through this mechanism, a single link (URL) can potentially
spread across many users in the Twitter network. Here, we
study these cascading URLs, treating each one as a different
contagion. Our goal is to model how a user being exposed
to one URL can either increase or decrease her probability
of interacting with another URL.

We treat a URL posted in a tweet as a single contagion, we
consider the Twitter users who posts these URLs as nodes,
and we view the follower relationships as a network. When
a user chooses to tweet a URL, we say she has become
infected by the URL. In turn, all of the users who follow
her and see the URL become exposed to the URL. With each
exposure from their neighbors, users decide whether or not
to tweet (to be become infected by) the URL.

We validate our model on the complete set of tweets from
January of 2011, which amounts to more than 3 billion
posts. From these tweets, we extracted and crawled highly
tweeted 18,186 URLs that contain rich English text-based
content. We fit our model to the interactions between these
contagions, and we test how accurately it assigns probability
of infection to each exposure event. In summary, our model
marks an improvement in performance by 680% over the
Independent Cascade model [9], [13] baseline and 400%
over the Exposure Curve baseline [21].



Our model also provides a compelling hypothesis for
the principles that govern content interaction in information
diffusion. We find evidence that more infectious URLs have
an adversely negative (suppressive) effect on less infectious
URLs that are of unrelated content or subject matter, while
at the same time they can dramatically increase the infection
probability of URLs that are less infectious but are highly
related in subject matter. Moreover, the interactions represent
a very significant effect. Interactions with other cascading
links can cause a relative increase or decrease in user
adoption probability of a link on average by 71%!

II. RELATED WORK

The sharing of content diffusing through social networks
has been extensively studied in recent years [1], [15], [21],
[27]. Several well studied models have been developed [6],
[7], [24]. However, widely adopted models of information
diffusion, like the Linear Threshold Model [8], [22], the
Independent Cascade Model [9], [13], as well as research
based on the concept of exposure curves [17], [21] all
consider each contagion in isolation, independent of others.

The diffusion of several contagions has been the focus
of several recent works [10], [12], [18], [19], [23]. In
each of these works, however, it is assumed that being
infected with one contagion is mutually exclusive to be
infected by another. The common scenario discussed by
these works is that there are two behaviors or technologies
spreading through the network, and the user will ultimately
choose to adopt only one of them. Such a system could
be, for example, a set of users choosing between Skype
and Microsoft Messenger. Often, a user gains some utility
in choosing the same technology as her neighbors in the
network [11]. The mutual exclusivity condition causes a
competition between the contagions, which warrants a game
theoretic approach for the analysis, and this line of study
has applications in maximizing the spread of one contagion
over another [3], [5] as well as limiting the spread of a
competing contagion [4], [14]. The main difference to our
research here is that our model does not assume contagions
to be mutually exclusive. Moreover, rather than considering
a game theoretic analysis with no real data, we empirically
study the interactions between a large number of contagions.

Recently in [2], the mutually exclusive competition as-
sumption between contagions is relaxed. Authors consider
two viruses propagating through the network simultaneously
where being infected by one virus gives a node partial
immunity and only decreases (as opposed to eliminates)
the chances of being infected by the other virus. Although
mathematically clean, the model [2] is not meant to capture
the rich dynamics that occur when many different contagions
are spreading simultaneously, as is the case with most real-
world information diffusion systems [15], [17], [27]. In our
work we directly model the interactions between actual
real-world contagions and gain insight into the nature of

the interactions themselves. We consider a large number
of contagions and model the probability of adoption as a
function of contagions a person has been exposed in the
past. We estimate the interactions between tens of thousands
of different contagions to learn what contagions help each
other and which compete for attention.

The work most closely related to our own is [25], where
authors examine the dynamics of many contagions diffusing
across the Twitter network. They develop a simple agent-
based user model in which each user has a limited capacity
for contagions (i.e., Twitter hashtags) and so they must
choose only a few to tweet about over any given period of
time. Authors show that the simulated data that this model
generates matches the real data on several global statistics.
This model, however, does not quantify the interactions
between specific contagions — competition occurs implicitly
as a result of finite user capacity. Additionally, as is the case
in [2] the possibility of positive interaction, or cooperation,
between contagions is never considered. Our model does
all of this handedly, and we use our model to predict the
propagation of each specific contagion as opposed to trying
to match global aggregate statistics to the real data.

III. THE MODEL

In order to study the interactions between pieces of
content as they propagate from user to user across the
network, we develop a mixing model that determines the
probability of a user adopting a piece of content based on
what other content the user was previously exposed to. This
model will quantify how much exposing a user to one piece
of content can increase or decrease their receptiveness to
another piece of content. Not only this, but the model will
capture how these interactions change with time and with
the user’s exposure to additional pieces of content.
Probability of infection. We describe the act of a user
tweeting a URL (contagion) after she has been exposed to it
as an infection. When a user’s neighbor tweets a contagion,
the contagion then shows up in the user’s news feed, and
we refer to this as an exposure. The goal of this model is
to estimate the probability of a user being infected by one
contagion, given the sequence of contagions to which the
user was previously exposed. We imagine that as a user reads
through the contagions that her neighbor has tweeted, there
is a sliding window going back K contagions that she keeps
in mind. By considering this sequence of previous exposures,
our model will not only be able capture the interaction
between two contagions when a user sees one right after the
other, but it will also quantify how this interaction changes
as the user sees other intermittent contagions. See Fig. 1 for
a visual representation of this sliding window process.

More formally, let the variable Yk be the kth most recent
contagion to which the user was exposed, and let X be
the contagion in which the user is currently examining
(Fig. 1). Our model will assign a probability of the user
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Figure 1. A visual representation of our model for K = 2. Here, a
particular user has been exposed to the sequence of contagions. She is
currently examining contagion u0, but our model is assuming that she is
still be affected by u1 and u2 that she previously saw. Our goal is to model
the probability of the user adopting u0 as a function of which contagions
she was exposed to in the past.

being infected by X upon being exposed to it, given her
exposure history Y1, Y2, .., Yk. In other words, we model

P (infection by X = u0 | exposed to the sequence
X = u0, Y1 = u1, Y2 = u2, ... YK = uK)

for any combination of contagions u0, u1, ...,uK . For
the sake of brevity, we represent this probability as
P (X|Y1, ..., YK) or

P
(
X| {Yk}Kk=1

)
(1)

(i.e. exposure to X is always assumed).
Let W be the number of contagions that we are studying,

so there are WK different contagion combinations for which
we need to calculate Eqn. (1). In our dataset, we have over
W = 18, 000 real-world contagions, so for a fixed K, this
is obviously infeasible. We make the assumption that Yk
is independent of Yl i.e. the contagion k exposures ago is
independent of the contagion l exposures ago, for any k, l.
This assumption allows us to re-express Eq. 1:

P
(
X| {Yk}Kk=1

)
=
P (X) · P

(
{Yk}Kk=1 |X

)
P
(
{Yk}Kk=1

)
=
P (X) ·

∏K
k=1 P (Yk|X)∏K

k=1 P (Yk)

=
P (X) ·

∏K
k=1

P (X|Yk)·P (Yk)
P (X)∏K

k=1 P (Yk)

=
1

P (X)K−1

K∏
k=1

P (X|Yk).

It should be noted here that

P (Yk) ≡ P (kth most recent exposure was Yk)

whereas

P (X) ≡ P (infection by X given just exposed to X).

We refer to P (X) as the prior infection probability, and it
can easily be computed empirically by counting the number

times a user was infected by X after being exposed to it
and dividing by the number of times a user was exposed to
X . Therefore, we only need to model P (X|Yk) for each
k = 1, ...,K. This reduces the contagion combinations
down to W × W × K, which is significantly less than
before but still prohibitively large. The final step we make
is that instead of modeling interactions between all pairs
of contagions, we model the interactions between clusters
(i.e., latent topics) of contagions. Specifically, we assume
there exits a small number of latent clusters in which each
contagion is a member with varying degree. Our approach
is to parameterize each contagion’s membership to these
clusters while simultaneously parameterizing the interactions
between these clusters. Here, our model currently assumes
that the infection probability does not change from user to
user. This is discussed later in the section “User Bias.”
Modeling interactions. To begin, we assume that each con-
tagion has some inherent infectiousness or virality (modeled
by the prior infection probability P (X)), and being exposed
to other contagions either slightly increases or decreases the
probability of infection. In other words, we model:

P (X = uj |Yk = ui) ≈ P (X = uj) + ∆
(k)
cont.(ui, uj) (2)

where ∆
(k)
cont.(ui, uj) is the interaction function that rep-

resents the effect contagion ui has on contagion uj from
k exposures away, and P (X = uj) is the empirically
measured prior infection probability for contagion uj . We
can treat ∆

(k)
cont.(ui, uj) as the i, j entry of the matrix

∆
(k)
cont. ∈ <W×W , which is far too large to model explicitly.

Rather, we model the interactions between clusters (i.e.,
latent topics) of contagions.

Our strategy will be to identify clusters of the contagions
that interact in similar ways, and then only model the
interactions between these clusters. Let there be a small
number of latent clusters (say there are T of them) to which
each contagion is a member of in varying degree. If we know
to which cluster each contagion belongs, then all we would
have to do is model T × T different interactions.

Given W contagions, we define the contagion to cluster
membership matrix M ∈ [0, 1]W×T such that

Mi,t = P (contagion ui ∈ cluster ct)

and so
∑

t Mi,t = 1 ∀ i. To express the interactions between
each latent cluster, for each k = 1, ...,K we have a new
interaction function ∆

(k)
clust(ct, cs) to model the effect of

cluster ct on cluster cs. Now, for ui 6= uj

∆
(k)
cont.(ui, uj) =

∑
t

∑
s

Mj,t ·∆(k)
clust(ct, cs) ·Mi,s

and for ui = uj

∆
(k)
cont.(uj , uj) =

∑
s

Mj,s ·∆(k)
clust(cs, cs).



If we represent the cluster interactions as the matrix ∆
(k)
clust ∈

<T×T then the above expression can be represented as ∆
(k)
cont.

 =

M

×
[
∆

(k)
clust

]
×
[

MT
]
.

and it is apparent how this clustering method is equivalent
to a low rank assumption. Technically speaking, this rela-
tionship holds only on the off-diagonal elements. As a short-
hand, from now on we will use ∆

(k)
s,t ≡ ∆

(k)
clust(cs, ct).

With this model, we can now express P (X|Yk) as:

P (X = uj |Yk = ui) =P (X = uj)

+
∑
t

∑
s

Mi,t ·∆(k)
t,s ·Mj,s

for when ui 6= uj , and when ui = uj then:

P (X = uj |Yk = uj) =P (X = uj) +
∑
s

Mj,s ·∆(k)
s,s .

With this model, we specify the number of interaction
clusters T and how many previous exposures K to include
in the interaction model. Then, we learn the W × T entries
of the membership matrix M and the T × T entries of the
cluster interaction matrix ∆(k) for k = 1, ...,K. We enforce
the constraints that 0 ≤ P (X = uj |Yk = ui) ≤ 1 for
all contagions during the fitting of the parameters. During
the testing phase, it is possible (although extremely rare)
for P (X = uj |Yk = ui) ≤ 0, in which we just set the
probability to a minimum value of 1E-10;

Besides this additive model, we also performed extensive
experimentation on several multiplicative models as well.
Even though multiplicative models feel somewhat more
natural in this setting, however, the additive model provided
the best performance while also using far fewer parameters.
Fitting the model. For a given dataset, we can observe
which users adopted (tweeted) which contagions (URLs)
and when. With each adopted contagion, a user generates an
exposure to that contagion for each of her neighbors in the
network. Then, for each user we can observe the sequence
of contagions she was exposed to, in between the contagions
she adopts. For a given set of users, we can count the number
of times X = ui and Yk = uj for all ui, uj as well as
whether or not this exposure pair led to the infection of X .
Let all of these observations be contained in a set D. Then
the log-likelihood function according to our model is

L(D;M, {∆}Kk=1) =∑
i,j,k

αk
ij log

[
P (X = uj) +

∑
t

∑
s

Mi,t ·∆(k)
t,s ·Mj,s

]

+βk
ij log

[
1− P (X = uj)−

∑
t

∑
s

Mi,t ·∆(k)
t,s ·Mj,s

]

where αk
ij is the number of times in which Yk = ui and

X = uj and then the user adopted ui, and βk
ij is the number

of times that exposure combination did not lead to infection.
Our approach is to choose M and ∆1, ...,∆K for some
fixed T (the number of latent clusters) and K such that the
log-likelihood is maximized.

Optimizing so many parameters over a such a large
datasets is arduous. Specifically, for our dataset of
W=18,000 contagions, this likelihood function has just shy
of 20 million observed pairs of αij and βij . After employing
numerous methods, the one that worked the best was a
variation on stochastic gradient descent (of the negative log-
likelihood function). Of all the pairs of contagions observed
in users’ exposure sequences, we randomly selected a subset
of them to calculate the gradient and the line search in the
direction of the negative gradient. We found that using a sub-
set of around random 300,000 contagion pairs at each step
produced good performance. We re-sampled these 300,000
pairs every 20 iterations. The line step length (how far into
the direction of the negative gradient the solution moved
at each iteration) was updated every 5-10 iterations using
a simple bisection search in order to produce a sufficient
decrease in the objective function.

In terms of optimization, it is important to observe that
an entry in M appears in many less objective function terms
than an entry in ∆(k). This means the membership matrix
varies on a very different scale than the interaction matrices
and thus has drastically different curvature. To account for
this, we split each iteration such that first we take a step
along the gradient of M, and then we calculate and take a
step along the gradient of ∆(k). We calculated the line step
length for either descent step independently.
User bias. It is reasonable to assume that different users will
react to contagions in different ways. This would suggest it
is prudent to consider a user bias in our model.

Now, we consider the probability Pn(X = uj |Yk = ui)
where n is a specific Twitter user:

Pn(X = uj |Yk = ui) =P (X = uj) + γn

+
∑
t

∑
s

Mi,t ·∆(k)
t,s ·Mj,s.

Here, the user bias γn models how user n is more or
less likely in general to adopt contagions. Including this
term, however, makes fitting model difficult. Now, instead
of the log-likelihood function having a term for each pair of
exposed contagions and infected contagions, there are terms
for every user and exposed contagion and infected contagion
combination. Furthermore, we also found that the additional
user bias parameter does not increase the overall accuracy.

IV. EXPERIMENTS

To validate our model, we run a set of experiments
to determine how accurate it is at predicting contagion
adoption by users. We use the model’s success at this task



to demonstrate that it is expressing the correct structure in
the way URLs interact with each other.

The dataset. Our dataset consists of every tweet sent in
the month of January of 2011, which was more then 3
billion tweets in total. We parsed each tweet that contained
a URL, and we aggregated every URL that was tweeted
by at least 50 unique users, which was 191,650 URLs. Of
these URLs we removed URLs by hand that were part of
several different types of blatant spamming behavior. We
then crawled all the URLs and discarded those that did not
have large blocks of natural ASCII text (at least 50 tokens).
This was a necessary step because we will later examine
the relationship between interactions and URL page content
similarity. This process left us with 39,771, of which we
were able to classify W = 18,186 URLs as English. From
all of these W URLs combined, there are a total of 2,664,207
infection events and over 810 million exposure events. We
then took the set of all users who tweet at least one of these
W URLs, and then used the Twitter API to assemble the
follower links amongst these users. In all, we were left with
a subgraph with 1,087,033 nodes and 103,112,438 edges.

The setup. We treat each user as a series of ordered events.
Each event can be: (1) the user’s exposure to a contagion
posted by one of their neighbors, (2) the user tweeting a
contagion that at least one of their neighbors has previously
posted (infection), or (3) the user tweets a message that
does not contain a contagion. Assuming that a user is not
constantly logged on to Twitter to read messages posted by
their neighbors the instant that they are posted, there is some
lag between when a user sees the tweet (i.e. the next time
she logs in). We assume that when a user posts a tweet,
they have read all the tweets posted by her neighbors since
the last time the user tweeted. Under this assumption, as
the stream of exposures flow into a user, they are placed in
a queue. The next time the user posts a tweet (whether or
not it contains a contagion), the user reads through each of
her exposures, and for each one she makes a decision of
whether or not to tweet it. For each exposure in the queue,
the user considers the K most recent exposures and the order
in which they occurred.

This process creates a series of exposure intervals that
are separated by user tweets, and our dataset contains
67,397,052 such intervals consisting 810,884,361 exposure
events. Figure 2 shows a visual example of this process.
We used 90% of these intervals to train the model as
described in the previous section. We took another 5% to
be a cross-validation set that we used to optimize a series
of comparative baselines (discussed below). We reserved
the final 5% as the test set with which we determine how
accurate our model is in assigning probabilities of infection
of contagions based solely on contagion interactions.

For each interval in the test set, we query our fitted model
to assign a probability to each exposure in the interval that

a user will tweet that contagion. If the user does in fact
tweet that contagion in the next set of tweets immediately
following the interval, then an infection has occurred. For
all exposures that occurred in the test set, we sort them by
the probability assigned to them. The contagion exposure
with the largest assigned probability becomes the model’s
“first guess” for infection. The second largest probability is
the next guess, and so on. We measure the accuracy of the
model (as well as the baselines) through the precision and
recall of this guessing process. The model is rewarded by
assigning higher probabilities to exposures that resulted in
infection as well as penalized for high probabilities that did
not. The metrics we examine are the maximum F1-score
across the entire precision-recall curve, as well as the area
under the precision-recall curve. For both metrics, the closer
the value is to 1, the better the performance. In addition, we
also measured how well these assigned probabilities fit the
actual infections in terms of log-likelihood.
Baselines. We compared our model to a series of commonly
used diffusion models. If our model can out-perform these
significantly, then we can assume the model is identifying
true interactions in the information cascade process.
• Infection Probability (IP). This first baseline is the

Independent Cascade Model [9], [13], which assigns
a probability of infection of contagion X = ui to be
simply the prior infection probability (i.e., the virality):

P (X = ui|Yk = uj) = P (X = ui)

for all k, uj . Considering the wide range of varia-
tion between the inherent infectiousness of different
contagions, it might be effective to assign infection
probabilities to each exposure event independent of all
previous exposures.

• Infection Probability + User Bias (UB). For each
user n, we fit a bias in infection probability γn using
maximum likelihood. Thus,

Pn(X = ui) = P (X = ui) + γn.

This user bias accounts for the fact that certain users
may be more prone to tweeting contagions in general,
which could potentially have dramatic effects on con-
tagion cascades. We induced sparsity across the γn’s
using an L1 regularization function. The L1 coefficient
was chosen so as to optimize the log-likelihood on the
validation dataset.

• Exposure Curves (EC). We use the concept of ex-
posure curves [17], [21] as third baseline. An exposure
curve is a function that assigns a probability of infection
by a contagion based on the number of times the user
was previously exposed to the contagion. This function
represents how a user’s perception of a new piece of
information changes each time she is exposed to it. For
example, the probability of a user adopting a new piece
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Time

Positively sampled sequences: {u3, u1},
{u3, u1, u1}, {u3, u1, u1, u4}, {u2, u5},
and {u2, u5, u5}
Negatively sampled sequences: {u1},
{u1, u2}, {u3}, and {u2}

ui The User is exposed to contagion ui

ui The User tweets contagion ui

The User posts a tweet w/o any contagions

A positively sampled interval.

A negatively sampled interval.

Key

Figure 2. A representation of what one particular user sees in her Twitter news stream. Circles represent contagions that her neighbors have tweeted,
and squares signify tweets by the user. We know every time she herself tweets, whether her tweet contains a contagion or not, she has seen and made a
decision about the content to which she was previously exposed. Therefore, upon her tweeting a set of tweets (a set that is uninterrupted by exposures
from her neighbors) we count all sequences in the previous exposure interval that ended in a contagion that she did tweet as positive examples. Similarly,
we count all intervals that ended in a contagion she did not tweet as negative examples. We only considered samples of sequences of length at most K.

Model Name Log-Like. max F1 Area under PR
IP -335,550.39 0.0150 0.0157
UB -338,821.54 0.0112 0.0123
EC -338,367.86 0.0181 0.0250

Our Model - With Prior
IMM K=1 -313,843.93 0.0412 0.0515
IMM K=2 -299,884.86 0.0465 0.1238
IMM K=3 -299,352.32 0.0380 0.0926
IMM K=4 -315,319.54 0.0321 0.0804
IMM K=5 -352,687.54 0.0386 0.0924

Table I
RESULTS OF THE PROPOSED MODEL COMPARED TO THE BASELINES.

of technology may increase each time she is exposed
to it as she learns more and more about it. On the
other hand, the probability of a user retweeting a piece
of celebrity gossip may decrease each time she sees
it, as the gossip becomes stale and dated. For each
contagion, the probability of infection after each num-
ber of observed infections is measured empirically in
the training set. Since the sampling across all possible
numbers of exposures can be sparse, we smoothed the
exposure curve function using locally weighted linear
regression. The smoothing coefficient was chosen so as
to optimize the log-likelihood on the validation dataset.

Results. The results of the experiments are shown in Table
I. The interaction models were fit using T = 20 (i.e. the
number of clusters is 20). This parameter was chosen as a
balance between the performance on the validation set, and
the runtime of fitting the model. Note that the number of
parameters in the model is T × T ×K +W × T , so for T
greater than 50 it takes a prohibitively long to fit the model.

The results of the performance experiments can be found
in Table I. In all, our IMM model outperformed the baselines
in all three metrics by a significant margin. E.g., our IMM
model performed almost 400% better on the Area under
PR Curve metric than the best baseline (the Exposure
Curve)! Additionally, our model increased performance on

the Maximum F1 Score metric by 168% over best baseline.

User bias. Surprisingly, including a user bias term (UB)
actually decreased performance compared to the Infection
Probability baseline (IP). In fact, the UB baseline performed
25% worse than the IP baseline in maxF1 score. Keep in
mind that the user bias terms were fitted using L1 regularized
maximum likelihood optimization and cross validation. Even
still, the result of the user bias term was over-fitting. This
suggests that there might not be significant enough fluctua-
tions between each user’s probability of tweeting a contagion
to justify the use of such of a parameter in the model.
For example, the users that we included in the study were
users that tweeted at least one contagion. In other words,
all the users with which we trained and tested our model
were chosen through a selection process that was biased
towards users that tweeted more contagions, so this could
produce less variation in infection probability from user to
user. Regardless, this decrease in performance lead us to the
decision not to include user bias in our interaction model.

The most important result of these experiments is how
much better our model performed compared to pure infection
probability model (IP). Recall that this baseline model is
the result of a pure independent contagion assumption. The
only additional information our model uses is interactions
between contagions, and the result is a 210% improvement
in maxF1 score and a 680% improvement in the area under
the PR curve. This implies that our model is effectively
capturing interactions between contagions, and we now ex-
plore what our model implies about the interactions between
contagions in general.

V. DISCUSSION

The results of the experiments in the last section attribute
significant gains in predictive performance (over the pure
infection probability baseline) to modeling interactions be-
tween contagions. This begs the question of how much of
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Figure 3. (a) The distribution in the expected interaction across all pairs
of intersecting contagions for k = 1, ..., 5. (b) The distribution of relative
change in probability caused by including the interaction term of the model
across all exposure events in the training dataset.

the probabilities of infection assigned to each exposure event
comes from the contagion prior infection probability and
how much comes from the contagion interactions.

Figure 3(a) shows the distribution of the expected interac-
tion across all pairs of contagions in our dataset. Given this
figure, it appears that on average, the expected interaction
term of the model is very small. In fact, the average infection
probability P (X) is 0.0029 with a standard deviation of
0.0055, whereas the average expected interaction is -6.637E-
5 with a standard deviation of 7.630E-5. First, this validates
the assumption presented in Eqn. 2; P (X|Yk) is largely
the prior infection probability, plus or minus the interaction
term. This could, however, imply that the vast majority of the
probability of infection that the interaction model assigns to
each exposed contagion comes from the infection probability
term and not from interactions between other contagions. In
actuality, only a very few number of the possible pairs of
contagions ever interact with each other (i.e., are exposed
to the same user at close to the same time). Furthermore,
many of the pairs of contagions that do interact only do so
a few number of times, whereas there are other contagion
pairs that interact several thousand times. To account for
this, we took every single exposure event in the training
dataset and recorded the probability of infection given by
our interaction model. We then recorded the relative change
in probability of the interaction model compared to just the
prior probability of infection P (X):

Relative Change =
(Interact. Model Prob.)− (Prior Prob.)

(Prior Prob.)
.

With this measure, the contribution of each contagion pair
to the distribution of interactions is proportional to how
often they interact. Fig. 3(b) shows the distribution of this
quantity across all exposure events in the training dataset.
This plot tells a very different story in that the contribution
of contagion interactions to the model vary widely, with
the distribution showing a heavy tail that reaches 1,000%
relative change in the infection probability. In fact, the
average absolute value of relative change is 71%, indicating
that on average more than half of the assigned probability
comes from interactions between contagions. In short, the
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Figure 4. (a) Relative Interaction versus the source contagion’s prior
infection probability minus the destination contagion’s prior infection
probability. (b) Relative Interaction versus content similarity between the
contagions. The relative interaction in both figures is calculated using Eq 3.

aggregate of several small changes in each P (X|Yk) creates
a large change in P (X|Y1, ..., Yk).

We consider this strong evidence, in conjunction with
the significant increase in infection prediction accuracy,
that interactions between contagions should be a necessary
component of any information cascade model.
Why so negative? Another interesting observation that
comes from the distribution of interactions shown in Fig.
3(a) is that it is not centered at exactly 0. Specifically, there
are more than a hundred times as many contagion pairs at
the mode of this distribution (which is slightly negative)
than there are at 0. In other words, there appears to be
this default negative interaction between contagion pairs,
and it is only some inherent interaction between specific
pairs of contagions that changes this. This implies that if
one studied the process of a contagion propagating across
Twitter with no other contagions propagating at the same
time, the infection probabilities would be higher and the final
reach of the cascade would be larger compared to if another
contagion was randomly chosen to propagate at the same
time. This is intuitive. If a user has exactly one contagion
in her news feed when she logs in, the chances she even
sees the contagion is much higher, and the contagion will
not have to share her focus with others.
Why do contagions interact? The most important question
that can be asked of our interaction model is what causes
interactions between cascading contagions?

To answer this question, we first look at how the prior
infection probabilities of contagions affect their interactions.
Fig. 4(a) shows for each pair of interacting contagions the
expected interaction versus the prior infection probability
of the source (exposing) contagion minus the infection
probability of the destination (infecting) contagion. For the
expected interaction, we normalize the the interaction across
all pairs of URLs to a standard normal, i.e., the normalized
interaction between URLs i and j is

Rel. Interactionk[i, j] =

(
M ·∆(k) ·MT

)
i,j
− µ(k)

int

σ
(k)
int

(3)

where σ(k)
int is the standard deviation of interactions between
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Figure 5. The empirically measured average relative change in infection
probability for each URL u2 given certain conditions of the URL to which
a user was previously exposed (u1). For each condition specified on the
y-axis, we measure the average relative change in the infection probability
P (X = u2) when a user is first exposed to any URL u1 satisfying the
condition before being exposed to u2, and then we take the average across
all u2. “HCS” (high content similarity) implies that the u1, u2 pair are in
the 99th percentile in content similarity across all URL contagion pairs,
and “LCS” (low content similarity) indicates they are in the 1st percentile.
The error bars represent 95% confidence intervals.

URLs k exposures apart, and µ
(k)
int is the mean value. This

plot shows that for contagion pairs that have almost no
interactions (0 on the x-axis), the destination contagion is
much more infectious than the source contagion. If the
interaction is strong, whether it is positive or negative,
the source contagion is more infectious than the destina-
tion contagion. This implies that one contagion exposure
interacts more strongly with contagions the user is later
exposed to if this first contagion is more infectious than the
later contagions. This makes intuitive sense, since when a
user is reading through the tweets she has received, seeing
new tweets will make her forget about older tweets, unless
the older tweets are more influential/infectious. In other
words, she will stay focused on a particular contagion unless
something more infectious comes along. If it is only more
infectious contagions that influence infection probabilities of
less infectious contagions, what determines if this interaction
is positive or negative?

The similarity in content also plays a crucial role in con-
tagion interaction. Fig. 4(b) shows the expected interaction
versus content similarity (the cosine similarity between the
two URLs’ TF-IDF weighted word vectors) , and it is clear
that more positively interacting contagions are more closely
related in content similarity and more negatively interacting
contagions are unrelated. This, in combination with Fig.
4(a), is evidence of the following process:

• A user is exposed to a contagion, say u1. Whether or
not she retweets it, the contagion influences her.

• The user is then exposed to contagion u2. If u2 is more
infectious than u1, the user shifts focus from u1 to u2.

• On the other hand, if u2 is less infectious than u1,
then the user will still be influenced by u1 instead
of switching to u2. However, one of two things can
happen:

– If u2 is highly related to u1 in content, then the
user will be more receptive of u2 and this will
increase the infection probability of u2.

– If u2 is unrelated to u1, then the user is less
receptive of u2 and the infection probability is
decreased.

For example, let’s say the user sees a compelling article
about the popular uprising in Egypt. For the next period
of time, the user is focused on this subject matter. If an
uninteresting article about Justin Beiber comes along while
the user is still thinking about Egypt, then she ignores it.
However, while the user is in this state of mind, she will be
more receptive to other articles about the Egyptian revolution
than she otherwise would be.

To further validate this hypothesis, we can examine
the empirically-measured conditional probability P (X =
u2 |Y1 = u1) i.e. the probability of being infected by each
URL u2 given that the user was just exposed to first u1
and then to u2, for u1 and u2 satisfying various conditions.
For each u2, we average the relative change in infection
probability across all u1 satisfying a certain condition. Then,
we average this relative change across each u2, and the
results are shown in Fig. 5. For example, the relative change
in infectiousness of a URL when it follows the exposure of
a less infectious URL is
1

W

∑
u2

1

|S(u2)|
∑

u1∈S(u2)

P (X = u2|Y = u1)− P (X = u2)

P (X = u2)

where P (X = u2) is prior probability of infection of u2,
and S(u2) ≡ {u1|P (X = u1) < P (X = u2)} (this value is
the top row in Fig. 5).

In Fig. 5, we see that on average, when P (X = u1) <
P (X = u2) then u1 has a very limited effect on u2.
For P (X = u1) > P (X = u2) on the other hand, the
probability of infection of u2 decreases by almost 10%. This
decrease in infectiousness more than doubles when u1 and
u2 are completely dissimilar in content. In other words, the
more infectious u1 suppresses the infection of u2. When u1
and u2 are highly related in content, the effect is the opposite
in that u1 increases the infection probability of u2 by
almost 30%, and this is exactly in line with our hypothesis.
Furthermore, we see that the effects of content between u1
and u2 decreases by half when P (X = u1) < P (X = u2)
i.e. u1 has much less of an effect on u2 when u2 is more
infectious.

To conclude, we look at the specific contagions and their
interactions. For example, the pair of URLs that interact
most positively at k = 1 (according to the interaction model)
have the following titles:
• u1: USA-Egypt Friendly CANCELED
• u2: U.S. Men’s National Team Match against Egypt

Canceled
which are obviously highly related in content (they both are
articles about a canceled soccer match due to the civil unrest



in Egypt). On the other hand, 3 of the 9 most negatively
interacting URL pairs have

u1 : Is Yuri Milner A Threat To Silicon Valley?

which is a TechCrunch.com article about a Silicon Valley
investor’s controversial decision to blindly invest money into
a large number of startup companies. The three URLs that
it negatively interacts with are highly unrelated — they
range from an article about the Egyptian army to travel
deals available at Orbitz.com. This TechCrunch.com article
effectively suppresses unrelated, less infectious URLs, just
as our hypothesis would predict.

VI. CONCLUSION

The majority of work on information diffusion has fo-
cused on a single contagion propagating through the social
network, independent of any other contagion. We have
presented a model that instead quantifies how different
cascading contagions can interact with each other, either
through competing or cooperating. In doing so, we can
predict contagion infections with a 400% improvement over
any of the standard baseline models.

Along with this dramatic boost in performance, our model
predicts infection probabilities that are on average 71% more
or less than the infection probability would be for a purely
independent contagion. This is compelling evidence that
looking at individual contagions by themselves does not
offer a complete picture.

Our analysis has led us to the hypothesis that most
interactions are governed by an underlying principle: con-
tagions have an adversely negative (suppressive) effect on
less infectious contagions that are of unrelated content or
subject matter, while at the same time they can dramatically
increase the infection probability of contagions that are less
infectious but are highly related in subject matter.

In future work it would be very interesting see if this
hypothesis holds for other types of social networks and
contagion interactions. Twitter provides a very structured
mechanism for how a user is exposed to the contagions
of her neighbors — there is a guarantee that the contagion
will appear in her news feed, and we know the order in
which the exposures arrive. This is not the case for say
the Blogosphere, in which it is ambiguous if and when one
blogger is exposed to the contagions of another blogger.
Adjustments would be required to model such a system.
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