
Semantic text features from small world graphs

JurijLeskovec1 and John Shawe-Taylor2

1 Carnegie Mellon University, USA. Jozef Stefan Institute, Slovenia.
jure@cs.cmu.edu

2 University of Southampton,UK
jst@cs.sotton.ac.uk

Abstract. We present a set of methods for creating a semantic representation
from a collection of textual documents. Given a document collection we use a
simple algorithm to connect the documents into a tree or a graph. Using the im-
posed topology we define a feature and document similarity measures. We use
the kernel alignment to compare the quality of various similarity measures. Re-
sults show that the document similarity defined over the topology gives better
alignment than standard cosine similarity measure on a bag of words document
representation.

1 Introduction

In various domains we often deal with objects having thousands sparse features. Text
documents are of such kind, where we have thousands of words, but each document
contains only about a hundred of them. Text mining techniques mostly rely on single
term analysis of text, such as the vector space model (bag of words model). To bet-
ter capture the structure of documents, the underlying data model should be able to
represent semantic relations between features in the document.

In kernel based learning methods [1] the choice of the kernel, which can be thought
of as a problem specific similarity measure, is crucial for the performance of the sys-
tem. There has been work [3][5] where people tried to learn or create kernels (similarity
measures) which would exploit semantic similarity between the terms. Attempts to in-
corporate some notion of term similarity also include the latent semantic indexing [6],
semantic networks [8] and probabilistic methods [4].

In this paper we present a set of methods for organizing a collection of documents
into a tree or a graph. The induced topology implicitly defines feature similarity mea-
sure which outperforms standard cosine similarity measure.

2 Motivation

Given a set of documentsD our goal is to build a graph where the each nodeNi contains
a set of features (words). There is an edge from nodeNi to nodeNj if a nodeNi extends
the vocabulary of nodeNj is some particular way.

To illustrate this let’s take a small toy example and let’s limit ourselves to trees. In
the root of the tree we expect to find very general words(stopwords)occurring in most

of the documents. We then expect to find increasingly more specific terms in the lower
level nodes of the tree. We can have a node with generalcomputer scienceterms, which
has among the others also the childrencomputer architectureandmachine learning.
Each of the children extend the vocabulary ofcomputer sciencenode in their own way.

To move away from the trees we can also think about general graphs. One may
expect thatcomputer architecturenode will also share a lot of terms withelectrical
engineeringnode. In a similar way amachine learningnode may extend/enrich vocab-
ularies of bothcomputer scienceandstatisticsnodes.

So we are eventually looking for the clusters of words which extend some termi-
nology. Along with the clusters we also maintain the structural information. There is a
directed edge between nodes (word clusters)Ni andNj if nodeNi extends the vocab-
ulary ofNj . By “extends” we mean that a nodeNi uses more specific terminology (on
the same topic) than nodeNj .

One can also see our ideas from a viewpoint of thematic categories or taxonomies.
Documents are often organized into taxonomies or topic hierarchies. For instance on
the web pages are organized into taxonomies like Yahoo or Open Directory. A path
from the root of the hierarchy towards the leaves specifies an increasingly fine-grained
description of web-page’s topic. Since words define the meaning of the document we
expect to find very general topic unspecific documents residing in the higher levels
of the taxonomy using very broad and unspecific terminology. As we move down the
hierarchy tree we expect documents to be more specific and using topic specific terms.

Our main goal is not to create full document topic hierarchy but rather a hierarchy
of increasingly fine-grained sets of features. The feature sets and the topology can later
be used to define a better feature similarity measure which could lead to improvement
of text mining algorithms.

3 Proposed algorithms

In the following section we describe the algorithms for creating a semantic representa-
tion of a collection of text documents. Given a set of documents we connect them into
a tree or a graph. Each node in a graph contains a set of words and a topology of the
graph naturally defines the distances between the features.

3.1 Basic Tree

We are given a set of text units1 . . .m. We can think of them as documents or para-
graphs. We use bag-of-words model to present each text unit (document)Di. We use
Di to denote theith document and also the set of words that the document contains.

We take the documents one by one and compose them into a tree. Each node in a
tree corresponds to a document and contains a subset of document words.

Suppose we already built the a part of the tree and we want to insert a new document
Di into the tree. We create a new nodeNi and connect it to a nodeNj so thatDi has
the largest intersection of words with the words found in the nodes on the path fromNj

to the root of the tree. We populate the nodeNi with words from documentDi which
do not exist in nodes on a path fromNj to the root of the tree.

We now formally describe the algorithm. Given a documentDi which we are about
to insert in the tree, we first find a nodeNj that maximizes the score

score(Di, Nj) =
|Di ∩ (∪p∈P (j)Np)|
|Di ∪ (∪p∈P (j)Np)|

(1)

where∪p∈P (j)Np denotes a set of words from nodes on a path fromNj to the tree root.
We create nodeNi and link it to nodeNj with maximumscore. In this and all

further algorithms we weigh each link(Ni, Nj) by its score:score(Di, Nj).
We also have to decide on a set of words residing in a nodeNi. We set the words

to be:Ni = Di − ∪p∈P (j)Np. This means a nodeNi contains words fromDi that are
new for the path from nodeNj to the root of the tree.

We expect to find very common and general words on higher levels of the tree and
increasingly more specialized sets of words as we move deeper into the tree.

3.2 Basic Tree with stopwords node

The inspection of trees created by the Basic Tree algorithm revealed that each path
from the root of tree contains its own set of stopwords. It is very natural to introduce
a stopwords node and start building the tree with a root nodeN0 containing stopwords
— common and general words that have little or no meaning by themselves.

We experimented with several different English stopword lists (8, 425, 523 stop-
words). There was very little difference in performance between them. At the end we
decided to use 8 English stopwords (and, an, by, from, of, the, with). We also combined
them with words that occur in more than 80% of the documents in the dataset. The
stopwords node usually contained around 20 words.

3.3 Optimal Tree

The tree created by the Basic Tree algorithm depends on the ordering of the documents.
Since the Basic Tree is choosing the documents in order, a random permutation of the
documents will generate a different tree. We now propose a modified Basic Tree algo-
rithm called Optimal Tree which generates trees independently of document ordering.

We start with a pool of documents. In case of Basic Tree algorithm we pick a docu-
ments from the pool in some arbitrary random order. In case of Optimal Tree algorithm
we always take the best document from the pool — a document which maximizes the
score given by equation 1. We use the same rules to create links and to determine the
node words as in case of Basic Tree with stopwords node algorithm.

3.4 Basic Graph

So far he have been thinking of documents organized into a hierarchy of topics. But if
we take a closer look we notice that topic hierarchies are not really hierarchies, they
are graphs. Open Directory, for instance, is a graph — a hierarchy tree with cross-links
between the nodes of the tree. We now propose an algorithm for connecting a set of
documents into a graph.

Let’s assume that we already built a portion of the graph. To insert a documentDi,
we create a nodeNi and link it to all nodesNj wherescore(Di, Nj) > threshold. A
set of words in nodeNi is composed of words from documentDi which arenew for
the whole graph:Ni = Di − ∪kNk, wherek runs over all nodes in the graph.

In the later sections we describe the use of a graph shortest path distance as a feature
distance measure. Given a document collection we expect that most of the documents
contain some stopwords. This means the distance between two nodes would always be
either1 (a direct link between the nodes) or2 (a path through a stopwords node). To
prevent this we remove the stopwords node after the graph is built.

4 Feature similarity measure

We have built the topology implicit on the nodes based on the distance in the graph.
This suggests that the features should not be treated as independent (i.e. bag of nodes)
but rather the geometry of the feature space could be adapted to reflect the dependency.

This could be done by defining the similaritySij between two featuresi and j
based on its distance in the graph. Then using this similarity matrixS to define the
inner product between two feature vectorsx andz:

κ(x, z) = x′Sz (2)

Feature distance is defined by the length of the shortest path connecting the nodes which
contain featuresi andj. We can treat the distances of links to be all equal to1 or we
can take1− score as the length of the link. The similarity between the featuresi andj
is then defined by(1 + dist(i, j))−1.

In case of Tree algorithms a single feature can be present in many nodes. If a features
i andj are present in more than one node we take the average shortest path distance
between all nodes which containi and all nodes which containj.

5 Experimental evaluation

We use the Reuters corpus volume 1 [7] which contains more than 800,000 documents.
Each document in the corpus also belongs to one or more of 103 categories.

We take 100 random documents from the Reuters corpus. Using these documents
we build a semantic structure using the algorithms described in section 3. We create
the feature distance matrixS (Eq. 2) using the distance measures from section 4 and
evaluate the performance. We repeat this procedure 10 times, each time using a different
set of documents. We compare various topology generation algorithms in combination
with different distance measures.

We measure the quality of the representation by the kernel alignment [2] which
captures the degree of agreement between a kernel and a given learning task. Intuitively
it compares the sum of within class distances with the sum of between class distances.

The alignment between the kernelκ and the matrixA that hasAij = 1 if documents
i andj belong to the same category and0 otherwise is given by∑

ij κ(xi, xj)Aij√∑
ij κ(xi, xj)2

∑
ij A2

ij

(3)

Table 1.Mean and associated standard deviation alignment values for all algorithms using various
topology feature distance measures.

Algorithm Alignment
Baseline methods

Random 0.5382
Cosine similarity 0.5848 (0.0217)

Basic Tree without stopwords node
Graph path + Feature distance 0.5911 (0.0279)
Graph path + Node distance 0.5696 (0.0280)
Weighted path + Feature distance0.5981 (0.0270)
Weighted path + Node distance 0.5756 (0.0284)

Basic Tree with stopwords node
Graph path + Feature distance 0.6186 (0.0220)
Graph path + Node distance 0.5832 (0.0199)
Weighted path + Feature distance0.6270 (0.0251)
Weighted path + Node distance 0.6169 (0.0250)

Optimal Tree with stopwords node
Graph path + Feature distance 0.6113 (0.0211)
Graph path + Node distance 0.5768 (0.0222)
Weighted path + Feature distance0.6291 (0.0252)
Weighted path + Node distance 0.6161 (0.0241)

Basic Graph
Graph path + Feature distance 0.6280 (0.0235)
Graph path + Node distance 0.6202 (0.0242)
Weighted path + Feature distance0.6258 (0.0245)
Weighted path + Node distance 0.6192 (0.0254)

We compare our algorithms against two baseline methods:Random:the similarity
between the documents is chosen uniformly at random. AndCosine similaritywhere
we take standard vector space model (bag of words). A document is represented with a
vectorv wherevi = 1 if featurei is present in the document andvi = 0 otherwise. We
use the cosine similarity — inner product of the feature vectors.

To measure document similarity we always use the average shortest path length in a
graph. In table 1 we denoteGraph pathif each link had length of1 andWeighted path
if we used1−score(Di, Nj) for a distance of a link when calculating the shortest path.

Feature distancemeans that we used the topology to measure feature similarity and
then equation 2 to calculate document similarity. Since each node basically represents
a document we can directly measure the document similarity as a shortest path distance
of the nodes representing the documents. We useNode distanceto denote this.

From table 1 we observe that Basic Tree without stopwords node has about the
same performance as cosine similarity baseline measure. Introducing a stopwords node
increases the alignment by 3% (a relative improvement of 5%). One can see this as
a small improvement, but the improvement of alignment between purely random doc-
ument similarity and cosine similarity is 5%. This suggests 3% increase to be more
significant than one might expect at first sight.

Further we notice that Basic Tree with stopwords achieves similar performance as
Optimal Tree and Basic Graph. This suggests that the quality of Basic Tree semantic
representation does not suffer much from the order of how documents are inserted into
the topology.

Comparing various distance measure strategies we observe that Feature distance in
combination with Weighted shortest path consistently gives very good results.

In case of Tree algorithms alignment is consistently higher when using weighted
(1 − score) shortest path distance between the nodes. The performance increase over
un-weighted (link length is1) shortest path is around 1.5%. For Basic Graph the per-
formance is about the same no matter how we define the length of the path.

Also the Feature distance always outperforms Node distance. The performance of
Node distance is around 1% lower than feature distance. On the other hand the Feature
distance is much more expensive to compute while the cost of Node distance is just one
calculation of shortest path algorithm.

We also performed experiments with paragraphs instead of documents. The idea
was to create a topology from the paragraphs and then measure the alignment using
whole documents. The alignment performance around the one of cosine similarity.

6 Conclusion

We have proposed and compared three different methods to model the semantic simi-
larity between then documents. Given a set of document we used a simple algorithms
to connect them into a tree or a graph. Using the imposed structure we defined a feature
and document similarity measures. We used the kernel alignment to compare the quality
of various similarity measures. Our results show that the document similarity defined
over the topology gives better alignment than standard cosine similarity measure on a
bag of words document representation.

References

[1] N. Cristianini and J. Shawe-Taylor.An introduction to support Vector Machines: and other
kernel- based learning methods. Cambridge University Press, 2000.

[2] N. Cristianini, J. Shawe-Taylor, A. Elisseeff and J. Kandola.On Kernel-Target Alignment.
Advances in Neural Information Processing Systems 14 (NIPS), 2002.

[3] N. Cristianini, J. Shawe-Taylor and H. Lodhi.Latent Semantic Kernels. Journal of Intelligent
Information Systems 18 (2002), 127–152.

[4] T. Hofmann.Probabilistic latent semantic indexing. In Research and Development in Infor-
mation Retrieval, 1999.

[5] J. Kandola, J. Shawe-Taylor and N. Cristianini.Learning Semantic Similarity. Neural Infor-
mation Processing Systems 15 (NIPS), 2002.

[6] T. A. Letsche and M. W. Berry.Large-scale information retrieval with latent semantic index-
ing. Information Sciences 100, 1997.

[7] T. Rose, M. Stevenson, and M. Whitehead.The Reuters Corpus Volume 1—from yester-
day’s news to tomorrow’s language resources. Third International Conference on Language
Resources and Evaluation, 2002.

[8] G. Siolas and F. d’Alch́e-Buc.Support vector machines based on a semantic kernel for text
categorization. In IEEE-IJCNN, 2000.

