
Monitoring Network Evolution using MDL
Jure Ferlež #1, Christos Faloutsos *2, Jure Leskovec *3, Dunja Mladenić#4, Marko Grobelnik#5

#Department of Knowledge Technologies, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

1jure.ferlez@ijs.si
4dunja.mladenic@ijs.si
5marko.grobelnik@ijs.si

* Machine Learning Department, School of Computer Science, Carnegie Mellon University
 5000 Forbes Ave, Pittsburgh, PA 15213, USA

2christos.faloutsos@cs.cmu.edu
3jure.leskovec@cs.cmu.edu

Abstract— Given publication titles and authors, what can we say
about the evolution of scientific topics and communities over
time? Which communities shrunk, which emerged, and which
split, over time? And, when in time were the turning points? We
propose TimeFall, which can automatically answer these
questions given a social network/graph that evolves over time.
The main novelty of the proposed approach is that it needs no
user-defined parameters, relying instead on the principle of
Minimum Description Length (MDL), to extract the
communities, and to find good cut-points in time when
communities change abruptly: a cut-point is good, if it leads to
shorter data description. We illustrate our algorithm on
synthetic and large real datasets, and we show that the results of
the TimeFall agree with human intuition.

I. INTRODUCTION
Time evolving graphs appear in a wide range of disciplines

and application domains. These datasets from various domains
have in common that they can be represented as a network
which changes over time. Examples of such time-evolving
graphs are publication databases, (e.g. PubMed MEDLINE)
and the dynamic on-line social networks (e.g. Orkut and
Facebook).

For example, in the setting of scientific community
evolution we start with a set of papers (authors, abstracts and
time of publication) which define a time evolving network.
We would like to answer the following questions: Which are
the coauthoring communities of researchers that are growing
in size over the years. Which communities are diminishing in
size but gaining in density? Once we know answers to these
questions we can also explore: What are the characteristics of
the communities that have split? Can we predict such splits or
merges of the communities? Can we associate topics with
communities of researchers?

Here we propose TimeFall (“time waterfall”), an approach
for analysis of network evolution. TimeFall addresses several
of the above questions simultaneously, by enabling analysis of
the evolution of network clusters through time. An example of
the TimeFall visualization is displayed in Figure 1.

In Figure 1 each box represents a community of words – a
user profile topic. Each topic is thus described by a set of
keywords that are characteristic for the corresponding topic.
Each line (horizontal group of topics) represents a time step,

and arrows between the topics from the adjacent time steps
represent the evolution of the topics. Notice the splits and
merges of the topics over time.

Fig. 1 TimeFall visualization of the evolution of user profile descriptions
inside a large on-line social network. We analyse and visualize the topic
evolution of 7.5 million textual profiles over the period of 3 years. The
analysis reveals the profile topics (keywords omitted for confidentiality) and
cut-points in time when evolution is especially abrupt.

Let us now more formally define the problem at hand:

PROBLEM: Parameter-free network evolution tracking
 Given: n time-stamped events (like, e.g., papers

published), each related to several of m items (like, title-words,
and/or author-names, and/or publisher names)

 Find: simultaneously (a) the communities, that is, item-
groups (e.g., research topics and/or research communities) and
(b) describe how the communities evolve over time (e.g.,
appear, disappear, split, merge) and (c) select the appropriate

cut-points in time when existing community structure change
abruptly.

 Without: any user defined parameters.

The rest of the paper is organized as follows. We continue

in Section 2 by introducing the proposed TimeFall algorithm
for monitoring and visualizing network evolution. Section 3
presents the experimental results. We conclude this paper in
Section 4.

II. PROPOSED METHOD
We begin by introducing the TimeFall algorithm. For

simplicity reasons we will assume a bipartite graph with time
stamps, and produce a visualization of the evolving network
clusters (topics, communities) over time. TimeFall can be
trivially extended to handle multi partite graphs.

Our goal is to operate on such a time-stamped graph, to
automatically spot communities, their evolution and cut-points
between epochs of stable community evolution. The intuition
behind our approach is to organize the time-stamped
adjacency matrix in such a way that it is easy to compress.
This exactly fits the Minimum Description Length (MDL)
principle [2] of using some data description language to
produce as short data description as possible. In general, the
idea is to treat the problem as a compression problem, because
it will guide us to find patterns (natural cut-points, natural
communities), eliminating the need for the user-defined
parameters.

We designed the TimeFall description language, which
facilitates a short temporal graph description by providing
efficient means of communicating the most probable temporal
patterns observed in a graph like merging, splitting and
evolution of the communities. The language provides means
to efficiently describe the difference between the clustering of
two matrices (graphs). When the matrices describe the
network at two consecutive time points, then the difference in
clustering represents the network community evolution. We
show that the differences in clustering of two matrices can be
efficiently described by using mutual information between the
matrices, i.e., we use the clusters (communities) at time t to
efficiently describe the communities at time t+1. This way we
can detect patterns like splits and merges of communities, and
also birth of new and diminishing of old communities. We
used a simple hill climbing algorithm for searching for these
patterns and the corresponding short matrix (graph)
description.

The designed network description language and the short
description search algorithm extend the existing Cross
Association [2] community membership description language
and search algorithm. The extension enables efficient
modelling of temporal changes in the network at the same
time preserving the efficiency and the absence of parameters
of the original algorithm. What is more, both the original
Cross Associations algorithm and the developed TimeFall
algorithm can be effectively parallelized to achieve linear
speedups. An overview of the TimeFall approach to detecting
network evolution can be presented on an example of

monitoring topic development in research papers as depicted
in Figure 2.

Fig. 2 TimeFall approach illustrated on a temporal bipartite graph
representing papers published over time and words from their content. The
approach first represents the graph in the form of an adjacency matrix (step 1).
The approach then splits the rows according to their time stamps (step 2) and
uses the CA algorithm to cluster the columns of the connection matrices (step
3). It then utilizes the MDL principle to connect the column clusters of the
matrices (step 4) and reduce the unimportant time points in the graph
evolution history (step 5).

III. EXPERIMENTS
We evaluated our algorithm on synthetic datasets and on a

real-world dataset obtained from a large social network. The
synthetic data was used to test the algorithm under the
controlled conditions. The real-world dataset was used to
show the algorithm’s ability to identify important time points
in the history of the social networking web site.

A. Experiments on synthetic data
Our fist experiment on a synthetic dataset aims at testing

the the TimeFall algorithm on producing expected results in a
controlled environment, The synthetic dataset has an
underlying structure that can be shown by a binary matrix
displayed in the centre of Figure 3. The synthetic dataset we
used is a binary matrix with 6000 rows and 10000 columns.
The matrix contains different blocks of ones (marked with
black) while the rest of the matrix contains zeros. Rows of the
matrix are marked with time stamps spanning from 1 to 6.
We can observe that the rightmost cluster (B) is fairly stable
over time, mainly keeping the same columns (more precisely,
from time 2 to time 3 it grows a bit from size 25% (B) to size
31% (G) and then gets back to 25% (B’) at time 5). The bigger
cluster (A) at time 1 and 2 remains the same and then at time 3
it splits into several smaller clusters (a,b,c,d,e,f) that merge
back in time 5 (A’).

After permuting the rows and columns of this matrix (left
hand side of Figure 3) to get a realistic dataset and applying
the TimeFall algorithm we get the visualization displayed on

the right of Figure 3. We see that the algorithm succeeded in
identifying the main structure of the column clusters and the
changes over time and the correct pattern of evolution. What
is more it correctly merged the time points with similar
clusters (time 1 and 2, 3 and 4, 5 and 6) producing an effective
summary of the temporal development of the graph.

 Fig. 3 Permuted synthetic binary matrix of 6000 rows and 1000 columns (left)
and the nicely blocked version of the same matrix (centre) represents a time
evolving graph from time 1 to time 6. Black parts represent ones and white
parts represent zero values. TimeFall analysis of the permuted matrix yields a
correct visualization of the network evolution (right).

In the second experiment on synthetic data we present the
scalability of our approach. We created a random binary
matrix with 1000 columns and varying number of rows. We
varied the number of rows from 1000 to 128,000. The matrix
contained 30 percent of non-zeros and 70 percent zeros. We
created random time stamps for every row of the matrix. We
run the base and the parallelized version of the TimeFall on a
server machine with 8 logical processors and recorded the
running time and memory requirements in Figure 11.

1

10

100

1000

10000

1 10 100
Size of the problem (millions)

R
un

tim
e(

se
c)

/M
em

or
y(

M
B

)

BASE Time
BASE Space
PARALEL Time
PARALEL Space

Fig. 11 Time and space requirements of the algorithm. Notice that parallelized
version of the algorithm requires same memory but runs up to 8 times faster.

We observe that the time and space requirement is linearly
dependent on the problem size. We noticed that the
parallelized version of the algorithm takes the same amount of
memory as baseline single threaded implementation. However,
the parallel version runs 2 to 8 times faster than single
threaded implementation of the algorithm. This gives a

significant speedup over the single threaded version and
allows scaling to large datasets.

B. Experiments on a Large Social Network
We obtained the evolving social network from anonymized

real-world on-line social networking service, like Orkut, or
Facebook. The network contains 7.5 million people with 53
million time stamped links among them. Each link signifies a
personal tie established at a given point in time, and all nodes
are labelled with textual profiles. The data spans a period from
May 2003 to October 2006.

The goal of the analysis was to get an insight into the
growth of this social network through time. We were
especially interested in recognizing which word groups (topics)
in user profiles are most suitable for the description of the
network expansion.

In order to use the TimeFall algorithm to answer this
question we constructed an invitation matrix. Rows of the
matrix correspond to invitations from existing users of the
network to the members outside of the network. The columns
of the matrix describe every invitation by words from the
profile of the inviter. Every row of the matrix corresponds to
one invitation and is thus associated with a date stamp.

Applying the TimeFall algorithm to this matrix yields the
diagram in Figure 1. From the diagram one gets the
impression that earlier in time the profile topics changed more
rapidly (we found many intervening links between first two
epochs of stable development between May and August 2003).
This behaviour settles down later in time when fluctuation of
words between the topic clusters very much diminishes
between consecutive epochs. Most importantly, the extracted
cut-points in time between consecutive epochs were
recognized to be in correspondence with the important
changes in the functionality of the social networking site.

IV. CONCLUSION
Analysis of large time graphs can provide an insight into

temporal development of a graph, which can represent
different phenomena, such as evolution of research
collaboration and research topics. Our work provides an
efficient parallelizable approach that addresses this task in a
principled MDL way and without a single parameter provided
by the user. Our experiments show that the proposed approach
reveals the correct (synthetic dataset) and intuitive patterns
(social network dataset) in evolution of networks.

ACKNOWLEDGMENT
This work was supported by SRA - Analysis of Dynamic

Networks with Graph and Text Mining Methods, EC - NeOn
(IST-4-027595-IP) and the U.S.A. NSF (IIS-0534205, IIS-
0705359)

REFERENCES
[1] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully

automatic cross-associations. In KDD, 2004.
[2] A.Barron, J.Rissanen, and B.Yu, The minimum description length

principle in coding and modeling. IEEE Trans. Information Theory, vol.
44 (1998), no. 6, pp. 2743-2760.

