
Monitoring Network Evolution using MDL 
Jure Ferlež #1, Christos Faloutsos *2, Jure Leskovec *3, Dunja Mladenić#4, Marko Grobelnik#5 

#Department of Knowledge Technologies, Jožef Stefan Institute  
Jamova 39, 1000 Ljubljana, Slovenia 

1jure.ferlez@ijs.si 
4dunja.mladenic@ijs.si 
5marko.grobelnik@ijs.si 

* Machine Learning Department, School of Computer Science, Carnegie Mellon University 
 5000 Forbes Ave, Pittsburgh, PA 15213, USA 

2christos.faloutsos@cs.cmu.edu 
3jure.leskovec@cs.cmu.edu 

 
Abstract— Given publication titles and authors, what can we say 
about the evolution of scientific topics and communities over 
time? Which communities shrunk, which emerged, and which 
split, over time? And, when in time were the turning points? We 
propose TimeFall, which can automatically answer these 
questions given a social network/graph that evolves over time. 
The main novelty of the proposed approach is that it needs no 
user-defined parameters, relying instead on the principle of 
Minimum Description Length (MDL), to extract the 
communities, and to find good cut-points in time when 
communities change abruptly: a cut-point is good, if it leads to 
shorter data description. We illustrate our algorithm on 
synthetic and large real datasets, and we show that the results of 
the TimeFall agree with human intuition. 

I. INTRODUCTION 
Time evolving graphs appear in a wide range of disciplines 

and application domains. These datasets from various domains 
have in common that they can be represented as a network 
which changes over time. Examples of such time-evolving 
graphs are publication databases, (e.g. PubMed MEDLINE) 
and the dynamic on-line social networks (e.g. Orkut and 
Facebook). 

For example, in the setting of scientific community 
evolution we start with a set of papers (authors, abstracts and 
time of publication) which define a time evolving network. 
We would like to answer the following questions: Which are 
the coauthoring communities of researchers that are growing 
in size over the years. Which communities are diminishing in 
size but gaining in density? Once we know answers to these 
questions we can also explore: What are the characteristics of 
the communities that have split? Can we predict such splits or 
merges of the communities? Can we associate topics with 
communities of researchers? 

Here we propose TimeFall (“time waterfall”), an approach 
for analysis of network evolution. TimeFall addresses several 
of the above questions simultaneously, by enabling analysis of 
the evolution of network clusters through time. An example of 
the TimeFall visualization is displayed in Figure 1. 

In Figure 1 each box represents a community of words – a 
user profile topic. Each topic is thus described by a set of 
keywords that are characteristic for the corresponding topic. 
Each line (horizontal group of topics) represents a time step, 

and arrows between the topics from the adjacent time steps 
represent the evolution of the topics. Notice the splits and 
merges of the topics over time.   

 

 
Fig. 1 TimeFall visualization of the evolution of user profile descriptions 
inside a large on-line social network.  We analyse and visualize the topic 
evolution of 7.5 million textual profiles over the period of 3 years.  The 
analysis reveals the profile topics (keywords omitted for confidentiality) and 
cut-points in time when evolution is especially abrupt. 

Let us now more formally define the problem at hand: 
 
PROBLEM: Parameter-free network evolution tracking 
      Given: n time-stamped events (like, e.g., papers 

published), each related to several of m items (like, title-words, 
and/or author-names, and/or publisher names) 

      Find: simultaneously (a) the communities, that is, item-
groups (e.g., research topics and/or research communities) and 
(b) describe how the communities evolve over time (e.g., 
appear, disappear, split, merge) and (c) select the appropriate 



cut-points in time when existing community structure change 
abruptly. 

      Without: any user defined parameters. 
 
The rest of the paper is organized as follows. We continue 

in Section 2 by introducing the proposed TimeFall algorithm 
for monitoring and visualizing network evolution. Section 3 
presents the experimental results. We conclude this paper in 
Section 4. 

II. PROPOSED METHOD 
We begin by introducing the TimeFall algorithm. For 

simplicity reasons we will assume a bipartite graph with time 
stamps, and produce a visualization of the evolving network 
clusters (topics, communities) over time. TimeFall can be 
trivially extended to handle multi partite graphs.  

Our goal is to operate on such a time-stamped graph, to 
automatically spot communities, their evolution and cut-points 
between epochs of stable community evolution. The intuition 
behind our approach is to organize the time-stamped 
adjacency matrix in such a way that it is easy to compress. 
This exactly fits the Minimum Description Length (MDL) 
principle [2] of using some data description language to 
produce as short data description as possible. In general, the 
idea is to treat the problem as a compression problem, because 
it will guide us to find patterns (natural cut-points, natural 
communities), eliminating the need for the user-defined 
parameters.  

We designed the TimeFall description language, which 
facilitates a short temporal graph description by providing 
efficient means of communicating the most probable temporal 
patterns observed in a graph like merging, splitting and 
evolution of the communities. The language provides means 
to efficiently describe the difference between the clustering of 
two matrices (graphs). When the matrices describe the 
network at two consecutive time points, then the difference in 
clustering represents the network community evolution. We 
show that the differences in clustering of two matrices can be 
efficiently described by using mutual information between the 
matrices, i.e., we use the clusters (communities) at time t to 
efficiently describe the communities at time t+1. This way we 
can detect patterns like splits and merges of communities, and 
also birth of new and diminishing of old communities. We 
used a simple hill climbing algorithm for searching for these 
patterns and the corresponding short matrix (graph) 
description.   

The designed network description language and the short 
description search algorithm extend the existing Cross 
Association [2] community membership description language 
and search algorithm. The extension enables efficient 
modelling of temporal changes in the network at the same 
time preserving the efficiency and the absence of parameters 
of the original algorithm. What is more, both the original 
Cross Associations algorithm and the developed TimeFall 
algorithm can be effectively parallelized to achieve linear 
speedups. An overview of the TimeFall approach to detecting 
network evolution can be presented on an example of 

monitoring topic development in research papers as depicted 
in Figure 2.  

 
Fig. 2 TimeFall approach illustrated on a temporal bipartite graph 
representing papers published over time and words from their content. The 
approach first represents the graph in the form of an adjacency matrix (step 1). 
The approach then splits the rows according to their time stamps (step 2) and 
uses the CA algorithm to cluster the columns of the connection matrices (step 
3). It then utilizes the MDL principle to connect the column clusters of the 
matrices (step 4) and reduce the unimportant time points in the graph 
evolution history (step 5). 

III. EXPERIMENTS 
We evaluated our algorithm on synthetic datasets and on a 

real-world dataset obtained from a large social network.  The 
synthetic data was used to test the algorithm under the 
controlled conditions. The real-world dataset was used to 
show the algorithm’s ability to identify important time points 
in the history of the social networking web site. 

A. Experiments on synthetic data 
Our fist experiment on a synthetic dataset aims at testing 

the the TimeFall algorithm on producing expected results in a 
controlled environment, The synthetic dataset has an 
underlying structure that can be shown by a binary matrix 
displayed in the centre of Figure 3. The synthetic dataset we 
used is a binary matrix with 6000 rows and 10000 columns. 
The matrix contains different blocks of ones (marked with 
black) while the rest of the matrix contains zeros. Rows of the 
matrix are marked with time stamps spanning from 1 to 6.  
We can observe that the rightmost cluster (B) is fairly stable 
over time, mainly keeping the same columns (more precisely, 
from time 2 to time 3 it grows a bit from size 25% (B) to size 
31% (G) and then gets back to 25% (B’) at time 5). The bigger 
cluster (A) at time 1 and 2 remains the same and then at time 3 
it splits into several smaller clusters (a,b,c,d,e,f) that merge 
back in time 5 (A’). 

After permuting the rows and columns of this matrix (left 
hand side of Figure 3) to get a realistic dataset and applying 
the TimeFall algorithm we get the visualization displayed on 



the right of Figure 3. We see that the algorithm succeeded in 
identifying the main structure of the column clusters and the 
changes over time and the correct pattern of evolution. What 
is more it correctly merged the time points with similar 
clusters (time 1 and 2, 3 and 4, 5 and 6) producing an effective 
summary of the temporal development of the graph.  

 

 
 Fig. 3 Permuted synthetic binary matrix of 6000 rows and 1000 columns (left) 
and the nicely blocked version of the same matrix (centre) represents a time 
evolving graph from time 1 to time 6. Black parts represent ones and white 
parts represent zero values. TimeFall analysis of the permuted matrix yields a 
correct visualization of the network evolution (right).  

In the second experiment on synthetic data we present the 
scalability of our approach. We created a random binary 
matrix with 1000 columns and varying number of rows. We 
varied the number of rows from 1000 to 128,000. The matrix 
contained 30 percent of non-zeros and 70 percent zeros. We 
created random time stamps for every row of the matrix. We 
run the base and the parallelized version of the TimeFall on a 
server machine with 8 logical processors and recorded the 
running  time and memory requirements in Figure 11. 
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Fig. 11 Time and space requirements of the algorithm. Notice that parallelized 
version of the algorithm requires same memory but runs up to 8 times faster. 

We observe that the time and space requirement is linearly 
dependent on the problem size. We noticed that the 
parallelized version of the algorithm takes the same amount of 
memory as baseline single threaded implementation. However, 
the parallel version runs 2 to 8 times faster than single 
threaded implementation of the algorithm. This gives a 

significant speedup over the single threaded version and 
allows scaling to large datasets.  

B. Experiments on a Large Social Network 
We obtained the evolving social network from anonymized 

real-world on-line social networking service, like Orkut, or 
Facebook. The network contains 7.5 million people with 53 
million time stamped links among them. Each link signifies a 
personal tie established at a given point in time, and all nodes 
are labelled with textual profiles. The data spans a period from 
May 2003 to October 2006.  

The goal of the analysis was to get an insight into the 
growth of this social network through time. We were 
especially interested in recognizing which word groups (topics) 
in user profiles are most suitable for the description of the 
network expansion.  

In order to use the TimeFall algorithm to answer this 
question we constructed an invitation matrix. Rows of the 
matrix correspond to invitations from existing users of the 
network to the members outside of the network. The columns 
of the matrix describe every invitation by words from the 
profile of the inviter. Every row of the matrix corresponds to 
one invitation and is thus associated with a date stamp. 

Applying the TimeFall algorithm to this matrix yields the 
diagram in Figure 1. From the diagram one gets the 
impression that earlier in time the profile topics changed more 
rapidly (we found many intervening links between first two 
epochs of stable development between May and August 2003). 
This behaviour settles down later in time when fluctuation of 
words between the topic clusters very much diminishes 
between consecutive epochs. Most importantly, the extracted 
cut-points in time between consecutive epochs were 
recognized to be in correspondence with the important 
changes in the functionality of the social networking site. 

IV. CONCLUSION 
Analysis of large time graphs can provide an insight into 

temporal development of a graph, which can represent 
different phenomena, such as evolution of research 
collaboration and research topics. Our work provides an 
efficient parallelizable approach that addresses this task in a 
principled MDL way and without a single parameter provided 
by the user. Our experiments show that the proposed approach 
reveals the correct (synthetic dataset) and intuitive patterns 
(social network dataset) in evolution of networks. 
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