
Linear Programming Boosting for Uneven Datasets

Jurij Leskovec Jurij.Leskovec@ijs.si

Jozef Stefan Institute, Ljubljana, Slovenia

John Shawe-Taylor John@cs.rhul.ac.uk

Royal Holloway University of London, Egham, UK

Abstract

The paper extends the notion of linear
programming boosting to handle uneven
datasets. Extensive experiments with text
classification problem compare the perfor-
mance of a number of different boosting
strategies, concentrating on the problems
posed by uneven datasets.

1. Introduction

Boosting is a method of combining so-called weak
learners that individually only perform slightly bet-
ter than a random classifier into a weighted combi-
nation that classifies with high accuracy. In general
boosting has been shown to exhibit a remarkable re-
sistance to overfitting. An explanation for this phe-
nomenon suggests that this results from boosting op-
timising the margin of the underlying weighted com-
bination of weak learners [10].

This interpretation has suggested a number of modi-
fications of the underlying boosting strategy through
changing the measure of the margin distribution that
is optimised [8]. Taking a 1-norm of the slack variables
and optimising the 1-norm of the coefficients leads to
a linear programme. If this is solved by so-called col-
umn generation, the resulting algorithm can be seen as
a boosting algorithm [2, 3], where the primal solution
gives the weightings of the weak learners and the dual
solution the distributions over examples.

The question of how to adapt boosting to handle un-
even training sets was considered by Karakoulas and
Shawe-Taylor [7]. They introduced the U-boost algo-
rithm that biased the distribution weighting in favour
of the examples from the smaller class.

The aim of the current paper is to introduce a version
of the linear programming boosting that is tuned for
uneven datasets. This is a natural approach to han-

dling uneven datasets as the algorithm optimises a cost
criterion that can be adapted to reflect the unevenness
of the dataset.

At the same time we present extensive experiments
comparing a number of different boosting strategies
and methods of weak learner generation. Our main
test bed for the experimental work is the Reuters doc-
ument collection.

2. Boosting algorithms

In this section we introduce the boosting algorithms
considered in our experiments, including the adapta-
tion of the linear programming algorithm for uneven
datasets.

Boosting is a method to find a highly accurate classi-
fication rule by combining many weak or base hypothe-

ses. Each weak hypothesis may be only moderately ac-
curate. Weak learners are trained sequentially. Each
weak learner is trained on examples which the preced-
ing weak learners found most difficult to classify.

2.1. AdaBoost

Let S = (x1, y1), . . . , (xm, ym) be a set of training ex-
amples. Each instance xi belongs to a domain X and
has assigned a single class yi. Each class yi belongs
to a finite label space Y . In this paper we focus on
binary classification problems in which Y = {−1, +1}.
We call examples having yi = +1 positive and those
having yi = −1 negative examples.

A weak learning algorithm accepts as input a sequence
of training examples S and a distribution Dt (where
Dt(i) could be interpreted as the misclassification cost
of the i-th training example). Based on this input the
weak learner outputs a weak hypothesis h. We inter-
pret the sign of h(x) as the predicted label and the
magnitude |h(x)| as the confidence in that prediction.
The parameter αt is chosen to measure the importance

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Given β and a training set: S = (x1, y1), . . . , (xm, ym)
where xi ∈ X , yi ∈ {−1, +1}

Initialise: D1(i) =

{

w+ if yi = +1
w− else

where w+

w−
= β and

∑m
i=1 D1(i) = 1

For t = 1, . . . , T :
Pass distribution Dt to weak learner
Get weak hypothesis ht : X → R

Choose αt ∈ R

Update: Dt+1(i) = Dt(i) exp(−αtβiyiht(xi))
Zt

where βi = 1
β if yi = +1 and 1 if otherwise,

and Zt is a normalization factor

Output the final hypothesis: f(x) =
∑T

t=1 αtht(x)

Figure 1. The algorithm AdaUBoost (AdaBoost, if β = 1)

of the weak hypothesis ht in the final linear combina-
tion of weak hypotheses.

At each round of boosting AdaBoost [11] increases the
weights of wrongly classified training examples (i.e. if
the signs of ht and yi differ) and decreases the weights
of correctly classified examples.

2.2. AdaUBoost

A common scenario when learning on imbalanced data
sets is that the trained classifier classifies all examples
to the major class. In text classification we often en-
counter this problem when we are learning a binary
classifier to separate a small topic from the rest of the
documents. In order to avoid this problem, we would
like to emphasise the importance of the smaller class.
We assume that the smaller class is the positive class
while the dominant class is the negative one.

AdaUBoost [7] utilises most of the ideas of Ad-
aBoost [11], but introduces an unequal loss function
and modified weight updating rule. The choice of a
parameter β will force uneven misclassification costs
for training examples (figure 1).

Examples from the smaller, positive, class will initially
get assigned β times larger weights than negative ex-
amples. The parameter β will also guide the weight
updating rule to increase the weight of false negatives
more aggressively than of false positives. On the other
hand it will decrease the weights of true positives more
conservatively than of true negatives. Under this up-
dating rule the weights of positive examples typically
maintain higher values. Each weak hypothesis there-
fore tends to correctly classify more positive examples,
since they maintain higher weights. The final hypoth-
esis, a linear combination of the weak hypotheses, will
also correctly classify more positive examples.

2.3. LPBoost

LPBoost [5] is a linear program (LP) approach to
boosting. The paper [5] shows that taking a 1-norm
of the slack variables and optimising the 1-norm of
the coefficients leads to a linear programme. If this
is solved by so-called column generation, the resulting
algorithm can be seen as a boosting algorithm [2, 3],
where the primal solutions give the weightings of the
weak learners and the dual solutions the distributions
over examples.

LPBoost iteratively optimises dual misclassification
costs and dynamically generates weak hypotheses to
make new LP columns. In contrast to gradient boost-
ing algorithms, which may only converge in the limit,
LPBoost converges in a finite number of iterations to
a globally optimal solution satisfying well-defined op-
timality conditions.

One would expect LPBoost to be computationally ex-
pensive. We found, however, that an iteration of LP-
Boost is slightly more expensive than an iteration of
AdaBoost, but on the other hand LPBoost needs far
fewer iterations than AdaBoost to converge.

2.4. LPUBoost

The LPBoost algorithm [5] is motivated from a gener-
alisation analysis that bounds the test error in terms
of the 1-norm of the vector of coefficients, margin
achieved and the slack variables. The minimisation
of the bound leads to a Linear Programme that gives
the formulation above when converted to the dual.

We now give a similar motivation for the uneven ver-
sion of the LPBoost algorithm, we have named LPU-
Boost. In this case we assume that the cost of mis-
classifying a positive example (assuming that the pos-
itive class is the less populated) is larger than that of
misclassifying a negative example. Hence, the loss Lf

associated with a classification function f is given by

Lf (x, y) = βP (f(x) ≤ 0 and y = 1)

+P (f(x) ≥ 0 and y = −1),

where as with AdaUBoost β > 1 gives the higher cost
of misclassification of positive examples. We can upper
bound this loss as follows

Lf (x, y) ≤
β(1 + y)

2ρ
(ρ − f(x))+ +

1 − y

2ρ
(f(x) + ρ)+,

(1)

where ρ > 0 and (·)+ denotes the function that is the
identity if its argument is greater than 0 and 0 other-
wise. We can now apply the Rademacher technique [1]

Given β and a training set: S = (x1, y1), . . . , (xm, ym)
where xi ∈ X , yi ∈ {−1, +1}
Initialise: α = 0, n = 0, βLP = 0

ui =

{

w+ if yi = +1
w− otherwise

where w+

w−
= β and

∑m
i=1 ui = 1

Repeat
n = n + 1
Pass distribution Dt to weak learner
Get weak hypothesis hn : X → R

Check for optimal solution:
if

∑m
i=1 uiyihn(xi) ≤ βLP then n = n − 1, break

Solve restricted master for new costs:
argmin(u,βLP) βLP

subject to
∑m

i=1 uiyihj(xi) ≤ βLP,
j = 1, . . . , n and

∑m
i=1 ui = 1

and D′+ ≤ ui ≤ D+, if yi = +1
D′− ≤ ui ≤ D−, otherwise,
i = 1, . . . , m

End
α = Lagrangian multipliers from last LP
Output the final hypothesis: f(x) =

∑n
j=1 αjhj(x)

Figure 2. The algorithm LPUBoost (LPBoost, if β = 1)

to bound the loss in terms of its empirical value and
the Rademacher complexity of the function class. The
Rademacher complexity of a class does not increase if
we move to its convex hull and so the bound involves
the 1-norm of the slack variables scaled by the inverse
margin plus the Rademacher complexity of the weak
learners again scaled by the inverse margin. We omit
the details because of space constraints. The result-
ing bound is optimised by the following Linear Pro-
gramme:

minα,ρ,ξ+,ξ−−ρ + D
(

β
∑m

i=1 ξ+
i +

∑m
i=1 ξ−i

)

subject to yi

∑n
j=1 αjhj(xi) ≥ ρ − ξyi

i ,

ξ+
i , ξ−i ≥ 0, i = 1, . . . , m

αj ≥ 0, j = 1, . . . , n and
∑m

i=1 αi = 1.

The parameter D controls the trade off between max-
imising the margin and controlling the slack vari-
ables. Those associated with positive examples re-
ceive β times the weight of those from negative ex-
amples in line with the bound (1), while the condition
∑m

i=1 αi = 1 ensures the resulting function lies in the
convex hull of the set of weak learners. The dual Lin-
ear Programme of the above is solved by the algorithm
LPUBoost of Figure 2.4 with D− = D and D+ = βD.

For LPUBoost we take the same LP formulation of
boosting as in LPBoost, but we introduce a new pa-

rameter β having the same role as in AdaUBoost.
Positive examples have a β times higher bound on

their misclassification costs ui (D′+

D′−
= D+

D−
= β). The

choice of parameter DLB controls the lower bound on
the misclassification cost ui. We could set it to 0,
but we rather set D− = 1

mν , where ν ∈ (0, 1), and
D−

D′−
= D+

D′+ = DLB . The problem we observed is the
sensitivity of LP and LPU boost to the value of pa-
rameter ν, which has to be tuned with some care to
obtain a good convergence rate.

LPUBoost combines AdaUBoost having an uneven
loss function and LPBoost having a well-defined stop-
ping criterion with a mechanism to prevent over-
fitting. This makes LPUBoost a good algorithm for
learning on uneven training sets: maintaining higher
weights on positive examples while using an LP to ob-
tain an optimal combination of weak hypotheses with
respect to a well-motivated optimisation criterion.

3. Weak learning algorithms

A weak learning algorithm is a procedure for comput-
ing weak hypotheses. Boosting finds a set of weak
hypotheses by repeatedly calling a weak learning al-
gorithm. The weak hypotheses are linearly combined
into a single rule. The input of the weak learning algo-
rithm is a distribution or vector of weights (misclassi-
fication costs), and a training data set. Weak learning
algorithms use the weights to find a weak hypothesis
which has a moderately low error with respect to the
weights.

Due to the weight updating rule examples which are
hard to classify will get incrementally higher weights
while the examples easy to classify get lower weights.
The effect is to force the subsequent weak learners to
concentrate on hard-to-classify examples.

3.1. AdaBoost.MH class of weak hypotheses

Boosting is a general purpose method that can be com-
bined with any weak learner. In practice it has been
combined with a wide variety of classes including de-
cision trees and neural networks.

In this paper we focus on boosting using very simple
classifiers. All classifiers considered in this section have
the form of a one level decision tree (if-then rule).
The test is to check for the presence of a word in a given
document. Based on the presence of the word the weak
hypothesis outputs a prediction. We interpret the sign
of the prediction as a predicted class (recall we are
dealing with binary problems) and the magnitude of
the output as the confidence in that prediction.

For example: if we try to predict which documents
belong to the Sports category, we will train a classi-
fier to make a distinction between Sports documents
(positive class) and the rest of the documents (nega-
tive class). Then our weak hypothesis could be a rule:
“if the word football occurs in a document, then we
are highly confident the document belongs to Sports

category. On the other hand, if football does not occur
in a document then we predict the document does not
belong to the Sports category with low confidence.”

Formally, we write w ∈ x to mean a term w occurs in
document x. So we define a weak hypotheses h which
makes predictions:

h(x) =

{

c+ if w ∈ x
c− if w /∈ x

(2)

where c+ and c− are real numbers.

Let us also define: given a current distribution Dt and
a term w: let X+ be a set of documents having the
term w, X+ = {x : w ∈ x}, X− = {x : w /∈ x} and
b, l ∈ {+,−} then we calculate W has−word

class :

W b
l =

∑

xi∈Xb∧yi=l

Dt(i) (3)

The weak learners presented in this subsection all have
the same form of weak hypotheses, but they impose
different restrictions on the values c+, c− and αt and
use different criterion to choose a weak hypothesis at
each round of learning.

At each round of learning our weak learners search
all possible terms. For each term, the values c+ and
c− and a score are assigned to that particular weak
learner. After all terms have been searched, a learner
with best score is chosen. Different weak learners use
different scores.

For AdaBoost.MH a bound on empirical loss (frac-
tion of misclassified examples) has been proven by
Schapire and Singer [11]. They showed that the Ham-
ming loss (MH stands for minimum Hamming loss) of
the boosted function obtained using AdaBoost.MH is
at most

∏T
t=1 Zt, where Zt is a normalization factor at

round t. This upper bound can be a used as a guide-
line for choosing αt and the design of the weak learning
algorithm.

3.1.1. Real AdaBoost.MH

The first algorithm is called AdaBoost.MH (Real.MH)
with real-valued predictions [12]. We permit c+ and
c− to be unrestricted real valued predictions.

It was shown in [11] that Zt is minimised by choosing

cb =
1

2
ln

(

W b
+

W b
−

)

(4)

and setting αt = 1 implies that:

Zt = 2

(

√

W+
+ W+

−
+

√

W−

+ W−

−

)

(5)

Thus we choose the term w for which Zt has the min-
imal value. As suggested in Schapire and Singer [12]
we smooth the values of cb to limit the magnitudes of
predictions

cb =
1

2
ln

(

W b
+ + ε

W b
−

+ ε

)

(6)

We use ε = 1
m . Since W b

+ and W b
−
∈ [0, 1], this bounds

|cb| by roughly 1
2 ln(1/ε).

3.1.2. Disc AdaBoost.MH

AdaBoost.MH with discrete predictions (Disc.MH)
forces the predictions cb of the weak hypothesis to be
either +1 or −1. This is a more traditional setting
where predictions do not carry confidences, and αt is
a measure of confidence in the weak hypothesis. We
still minimise Zt for a given term w. Using the same
notation as introduced in the previous section, we set:

cb = sign(W b
+ − W b

−
) (7)

We can interpret the choice of cb as a weighted ma-
jority vote over training examples. Let rt = |W+

+ −
W+

−
|+ |W−

+ −W−

−
|, then it can be shown [11], that in

order to minimise Zt we should choose:

αt =
1

2
ln

(

1 + rt

1 − rt

)

(8)

giving Zt =
√

1 − r2
t . So we choose a weak hypothesis

(a term w) which has the smallest Zt.

3.1.3. Disc and Real AdaBoost.LP

The LPBoost algorithm [5] (see Section 2.3) suggests
that at each round of boosting a weak hypothesis h
with maximal sum of misclassification costs Dt multi-
plied by class value yi ∈ {−1, +1} and prediction h:

DtSum =

m
∑

i=1

Dt(i)h(xi)yi (9)

should be chosen. Since this is a different criterion for
choosing the best weak-hypothesis in AdaBoost.MH,
we obtain two new weak learners. We call them
Real.LP and Disc.LP. They differ from AdaBoost.MH
in the way weak hypothesis is chosen, instead of min-
imising Zt, DtSum is maximised.

3.1.4. Disc and Real AdaBoost.U

Karakoulas and Shawe-Taylor in their paper on boost-
ing imbalanced training sets [7] proposed a new
method for calculating Zt and choosing αt.

Note that in case of an uneven loss function
(AdaUBoost, LPUBoost) we have an additional pa-
rameter β. Positive examples will get β times higher
weight than negative examples. The parameter β will
also guide the weight updating rule to increase the
weight of false negatives more aggressively than of false
positives. We define Zt as:

Zt(αt) =

m
∑

i=1

Dt(i) exp (−αtβiht(xi)yi) (10)

where βi = 1/β if yi = +1 and 1 if otherwise. To
minimise the error we seek to minimise Zt with re-
spect to αt. By taking the first derivative of (10) and
equating it to zero and introducing notation Wc,p =
∑m

i=1 Dt(i)|yi = c ∧ h(xi) = p, where c, p ∈ {−1, +1},
we get: − exp(−αt/β)W++/β + exp(αt/β)W−+/β +
exp(αt)W+− − exp(−αt)W−− = 0. Substituting Y =
exp(αt) we obtain:

C1Y
1−1/β + C2Y

1+1/β + C3Y
2 + C4 = 0 (11)

where C1 = −W++/β, C2 = W−+/β, C3 =
W+−, C4 = −W−−. The root of equation (11) can
be found numerically. Z ′′

t (αt) > 0 implies Zt(αt) is
convex and has only one minimum.

A weak hypothesis h with minimal Zt is chosen. This
is another way of calculating αt and two new weak
learners can be obtained (Real.U, Disc.U). They differ
from AdaBoost.MH only in the way Zt is calculated
and for discrete learners we set αt to be the solution
of (11) which minimises Zt.

4. Experimental evaluation

The following sections describe the experimental
setup. We also describe and analyse experiments per-
formed using the four boosting algorithms and six text
categorization weak learners that were described in the
previous sections.

4.1. Experimental setup

We performed empirical evaluation on the ModApte
split of the Reuters-21578 dataset compiled by David
Lewis. The split consists of 12, 902 documents of which
9, 603 are used for training and 3, 299 for testing.

The following preprocessing was performed: all words
were converted to lower case and punctuation marks

Table 1. Test F1 of Reuters categories (with the number
of positive training documents). We omit the weak learner
used with a certain boosting algorithm.

Category Ada U LP LPU SVM
earn (2877) 0.97 0.97 0.91 0.92 0.98
acq (1650) 0.90 0.94 0.69 0.85 0.93
money-fx (538) 0.69 0.73 0.66 0.67 0.77
interest (347) 0.67 0.72 0.61 0.68 0.69
corn (181) 0.80 0.88 0.88 0.90 0.82
gnp (101) 0.77 0.82 0.78 0.82 0.82
carcass (50) 0.56 0.67 0.63 0.63 0.57
cotton (39) 0.82 0.90 0.95 0.95 0.70
meal-feed (30) 0.50 0.80 0.81 0.81 0.47
pet-chem (20) 0.00 0.47 0.00 0.29 0.15
lead (15) 0.44 0.70 0.67 0.75 0.00
soy-meal (13) 0.35 0.80 0.38 0.71 0.26
groundnut (5) 0.00 0.57 0.86 0.86 0.00
platinum (5) 0.00 0.14 1.00 1.00 0.44
potato (3) 0.50 0.80 0.86 0.86 0.00
naphtha (2) 0.00 0.40 0.89 0.89 0.00
Average 0.50 0.71 0.72 0.79 0.48

were removed. We removed stop words from a list of
523 English words. We used the Porter stemmer [9]
and retained only those terms having document fre-
quency larger than 3. After the preprocessing the cor-
pus contained 6, 242 distinct features (terms).

We compare some of the results with Support Vector
Machines [4]. We used the SV M light [6] implementa-
tion of SVM with a linear kernel.

4.2. Performance on Reuters categories

Based on category size we have chosen a set of 16
Reuters-21578 categories. Some of them are large
(earn, acq) and some really small (potato, platinum)
having only a few examples.

We trained boosting binary classifiers to make predic-
tions whether a document belongs to a category or
not. We assigned all documents having the category a
positive class and all other documents a negative class.

We ran a set of 120 experiments for a single Reuters
category using combinations of all the described boost-
ing algorithms and weak learners. In all experiments
a number of rounds of learning was set to 300. We
tested the combinations of the following parameters:
ν: 0.1, 0.2; DLB: 0, 10, 50, 100; β: 2, 4, 8.

For each boosting algorithm we display the best ex-
periment using the standard information retrieval F1
score on the test dataset. We realise that choosing the
best performance on the test set invalidates their sta-
tus. But the aim of this experiment was to get the idea
about the best possible performance (upper bound) of
various algorithms. Table 1 shows results for chosen
categories.

Figure 3. Performance on Reuters categories of different sizes

Table 2. Average test F1 based on 5 fold cross validation.

Category Ada U LP LPU SVM
earn (2877) 0.97 0.97 0.97 0.91 0.98
acq (1650) 0.91 0.94 0.88 0.84 0.94
money-fx (538) 0.65 0.70 0.63 0.65 0.76
interest (347) 0.65 0.69 0.59 0.66 0.65
corn (181) 0.81 0.87 0.82 0.83 0.80
gnp (101) 0.78 0.80 0.64 0.66 0.81
carcass (50) 0.49 0.65 0.63 0.63 0.52
cotton (39) 0.68 0.89 0.95 0.95 0.68
meal-feed (30) 0.59 0.77 0.65 0.81 0.45
pet-chem (20) 0.03 0.16 0.03 0.19 0.17
lead (15) 0.20 0.67 0.24 0.45 0.00
soy-meal (13) 0.30 0.73 0.35 0.38 0.21
groundnut (5) 0.00 0.00 0.22 0.75 0.00
platinum (5) 0.00 0.00 0.20 1.00 0.32
potato (3) 0.53 0.53 0.29 0.86 0.15
naphtha (2) 0.00 0.00 0.20 0.89 0.00
Average 0.47 0.59 0.52 0.72 0.46

As we can see from the averages LPUBoost (LPU)
is dominant, followed by the LPBoost (LP) and
AdaUboost (U). AdaBoost (Ada) and linear SVM are
far behind. On large categories Ada, U and SVM are
a little better than LP and LPU, but as we move to
smaller categories the qualities of LPU (and also LP
and U to some extent) seem to appear. AdaUBoost
has the feature of uneven loss function which helps
and LPBoost has the mechanism to find an optimal
combination of weak hypotheses; both these features
are combined in LPUBoost.

On small categories Ada and U overfit the training
data (figure 3). AdaUBoost is more resistant to over-
fitting than AdaBoost. On the other hand the perfor-
mance of LP and LPU on the training set decreases

with decreasing category size, but on the test set it
remains at about the same level. We can see that LP
and LPU are superior to Ada and SVM while U does
a little worse than LP and LPU.

Secondly we performed the same set of 120 experi-
ments using stratified 5 fold cross validation. Based
on average F1 score over 5 trials, we have chosen best
parameter configuration for each algorithm. Table 2
shows the average F1 on test set.

We can see that results obtained by cross validation
(table 2) are not far from the optimal (table 1). For
algorithms with a small set of parameters (AdaBoost,
SVM) the difference between optimal and cross vali-
dation performance is small. There is a surprisingly
large gap for U and even larger for LP.

SVM performs best of all algorithms on categories with
more than 1% of positive training examples, but as we
decrease the category size it is no more competitive.
LPUBoost performs best and not far from optimal.
We also observed that optimal parameter settings are
different from those obtained by cross validation. Per-
formance of LPUBoost is quite stable on the whole
range of categories of various sizes.

Figure 4 shows typical learning curves of boosting algo-
rithms. In the top row we see the typical performance
of AdaBoost on large categories and the oscillations we
noticed in AdaUBoost. The bottom row shows LP and
LPU. We observe larger jumps in performance than for
instance with Ada or U. Typically at the early rounds
of learning LP (LPU) is not stable, but when we move
forward performance gets more stable, when finally the
algorithm converges.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

S
co

re

Number of rounds

MONEY-FX: AdaBoost + Real.MH

Train F1
Test F1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 50 100 150 200 250 300

S
co

re

Number of rounds

MONEY-FX: UBoost + Disc.U

Train F1
Test F1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20 25 30 35

S
co

re

Number of rounds

GRAIN: LPBoost + Real.MH

Train F1
Test F1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

S
co

re

Number of rounds

GRAIN: LPUBoost + Real.MH

Train F1
Test F1

Figure 4. Comparison of various boosting algorithms learning curves

LP and LPU use many fewer weak hypotheses than
Ada or U . We trained Ada and U for 300 rounds
(300 weak hypotheses were chosen). LP and LPU con-
verged in around 50 rounds for large and around 5 or
less rounds of learning for small categories. For some
of the smallest categories LPU picked just 1 or 2 weak
hypotheses and made no error – for category platinum

it is sufficient to check for the presence of a word plat-

inum in order to make perfect predictions.

Considering chosen weak learners we see Real.MH
gives best performance for most of the categories.
This is in accordance with the results reported in [12].
Real.MH is followed by Disc.MH and Real.LP. Special
weak learners did not improve the performance – not
even in combination with the boosting algorithm they
were designed to work together.

4.3. Discarding positive training examples

We took 2 largest categories: earn and acq. Training
set consists of all negative and a number of randomly
selected positive training examples. Test set is un-
changed. By selecting a number of positive training
examples we artificially created a small category.

We performed the same set of 120 experiments as in
section 4.2. For each boosting algorithm we display
the best experiment using the F1 score on the test set.
This means we show the upper bound of the algorithm.

Figure 5 shows the results which are surprising. Pre-
vious experiments showed that LPU is best on uneven
training sets, because it does not overfit and picks a
sufficiently small number of weak learners. But figure 5
shows a different picture. As the number of positive
training examples decreases, the performance of LPU
(LP) also dramatically decrease, but the performance
of U (Ada) remains almost at the same level.

We observed almost the same things with acq: U is
still the best, closely followed by LPU. Performance of
Ada and LP is poor and after the number of positive
training examples drops bellow 50, F1 is less than 0.1.

Since experiment showed that the best possible per-
formance of LP and LPU are far behind from Ada and
U, we didn’t run stratified cross validation.

LPU (LP) performed very well on naturally uneven
datasets. But when we artificially create an small cat-
egory, the performance of LPU decreased dramatically.

This suggests that there is a fundamental difference be-
tween naturally small and artificially small categories.
We think that Reuters’ editors categorizing documents
made earn very diverse (broad and not specific), while
a small category like platinum is very specific. Note
that the test set is unchanged so it resembles original
category (has the same distribution as original cate-
gory). To make good predictions using small training

Figure 5. Discarding earn positive training examples

(and large diverse testing) earn one has to “overfit”
by taking all (not necessarily significant) features of
the training data. On the other hand we have to be
very careful and take only really significant features to
make good predictions on platinum.

5. Conclusions

This paper introduces LPUBoost boosting algorithm.
We provide both theoretical and empirical evidence
that LPUBoost is well suited for text categorization
for uneven data sets.

LPUBoost has many benefits over gradient-based ap-
proaches: finite termination at globally optimal so-
lution, well-defined convergence criteria, unequal loss
function and use fewer weak hypotheses.

References

[1] Peter L. Bartlett and Shahar Mendelson.
Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Ma-

chine Learning Research, 3:463–482, 2002.

[2] Kristin P. Bennett, Ayhan Demiriz, and John
Shawe-Taylor. A column generation algorithm for
boosting. In Machine Learning: Proceedings of

the 17th International Conference, ICML’2K.

[3] Kristin P. Bennett, Ayhan Demiriz, and John
Shawe-Taylor. A column generation algorithm for
boosting. Machine Learning, 46(1):225–254, 2001.

[4] N. Cristianini and J. Shawe-Taylor. An Intro-

duction to Support Vector Machines. Cambridge
University Press, 2000.

[5] Ayhan Demiriz, Kristin P. Bennett, and John
Shawe-Taylor. Linear programming boosting via
column generation. Machine Learning, 46(1-
3):225–254, 2002.

[6] Thorsten Joachims. Text categorization with sup-
port vector machines: learning with many rele-
vant features. In Proceedings of ECML-98, 10th

European Conference on Machine Learning, num-
ber 1398, pages 137–142. Springer Verlag, 1998.

[7] Grigoris Karakoulas and John Shawe-Taylor. Op-
timizing classifiers for imbalanced training sets.
In Proceedings of Neural Information Processing

Workshop, NIPS’98, 1999.

[8] Huma Lodhi, Grigoris Karakoulas, and John
Shawe-Taylor. Boosting the margin distribution.
In Proceedings of Intelligent Data Engineering

and Automated Learning – IDEAL 2000, Lecture

Notes in Computer Science 1983, 2000.

[9] M. F. Porter. An algorithm for suffix stripping.

[10] R. Schapire, Y. Freund, P. Bartlett, and W. Sun
Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. Annals of

Statistics, 26(5):1651–1686, 1998.

[11] Robert E. Schapire and Yoram Singer. Improved
boosting algorithms using confidence-rated pre-
dictions. In Computational Learing Theory, pages
80–91, 1998.

[12] Robert E. Schapire and Yoram Singer. Boostex-
ter: A boosting-based system for text categoriza-
tion. Machine Learning, 39(2/3):135–168, 2000.

