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Abstract

Many policies in the US are determined locally, e.g., at the
county-level. Local policy regimes provide flexibility be-
tween regions, but may become less effective in the presence
of geographic spillovers, where populations circumvent local
restrictions by traveling to less restricted regions nearby. Due
to the endogenous nature of policymaking, there have been
few opportunities to reliably estimate causal spillover effects
or evaluate their impact on local policies. In this work, we
identify a novel setting and develop a suitable methodology
that allow us to make unconfounded estimates of spillover
effects of local policies. Focusing on California’s Blueprint
for a Safer Economy, we leverage how county-level mobility
restrictions were deterministically set by public COVID-19
severity statistics, enabling a regression discontinuity design
framework to estimate spillovers between counties. We esti-
mate these effects using a mobility network with billions of
timestamped edges and find significant spillover movement,
with larger effects in retail, eating places, and gyms. Contrast-
ing local and global policy regimes, our spillover estimates
suggest that county-level restrictions are only 54% as effec-
tive as statewide restrictions at reducing mobility. However,
an intermediate strategy of macro-county restrictions—where
we optimize county partitions by solving a minimum k-cut
problem on a graph weighted by our spillover estimates—
can recover over 90% of statewide mobility reductions, while
maintaining substantial flexibility between counties.

Introduction
Many policies in the United States—COVID-19 restric-
tions, environmental regulations, and laws controlling the
sales of e-cigarettes, firearms, and controlled substances—
are determined at the state- or county-level. Local policy
regimes provide flexibility between regions, allowing pol-
icymakers to set regulations depending on local circum-
stances (e.g., COVID-19 severity) and the preferences of
their constituents (e.g., on gun control). On the other hand,
allowing policies to be set locally often results in differing
levels of restrictiveness between neighboring regions. These
differences can lead to geographic spillovers, where popu-
lations circumvent restrictions by traveling to less restricted
regions nearby. Spillovers risk undermining the efficacy of
local policies; for example, if banned goods are imported
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across state borders or if, during the pandemic, individuals
in counties under lockdown continue to visit places in neigh-
boring counties. Furthermore, spillovers can affect impor-
tant downstream consequences. For example, the movement
of individuals from more restricted (and possibly more in-
fected) regions to less restricted (and possibly less infected)
regions during the pandemic could result in greater overall
spread of the virus.

However, there are few opportunities to reliably estimate
causal spillover effects. Researchers cannot run experiments
to randomly assign policies to states and counties, and causal
identification is difficult in most observational studies, due
to the presence of confounders. For example, attempting
to study the effects of COVID-19 restrictions (e.g., clos-
ing restaurants) on mobility patterns introduces potential
confounding covariates that predict both the treatment and
the outcome, such as current COVID-19 severity in the re-
gion and the population’s demographics. Prior work has
attempted to address these confounders by controlling for
them, but there could always be unobserved or unknown
confounders that bias causal estimates. Furthermore, the de-
centralized nature of policymaking that gives rise to po-
tential spillovers also often results in varying policy defini-
tions and implementations across regions. This heterogene-
ity makes it difficult to define a consistent treatment whose
effects we can measure.

In this work, we introduce a setting in which we can make
unconfounded estimates of the spillover effects of consis-
tent policies. We focus on California’s Blueprint for a Safer
Economy, a statewide policy framework that determined
weekly county-level mobility restrictions for all 58 counties
in California from August 2020 to June 2021. The Blueprint
consisted of four tiers that corresponded to policies of de-
creasing restrictiveness. At the start of each week, each
county’s tier was determined based on that county’s COVID-
19 metrics (case rate and test positivity) in the preceding
weeks. The California Blueprint presents a unique opportu-
nity for studying spillover for three reasons: (1) neighbor-
ing counties were frequently in differing tiers, enabling the
analysis of spillovers from more restricted to less restricted
counties; (2) tiers were defined in the same way across coun-
ties, yielding a consistent treatment; (3) tiers were determin-
istically assigned at the thresholds of COVID-19 metrics.
These three ingredients allow us to develop a causal infer-
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ence framework based on regression discontinuity design to
make unconfounded estimates of spillover effects.

To capture spillover, we focus on cross-county mobility in
a large-scale mobility network. Our network is a dynamic bi-
partite graph that represents the weekly movements of indi-
viduals from census block groups (CBGs) to specific points-
of-interest (POIs) such as restaurants and grocery stores. Our
objective is to estimate the effect of pairwise county tiers
on the number of visits from each CBG to POI. The mo-
bility network for California contains around 23,000 CBGs
and 130,000 POIs, with nearly 3 billion edges per week.
We use stochastic gradient descent, with loss-corrected neg-
ative sampling, to make estimation computationally feasible
in this large-scale setting. Studying mobility patterns at the
POI-level enables us to estimate heterogeneous treatment ef-
fects for POI categories; this ability is particularly relevant
since tier restrictions were often industry-specific.

Finally, our spillover estimates allow us to quantify the
cost of spillovers on policies across spatial scales. In the
presence of spillovers, we find that county-level restrictions
are, on average, only 54% as effective as statewide restric-
tions at reducing mobility. However, intermediate strategies
of macro-county restrictions—when counties are grouped
intelligently—can balance the trade-off between the policy
flexibility and efficacy. We show that finding the most effec-
tive county partition for a given spatial granularity is equiv-
alent to solving a minimum k-cut problem on an undirected
county graph weighted by our spillover estimates. Using this
approach, we identify macro-county restrictions that recover
over 90% of statewide mobility reductions, while maintain-
ing substantial flexibility between counties.

In summary, our contributions are as follows:
• Setting: we identify a novel setting for studying

spillovers where the same set of policies was applied with
the same thresholds to many areas;

• Methods: we develop a regression discontinuity (RD)
design framework that allows us to make unconfounded
estimates of heterogeneous spillover effects in this set-
ting, estimated over a large-scale mobility network con-
taining billions of edges;

• Analyses: we demonstrate significant spillover effects
in many POI groups and evaluate the costs of these
spillovers on policies across spatial scales.

In a complex, interconnected world with few opportunities
to reliably estimate policy effects, our work is among the
first to identify a setting where spillovers can be rigorously
estimated and to develop an appropriate methodology to es-
timate and evaluate the effects of spillovers. An extended
version of our paper with additional data and methodologi-
cal details is available online (Chang et al. 2022).1

Related Work
Spillovers often arise from decentralized policymaking
for interconnected regions. For example, Sigman (2005)

1Our code is available at https://github.com/snap-stanford/
covid-spillovers. We also provide our constructed Z variables that
can be used with RD design to estimate the effects of the California
Blueprint tiers on spillovers and other outcomes.

finds that water quality is lower at stations downstream
of states that are authorized to control their own wa-
ter programs, since they “free-ride.” Coates and Pearson-
Merkowitz (2017) show that in states with stronger gun laws,
there is an increased likelihood of gun imports from states
with weaker gun laws. Bronars and Lott (1998) show that
while a concealed handgun law led to a reduction in crime
in the state, it also led to an increase in crimes in neighboring
states, suggesting that criminals were crossing borders. Hao
and Cowan (2017) find that legalization of recreational mar-
ijuana in a state leads to an increase in marijuana-related ar-
rests in bordering states. Spillovers also arise in online con-
texts, where instead of crossing geographic borders, users
can migrate across platforms if they are banned on one plat-
form; furthermore, levels of toxicity and radicalization are
sometimes higher on the new, often less regulated platforms,
compromising the efficacy of the original content modera-
tion (Ribeiro et al. 2021; Ali et al. 2021).

In the context of COVID-19, prior research has mostly fo-
cused on the direct effects of policies on population health
or behavior, without explicitly modeling spillovers (Cher-
nozhukov, Kasahara, and Schrimpf 2021; Nguyen et al.
2020; Brauner et al. 2020). Chandrasekhar et al. (2021)
investigate disease spillovers between interconnected re-
gions in a model-based setting and Holtz et al. (2020) pro-
vide early evidence of mobility spillovers, showing that a
state’s population reduced its own mobility when neighbor-
ing states implemented shelter-in-place policies. Most re-
lated to our work is Zhao, Holtz, and Aral (2021), who use
a difference-in-difference approach to estimate the effects
of COVID-19 policies on mobility and provide evidence of
spillovers in cross-state travel. We build on this work by ad-
dressing two primary limitations of their study: first, the au-
thors note that their estimates could be confounded by un-
observed, time-varying factors; other research on spillovers
also suffers from potential confounding, using difference-
in-difference approaches (Hao and Cowan 2017; Holtz et al.
2020) or regressions (Coates and Pearson-Merkowitz 2017;
Sigman 2005; Bronars and Lott 1998). Second, in order “to
create sufficient statistical power to identify causal effects,”
the authors collapse different policy interventions into gen-
eral policy “types” (e.g., resuming dine-in and lifting gath-
ering restrictions are both counted as reopening), which vi-
olates assumptions of consistent treatment.

In contrast with prior work, we are able to identify uncon-
founded spillover estimates for a single set of policies by
applying our RD-based framework to California’s Blueprint
for a Safer Economy. Furthermore, by estimating effects on
the CBG-POI network, our model enables the analysis of
counterfactual fine-grained mobility patterns under differ-
ent pandemic policies. Understanding mobility patterns has
been essential to controlling the spread of COVID-19 (Buc-
kee et al. 2020), and many researchers rely on fine-grained
mobility data to model the effect of mobility on the spread
of the virus (Badr et al. 2020; Chinazzi et al. 2020; Kraemer
et al. 2020; Chang et al. 2020, 2021; Nouvellet et al. 2021).
Our model furthers such analyses by investigating the com-
plex effects of policy interventions on mobility, closing the
gap from policy to behavior to COVID-19 outcomes.
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Figure 1: Data sources. (a) Percentage of California coun-
ties in Blueprint tiers over time (greyed-out period repre-
sents Regional Stay-At-Home Order); (b) Tiers in the week
of March 15, 2021; (c) Average weekly visits over time.

Data
California Blueprint for a Safer Economy. The
Blueprint was implemented for all 58 counties in California
from August 30, 2020 to June 15, 2021. It consisted of four
tiers: purple (“widespread”), red (“substantial”), orange
(“moderate”), and yellow (“minimal”). These tiers corre-
sponded to mobility policies of decreasing restrictiveness;
for example, in the purple tier, most non-essential indoor
businesses were closed, while in yellow, they could be
open with modifications. We use the archived data sheets
from the California Department of Public Health (CDPH),
which provide detailed documentation of every county’s
weekly tier assignment and the COVID-19 metrics used
to make those assignments.2 In Figure 1a, we visualize
the progression of counties through tiers over time; we
grey out the period from December 5, 2020 to January
25, 2021, during which most of the state was under a
Regional Stay-At-Home Order (CDPH 2020). We can
see that counties generally moved through similar tiers at
similar times, which is expected, since COVID-19 severity
was correlated across counties. However, in many weeks,
we also see substantial representation from at least two
different tiers. For example, in the week of March 15, 2021,
there were 11 counties in the purple tier, 42 in the red tier, 4
in the orange tier, and 1 in the yellow tier (Figure 1b). Many
of these differing tiers appeared between adjacent counties,
enabling the analysis of spillovers across county borders.

Mobility network. We use data from SafeGraph, a com-
pany that anonymizes and aggregates location data from mo-
bile apps. For each POI, SafeGraph provides weekly esti-
mates of where visitors are coming from, aggregated over
CBGs.3 This creates a dynamic, bipartite graph between
CBGs and POIs, where an edge weight Yijw represents the
number of visits recorded by SafeGraph from CBG ci to POI
pj in week w. SafeGraph also reports how many devices
they recorded in each CBG and week. Incorporating device

2https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/
COVID-19/CaliforniaBlueprintDataCharts.aspx

3https://docs.safegraph.com/docs/weekly-patterns

counts into our model allows us to account for varying cov-
erage across CBGs and over time.

In Figure 1c, we show the average number of weekly vis-
its recorded per device over time, aggregated over the en-
tire CBG-POI network for California. We see that visits in-
creased post-Regional Stay-at-Home as Blueprint tiers de-
creased in restrictiveness. However, various latent variables
could explain this correlation, such as reduced COVID-19
severity leading to less restrictive tiers and less fear of vis-
iting places. Thus, it is necessary to develop a robust causal
framework that allows us to disentangle tier effects from
confounders, which we describe in the following section.

Causal Framework
To capture spillovers, our objective is to estimate the effect
of pairwise tiers on cross-county mobility. The key to our
causal framework is that we can utilize RD design, which
is widely recognized as “one of the most credible non-
experimental strategies for the analysis of causal effects”
(Cattaneo, Idrobo, and Titiunik 2020). In a typical RD de-
sign, units are assigned to the treatment or control condition
according to an exogenously determined threshold of a sin-
gle continuous variable, known as the assignment variable
(or running or forcing variable). Researchers can then com-
pare the outcomes for units just below the threshold to units
just above the threshold to estimate the local causal effect
of treatment. A primary advantage of RD design is that it
achieves unconfoundedness, without needing to control for
all possible confounders. This is because the unconfound-
edness assumption is met: treatment assignment is condi-
tionally independent of potential outcomes, given covariates
(Imbens and Lemieux 2008). This assumption is clearly met
in RD design, since treatment assignment is determined by
the assignment variable, and so, conditioned on covariates,
there is no variation in treatment.

Our problem generally fits RD design, since Blueprint
tiers were assigned at the thresholds of continuous COVID-
19 metrics. We focus on the threshold between the purple
and red tiers, since they were the adjacent pair with the most
support. However, we need to extend generic RD design
in two ways: (1) to account for multiple assignment vari-
ables, since tiers were assigned based on numerous COVID-
19 metrics, (2) to account for multiple treatment conditions,
since we are considering pairwise tiers as our treatment. We
describe our approach in the following sections.

Assigning Blueprint tiers. First, let us focus on the prob-
lem of determining a single county’s tier, Tiw, from its
COVID-19 metrics. Tier assignments depended on three
metrics: adjusted case rate, test positivity rate, and a health
equity metric, which was the test positivity rate in the most
disadvantaged quartile of neighborhoods (CDPH 2021b). To
advance to a less restricted tier, counties needed to meet the
criteria for movement for two consecutive weeks (CDPH
2021a). For a large county (population over 106,000), the
criteria to move from purple to red could be met in two
ways: (1) by meeting the thresholds for the red tier for all
three metrics, (2) by meeting the thresholds for test posi-
tivity and health equity for the orange tier, thus exchanging
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Figure 2: Visualizing our Z variable. (a) Z almost perfectly separates counties in the purple and red tiers. (b) Triggering patterns
for Z (among large counties compliers). (c) Cross-county mobility vs Z. All source counties are in purple (0 ≤ Z ≤ 5) and the
x-axis represents the target county’s Z. Black lines represent linear fits and dots are average outcomes per bin.

adjusted case rate for more stringent thresholds on the other
two. Small counties (population under 106,000) did not have
to meet the health equity thresholds, but needed to demon-
strate their commitment to equity through other plans. For
most of the duration of the Blueprint, the purple-red thresh-
old for adjusted case rate was 7 per 100,000 and 8% for
test positivity and health equity (and 5% for the red-orange
threshold). The purple-red threshold for adjusted case rate
was increased to 10 per 100,000 on March 12, 2021, after
2 million vaccines had been administered statewide (Ibarra
and Becker 2021).

Constructing a single assignment variable Z. We take a
centering approach to RD design with multiple assignment
variables (Wong, Steiner, and Cook 2013). That is, we first
center each of the assignment variables by subtracting their
respective thresholds, then apply min/max aggregations to
the centered variables in order to construct a new assign-
ment variable Z that can singly determine a unit’s treatment.
More formally, we design a function f : Rm → R that
maps a county’s m COVID-19 metrics to a single continuous
variable, Ziw. For a large county, the m metrics include the
county’s adjusted case rate (CR), test positivity (TP ), and
health equity metric (HE) from the preceding two weeks;
for a small county, only adjusted case rate and test positiv-
ity. Our mapping f satisfies the key property that Ziw < 0 if
and only if the county was assigned to the red tier.

Let CRred
iw represent the adjusted case rate for the county

in week w with the purple-red threshold subtracted, and let
us define other terms similarly. We construct Ziw for large
counties as follows:

Z1iw = max(CRred
iw , TP

red
iw , HEred

iw , (1)

CRred
iw−1, TP

red
iw−1, HEred

iw−1)

Z2iw = max(TP orange
iw , HEorange

iw , TP orange
iw−1 , HEorange

iw−1) (2)

Ziw = min(Z1iw, Z2iw). (3)

For small counties, we only have

Ziw = max(CRred
iw , TP

red
iw , CRred

iw−1, TP
red
iw−1). (4)

In Figure 2a, we show that our new Z variable almost per-
fectly separates the counties in the purple and red tiers. Over
the 9-week period from February 1 to March 29, 2021, there
were 480 counties/weeks in the purple or red tier, and 471 of
them follow that Ziw < 0 if and only if the county is in the

red tier. We manually check the non-compliers and find that
they were cases of counties, mostly small, that were allowed
to remain in the red tier upon special request, as noted in the
CDPH documentation.

To interpret our new Z variable, we also analyze its
“triggering” patterns; that is, for each min/max aggregation,
which input is the minimum or maximum (Figure 2b). For
large counties, we find that the most frequent maximum
for the first criteria Z1 is the adjusted case rate from week
w − 1. For the second criteria Z2, the most frequent max-
imum is the health equity metric from week w − 1. This
reflects trends from this time period: COVID-19 severity
was improving over time, so week w − 1 tended to have
higher rates than week w, and health equity (i.e., test posi-
tivity in the most disadvantaged quartile) tended to be worse
than the overall test positivity. Interestingly, we also find that
Z2 triggers more often than Z1, when taking the minimum
between them. This indicates that this alternative path—
meeting more stringent test positivity and health equity
thresholds and dropping adjusted case rate—substantially
helped counties move toward less restricted tiers.

RD design with pairwise treatments. We can now for-
mulate an RD design problem where treatment (purple/red
tier) is assigned at the threshold of a single continuous vari-
able (Z). Since we are interested in spillover effects in this
work, we use cross-county mobility as our outcome. How-
ever, our RD framework is general and could be applied to
study the effects of Blueprint tiers on a variety of outcomes,
such as mask-wearing rates, vaccination rates, and COVID-
19 cases and deaths.

With cross-county mobility as our outcome, our treatment
becomes pairwise to capture the tier of each county, and
we have four treatment conditions: PP, PR,RP and RR,
where P and R represent the purple and red tiers, respec-
tively. We are particularly interested in the difference be-
tween PP and PR, since this difference indicates whether
individuals from a restricted county will increase their visits
to another county when that other county becomes less re-
stricted. In Figure 2c, we illustrate this comparison. We con-
sider all source counties that were in the purple tier and plot
their mobility to target counties that were either in the pur-
ple or red tier. The x-axis represents Z for the target county,
so that the region to the left of Z = 0 represents the PR
condition and the region to the right represents PP . We see
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a discontinuity in visits at Z = 0, indicating that there is
indeed a local effect on cross-county visits when a neigh-
boring county changes from more to less restricted. In the
following section, we estimate this effect more precisely by
defining a zero-inflated Poisson regression model that we fit
to the rich CBG-POI mobility network with covariates.

Poisson regression model. We define a Poisson regres-
sion model to describe visits from CBGs to POIs. For a given
CBG ci, POI pj , and week w, the Poisson rate λijw is

λijw = exp(β0 + β1Ziw + β2Zjw + β3
TXijw + βTiw,Tjw

),
(5)

where the β terms are model parameters, Ziw and Zjw rep-
resent the Z variables for ci’s and pj’s counties in this week,
Tiw and Tjw describe their respective tiers, and Xij contains
other covariates. Those covariates include the distance be-
tween the POI and CBG, SafeGraph’s CBG device count in
that week, CBG demographics from US Census, and POI at-
tributes (area in square feet, NAICS code). Spillover effects
are captured in the difference between the βTiw,Tjw

terms:
for example, exp(βPR − βPP ) represents the multiplicative
increase in visits when a POI changes from the purple to red
tier, while the CBG remains in purple.

The CBG-POI network is very large, with billions of
edges, but over 99% of the edges represent zero visits. Thus,
we zero-inflate our Poisson model, based on the notion that
observed zeros in zero-heavy data may represent actual pref-
erences, but could also reflect lack of awareness (Liu and
Blei 2017), i.e., the CBG had never heard of the POI. We
represent each number of visits Yijw as drawn from a mix-
ture of a Poisson(λijw) and δ0 (a point mass on 0), with mix-
ing parameter πij =

1
1+α1d

α2
ij

, where the α terms are learned

and dij represents the distance between the CBG and POI.
In this mixture, the likelihood of a single data point given
model parameters θ is

Pr(Yijw = y|θ) =

{
(1− πij) + πije

−λijw , if y = 0

πij
λy
ijwe−λijw

y! , otherwise.
(6)

We fit our model using gradient descent, with negative log
likelihood as our model loss.

Data filtering and bandwidth selection. We focus our
experiments on the 9-week period following the Regional
Stay-At-Home Order, during which we could almost per-
fectly separate the purple and red tiers with our Z variable
(Figure 2a). Due to the specifics of our RD-based analysis,
we cannot keep every CBG-POI pair from every week. First,
we do not fit the model on data from the week of March 8,
2021, since the purple-red threshold for adjusted case rate
was changed in the middle of the week (due to the statewide
vaccine goal being met). In the remaining 8 weeks, we keep
all data points that meet the following criteria:
• CBG ci and POI pj lie in adjacent counties,
• Tiw and Tjw are both in the purple or red tier,
• Both are compliers, i.e., Tiw is red if and only if Ziw < 0,

and likewise for Tjw,

• Ziw and Zjw both lie within a bandwidth h of 0.

We only keep data points that fall within the bandwidth since
our goal is to estimate the local effect of changing tier pairs
at the purple-red threshold (Z = 0). By requiring both Ziw

and Zjw to fall within the bandwidth, we interpret our result-
ing parameters as estimated effects at the joint cutoff, when
both the CBG and the POI are at the threshold.4

Bandwidth selection introduces a bias-variance trade-off,
with larger bandwidths corresponding to greater bias but re-
duced variance. We err on the side of larger bandwidths in
this work, out of concern for variance. Even though we have
billions of data points, our assignment variable Z only varies
at the level of counties and, thus, bandwidths that are too
small could lead to very few counties represented, particu-
larly for the PR or RP treatment conditions, which appear
less often. We choose h = 5, which keeps most of the coun-
ties in the red tier, but drops many of the counties in purple
(Figure 2a). We show in the extended version that each treat-
ment condition is well-represented at this bandwidth, with a
diversity of county pairs (Chang et al. 2022). Furthermore,
we conduct sensitivity analyses with h = 4 and h = 6 and
show that results remain highly similar.

Loss-corrected negative sampling. To make estimation
computationally feasible in this large-scale setting, we per-
form negative sampling. Specifically, for each zero data
point (i, j, w), we define its sampling probability sijw as in-
versely proportional to the distance between the CBG and
POI (sijw ∝ 1

1+dij
). We do this to upweight “hard” neg-

ative samples; that is, since far-apart CBGs and POIs are
highly unlikely to have any visits, the model learns more
from nearby CBGs and POIs with zero visits. However, a
unique aspect of our problem—which does not typically ap-
pear in other machine learning prediction problems where
negative sampling might be used, such as link prediction or
learning word embeddings—is that because we seek to inter-
pret the model parameters as effect sizes, our learned model
parameters need to be unbiased estimates of the model pa-
rameters when learned on the full data. Left uncorrected,
negative sampling biases our model parameters by greatly
reducing the number of zeros in the training data.

In the extended version (Chang et al. 2022), we show
that by weighting each sampled zero data point by 1

sijw

when computing the overall loss (negative log likelihood),
our stochastic gradient (which is stochastic from sampling)
forms an unbiased estimate of the true gradient, which ul-
timately guarantees unbiased parameter estimates assuming
proper model specification. We also show that upweighting
harder negative samples, as well as increasing the size of
the sample, decreases the variance of the stochastic gradi-
ent, providing formal validation of these techniques. In our
experiments, we retain 2% of the zero data points, with sam-
pling probabilities inversely weighted by distance. We verify

4Alternatively, RD design with multiple assignment variables
can estimate effects along the threshold frontiers, i.e., varying one
assignment variable while fixing the other one at its threshold (Pa-
pay, Willett, and Murnane 2011). For simplicity, we focus on ef-
fects at the joint threshold.
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that after incorporating our loss corrections, different neg-
ative sampling schemes arrive at the same average param-
eters, but distance-weighting and larger samples decrease
variance. The agreement between the estimates from differ-
ent negative sampling schemes is consistent with the under-
lying model being properly specified.

Uncertainty quantification with bootstrapping. We run
30 trials, where in each trial, we perform negative sam-
pling on the zero data points and we sample Nnnz non-zero
data points with replacement, where Nnnz is our total num-
ber of non-zero data points. For a given estimand, such as
τPR = exp(βPR − βPP ), we compute its 95% confidence
interval as τ̄PR ± 1.96 · σ̂τPR

, where τ̄PR and σ̂τPR
are its

sample mean and standard deviation over trials, respectively.
This procedure captures uncertainty from the data and from
negative sampling, although we show that, given our chosen
negative sampling scheme, the former accounts for the vast
majority of the variance (Chang et al. 2022).

Results
Spillover estimates. We present our spillover results in
Figure 3, with heterogeneous effects learned for different
POI groups. First, we find significant positive PR effects in
21 out of 24 groups (all results remain significant with Bon-
ferroni correction). That is, visits from the CBG increase
significantly when the POI’s county changes from purple
to red, while the CBG’s county remains in purple. This
indicates spillovers, as people from more restricted coun-
ties spill over in less restricted, adjacent counties. Further-
more, we observe varying effect sizes; for example, with
larger effects in retail (General Merchandise Stores, Auto-
motive Stores, Clothing Stores, Department Stores), most
eating places (Snack Bars, Full-Service Restaurants, Drink-
ing Places), and gyms. Smaller effects are in essential retail
(Grocery Stores, Gas Stations), recreation, museums, histor-
ical sites, and malls (Lessors of Real Estate).

We also observe significant positive RR effects in 22 POI
groups (21 with Bonferroni correction), as in, visits increase
significantly when both the CBG and POI are in red, com-
pared to when they are both in purple. Furthermore, in most
POI groups, the PR effect is larger than the RR effect (al-
though not always significantly so). This suggests an interac-
tion effect: individuals not only spill over into adjacent coun-
ties when those counties become less restrictive, but also the
spillover is larger if their home counties are more restrictive.
Finally, we observe a varying effect of RP , which represents
when the CBG changes from purple to red, while the POI
remains in purple. The effect is slightly positive or negative
for some POI groups, but significant in neither direction for
most. We hypothesize that two mechanisms take place here:
on one hand, since the POI is in a more restricted tier than
the CBG, it becomes less appealing; on the other hand, since
the CBG opened up, its population is more willing to travel.
These counteracting mechanisms may explain the varying
and weak RP effects across POI groups.

Local vs. global restrictions. To contrast local and global
approaches to policymaking, we use our fitted model to
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Figure 3: Estimated spillover effects across POI groups, with
95% confidence intervals.

compare counterfactual mobility reductions under county-
level vs. hypothetical statewide restrictions. Formally, let
T ∈ R58 represent the treatment vector for all counties. For
each county A, we estimate this county’s expected mobility
(out-degree in the mobility network) under three treatment
conditions: when the entire state is in the red tier (TR), when
the entire state is in the purple tier (TP ), and when only this
county is in purple while the rest of the state remains in red
(TA). We then compare the mobility reduction that a county
would experience by going to purple on its own, relative to
the statewide shutdown, where all counties go to purple:

r(A) =
E[out(A)|TR]− E[out(A)|TA]

E[out(A)|TR]− E[out(A)|TP ]
. (7)

We calculate E[out(A)|T] as the sum over within-county
visits and out-of-county visits:

E[out(A)|T] = E[YAA|TA] +
∑

B∈N(A)

E[YAB |TA, TB ], (8)

where YAB represents the total number of visits from any
CBG in county A to any POI in county B. When we use
our fitted model to compute the conditional expectation of
YAB given tiers, we assume Z = 0 for all CBGs and POIs,
since our RD-based framework estimated tier effects at the
joint cutoff. We also marginalize over the remaining dy-
namic covariate, the CBG’s weekly device count, by taking
each CBG’s average device count.

We estimate that counties applying local restrictions can
only achieve, on average, 54.0% (46.4%–61.7%) of the re-
duction in mobility that they would experience under a
statewide shutdown. While we assume that the reduction
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in mobility within the county stays the same, the difference
arises from the increase in out-of-county visits when all sur-
rounding counties are less restricted in the red tier. We also
consider a less extreme case, where instead of having all sur-
rounding counties in red, we use the actual configuration of
tiers from the Blueprint. We still observe a cost to efficacy
in these more realistic settings: over the course of our study
period, as the number of counties in purple fell from 40 to
11 to 3, the percent of mobility reduction kept for the coun-
ties in purple (compared to statewide shutdown) fell from
94% to 75% to 65%. These substantial decreases in efficacy
demonstrate the cost of spillovers on local policies.

Balancing efficacy and flexibility. Although local poli-
cies are less effective in the presence of spillovers, global
policies are often too blunt and inflexible. In our final analy-
sis, we explore this trade-off between efficacy and flexibility
across policies at different spatial scales. Instead of being en-
tirely local (county-level) or global (statewide), intermediate
strategies could be implemented at the macro-county level.
California in fact pursued such a strategy with its Regional
Stay-At-Home Order (Newsom 2020) that grouped counties
into 5 macro-counties, each containing 11–13 counties (Fig-
ure 4a). We extend our analysis to compute rM(A), the ra-
tio of mobility reduction that each county A would experi-
ence if only its macro-county went to purple, compared to
the statewide shutdown. When we use the county partition
from California’s Regional Stay-At-Home Order, we find
that macro-county restrictions can achieve 92.1% (90.9%–
93.3%) of statewide mobility reductions. In contrast, if we
use a random partitioning of counties into equal-sized seg-
ments, such restrictions only reach 62.3% (54.3%–70.4%,
95% CI includes randomness in partitioning) of statewide re-
ductions. Thus, policies of intermediate scale are promising
in their ability to balance efficacy and flexibility, but achiev-
ing that balance relies on optimizing how macro-counties
are defined.

Given a desired number of macro-counties k, we can
find the optimal county partition that maximizes the aver-
age rM (A) over counties by solving the minimum k-cut
problem, which seeks to partition the nodes of an undirected
graph into k disjoint sets while minimizing the total weight
of edges between nodes in different sets. We define our undi-
rected graph as one between counties, where the edge weight
wAB between two adjacent counties A and B is

wAB =
E[YAB |P,R]− E[YAB |P, P ]

E[out(A)|TR]− E[out(A)|TP ]
+ (9)

E[YBA|P,R]− E[YBA|P, P ]

E[out(B)|TR]− E[out(B)|TP ]
.

To achieve evenly sized macro-counties, we impose an ad-
ditional constraint (common in balanced graph partitioning)
that each set is no larger than 1.05 · N

k , where N = 58 is the
total number of counties. While this problem is NP-hard,
we can approximate the solution using METIS (Karypis and
Kumar 1997). In Figure 4b, we display our solutions over
a range of k. Smaller macro-county sizes are preferred for
flexibility (x-axis), while higher rM(A) represents better ef-
ficacy (y-axis). We observe a clear trade-off between the

(a) (b) (c)Macro-counties from 
CA Stay-At-Home

Min-cut solution from 
METIS for k=7

Macro-counties from 
CA Stay-At-Home

Random equal-sized
macro-counties

METIS
County 
level

Avg macro-county size (N/k)

Av
g 

r M
(A
)

Figure 4: Macro-county restrictions. (a) Actual macro-
counties from California’s Stay-At-Home Order. (b) Trade-
off between flexibility (lower macro-county size) versus ef-
ficacy (higher rM(A)), with 95% confidence intervals. (c)
Macro-county partition for k = 7, computed by METIS.

two objectives; however, even small macro-counties—when
grouped intelligently—yield large improvements in efficacy
over county-level restrictions. For example, by just increas-
ing the average macro-county size to 8 (still 1/7th the total
number of counties), we reach over 90% of the full efficacy
of the much more drastic statewide shutdown (Figure 4c).

Conclusion
Geographic spillovers arise in many domains, but there are
few opportunities to reliably estimate spillover effects. In
this work, we identify a novel setting that is uniquely suit-
able for spillover analysis, California’s Blueprint for a Safer
Economy, which defined a set of policies applied with the
same deterministic thresholds across 58 counties. We lever-
age these properties to develop a causal inference frame-
work that allows us to make unconfounded estimates of
spillover movement between counties and we observe sig-
nificant spillovers in many POI groups. Finally, we evaluate
the cost of spillovers on policies across spatial scales, ana-
lyzing the trade-off between efficacy and flexibility.

Our work is not without limitations. First, SafeGraph’s
data does not cover all POIs or populations uniformly. To
mitigate this issue, we control for CBG weekly device count,
only estimate effects for the largest POI categories, and drop
categories such as elementary schools that have unreliable
coverage from cell phone apps. Second, our causal inference
framework may not entirely satisfy SUTVA, the assumption
that a unit’s outcome is only influenced by its own treatment.
In this work, we attempt to better satisfy SUTVA by mod-
eling the effect of pairwise policies on cross-county move-
ment, instead of only modeling the effect of a single county’s
policies on its population’s mobility, as prior work has done.
However, future work should explore interference beyond
pairs; for example, mobility from county A to B may depend
not only on A and B’s policies but also on the policies of
A’s other neighbors. We also hope that future work will dive
deeper into the complex trade-offs of policymaking for in-
terconnected regions. In this work, we explored efficacy and
flexibility, but other dimensions should be considered, such
as equity in the context of certain regions bearing dispro-
portionate risks and unequal resources (e.g., with resourced
areas better able to handle spikes in COVID-19 cases).
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