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ABSTRACT
How do real graphs evolve over time? What are “normal”
growth patterns in social, technological, and information
networks? Many studies have discovered patterns in sta-
tic graphs, identifying properties in a single snapshot of a
large network, or in a very small number of snapshots; these
include heavy tails for in- and out-degree distributions, com-
munities, small-world phenomena, and others. However,
given the lack of information about network evolution over
long periods, it has been hard to convert these findings into
statements about trends over time.

Here we study a wide range of real graphs, and we observe
some surprising phenomena. First, most of these graphs
densify over time, with the number of edges growing super-
linearly in the number of nodes. Second, the average dis-
tance between nodes often shrinks over time, in contrast
to the conventional wisdom that such distance parameters
should increase slowly as a function of the number of nodes
(like O(log n) or O(log(log n)).

Existing graph generation models do not exhibit these
types of behavior, even at a qualitative level. We provide
a new graph generator, based on a “forest fire” spreading
process, that has a simple, intuitive justification, requires
very few parameters (like the “flammability” of nodes), and
produces graphs exhibiting the full range of properties ob-
served both in prior work and in the present study.
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1. INTRODUCTION
In recent years, there has been considerable interest in

graph structures arising in technological, sociological, and
scientific settings: computer networks (routers or autonomous
systems connected together); networks of users exchanging
e-mail or instant messages; citation networks and hyperlink
networks; social networks (who-trusts-whom, who-talks-to-
whom, and so forth); and countless more [24]. The study
of such networks has proceeded along two related tracks:
the measurement of large network datasets, and the devel-
opment of random graph models that approximate the ob-
served properties.

Many of the properties of interest in these studies are
based on two fundamental parameters: the nodes’ degrees
(i.e., the number of edges incident to each node), and the
distances between pairs of nodes (as measured by shortest-
path length). The node-to-node distances are often studied
in terms of the diameter — the maximum distance — and
a set of closely related but more robust quantities including
the average distance among pairs and the effective diameter
(the 90th percentile distance, a smoothed form of which we
use for our studies).

Almost all large real-world networks evolve over time by
the addition and deletion of nodes and edges. Most of the re-
cent models of network evolution capture the growth process
in a way that incorporates two pieces of “conventional wis-
dom:”

(A) Constant average degree assumption: The average node
degree in the network remains constant over time. (Or
equivalently, the number of edges grows linearly in the
number of nodes.)

(B) Slowly growing diameter assumption: The diameter is
a slowly growing function of the network size, as in
“small world” graphs [4, 7, 22, 30].



For example, the intensively-studied preferential attach-
ment model [3, 24] posits a network in which each new node,
when it arrives, attaches to the existing network by a con-
stant number of out-links, according to a “rich-get-richer”
rule. Recent work has given tight asymptotic bounds on the
diameter of preferential attachment networks [6, 9]; depend-
ing on the precise model, these bounds grow logarithmically
or even slower than logarithmically in the number of nodes.

How are assumptions (A) and (B) reflected in data on net-
work growth? Empirical studies of large networks to date
have mainly focused on static graphs, identifying properties
of a single snapshot or a very small number of snapshots
of a large network. For example, despite the intense inter-
est in the Web’s link structure, the recent work of Ntoulas
et al. [25] noted the lack of prior empirical research on the
evolution of the Web. Thus, while one can assert based
on these studies that, qualitatively, real networks have rela-
tively small average node degrees and diameters, it has not
been clear how to convert these into statements about trends
over time.

The present work: Densification laws and shrinking
diameters. Here we study a range of different networks,
from several domains, and we focus specifically on the way in
which fundamental network properties vary with time. We
find, based on the growth patterns of these networks, that
principles (A) and (B) need to be reassessed. Specifically,
we show the following for a broad range of networks across
diverse domains.

(A′) Empirical observation: Densification power laws: The
networks are becoming denser over time, with the av-
erage degree increasing (and hence with the number of
edges growing super-linearly in the number of nodes).
Moreover, the densification follows a power-law pat-
tern.

(B′) Empirical observation: Shrinking diameters: The ef-
fective diameter is, in many cases, actually decreasing
as the network grows.

We view the second of these findings as particularly surpris-
ing: Rather than shedding light on the long-running debate
over exactly how slowly the graph diameter grows as a func-
tion of the number of nodes, it suggests a need to revisit
standard models so as to produce graphs in which the ef-
fective diameter is capable of actually shrinking over time.
We also note that, while densification and decreasing diam-
eters are properties that are intuitively consistent with one
another (and are both borne out in the datasets we study),
they are qualitatively distinct in the sense that it is possi-
ble to construct examples of graphs evolving over time that
exhibit one of these properties but not the other.

We can further sharpen the quantitative aspects of these
findings. In particular, the densification of these graphs,
as suggested by (A′), is not arbitrary; we find that as the
graphs evolve over time, they follow a version of the relation

e(t) ∝ n(t)a (1)

where e(t) and n(t) denote the number of edges and nodes
of the graph at time t, and a is an exponent that generally
lies strictly between 1 and 2. We refer to such a relation as
a densification power law, or growth power law. (Exponent
a = 1 corresponds to constant average degree over time,

while a = 2 corresponds to an extremely dense graph where
each node has, on average, edges to a constant fraction of
all nodes.)

What underlying process causes a graph to systematically
densify, with a fixed exponent as in Equation (1), and to
experience a decrease in effective diameter even as its size
increases? This question motivates the second main contri-
bution of this work: we present two families of probabilistic
generative models for graphs that capture aspects of these
properties. The first model, which we refer to as Community
Guided Attachment (CGA), argues that graph densification
can have a simple underlying basis; it is based on a decom-
position of the nodes into a nested set of communities, such
that the difficulty of forming links between communities in-
creases with the community size. For this model, we obtain
rigorous results showing that a natural tunable parameter
in the model can lead to a densification power law with
any desired exponent a. The second model, which is more
sophisticated, exhibits both densification and a decreasing
effective diameter as it grows. This model, which we refer to
as the Forest Fire Model, is based on having new nodes at-
tach to the network by “burning” through existing edges in
epidemic fashion. The mathematical analysis of this model
appears to lead to novel questions about random graphs that
are quite complex, but through simulation we find that for
a range of parameter values the model exhibits realistic be-
havior in densification, distances, and degree distributions.
It is thus the first model, to our knowledge, that exhibits
this full set of desired properties.

Accurate properties of network growth, together with mod-
els supporting them, have implications in several contexts.

• Graph generation: Our findings form means for as-
sessing the quality of graph generators. Synthetic graphs are
important for ‘what if’ scenarios, for extrapolations, and for
simulations, when real graphs are impossible to collect (like,
e.g., a very large friendship graph between people).

• Graph sampling: Datasets consisting of huge real-
world graphs are increasingly available, with sizes ranging
from the millions to billions of nodes. There are many known
algorithms to compute interesting measures (shortest paths,
centrality, betweenness, etc), but most of these algorithms
become impractical for large graphs. Thus sampling is essen-
tial — but sampling from a graph is a non-trivial problem.
Densification laws can help discard bad sampling methods,
by providing means to reject sampled subgraphs.

• Extrapolations: For several real graphs, we have a
lot of snapshots of their past. What can we say about their
future? Our results help form a basis for validating scenarios
for graph evolution.

• Abnormality detection and computer network man-
agement: In many network settings, “normal” behavior will
produce subgraphs that obey densification laws (with a pre-
dictable exponent) and other properties of network growth.
If we detect activity producing structures that deviate sig-
nificantly from this, we can flag it as an abnormality; this
can potentially help with the detection of e.g. fraud, spam,
or distributed denial of service (DDoS) attacks.

The rest of the paper is organized as follows: Section 2 sur-
veys the related work. Section 3 gives our empirical findings
on real-world networks across diverse domains. Section 4 de-
scribes our proposed models and gives results obtained both
through analysis and simulation. We conclude and discuss
the implications of our findings in Section 5.



2. RELATED WORK
Research over the past few years has identified classes of

properties that many real-world networks obey. One of the
main areas of focus has been on degree power laws, show-
ing that the set of node degrees has a heavy-tailed distri-
bution. Such degree distributions have been identified in
phone call graphs [1], the Internet [11], the Web [3, 14, 20],
click-stream data [5] and for a who-trusts-whom social net-
work [8]. Other properties include the “small-world phe-
nomenon,” popularly known as “six degrees of separation”,
which states that real graphs have surprisingly small (aver-
age or effective) diameter (see [4, 6, 7, 9, 17, 22, 30, 31]).

In parallel with empirical studies of large networks, there
has been considerable work on probabilistic models for graph
generation. The discovery of degree power laws led to the
development of random graph models that exhibited such
degree distributions, including the family of models based
on preferential attachment [2, 3, 10] and the related copying
model [18, 19]. See [23, 24] for surveys of this area.

It is important to note the fundamental contrast between
one of our main findings here — that the average number of
out-links per node is growing polynomially in the network
size — and body of work on degree power laws. This earlier
work developed models that almost exclusively used the as-
sumption of node degrees that were bounded by constants
(or at most logarithmic functions) as the network grew; our
findings and associated model challenge this assumption, by
showing that networks across a number of domains are be-
coming denser.

The bulk of prior work on the study of network datasets
has focused on static graphs, identifying patterns in a sin-
gle snapshot, or a small number of network snapshots (see
also the discussion of this point by Ntoulas et al. [25]). Two
exceptions are the very recent work of Katz [16], who in-
dependently discovered densification power laws for citation
networks, and the work of Redner [28], who studied the
evolution of the citation graph of Physical Review over the
past century. Katz’s work builds on his earlier research on
power-law relationships between the size and recognition of
professional communities [15]; his work on densification is
focused specifically on citations, and he does not propose a
generative network model to account for the densification
phenomenon, as we do here. Redner’s work focuses on a
range of citation patterns over time that are different from
the network properties we study here.

Our Community Guided Attachment (CGA) model, which
produces densifying graphs, is an example of a hierarchical
graph generation model, in which the linkage probability be-
tween nodes decreases as a function of their relative distance
in the hierarchy [8, 17, 31]. Again, there is a distinction be-
tween the aims of this past work and our model here; where
these earlier network models were seeking to capture proper-
ties of individual snapshots of a graph, we seek to explain a
time evolution process in which one of the fundamental pa-
rameters, the average node degree, is varying as the process
unfolds. Our Forest Fire Model follows the overall frame-
work of earlier graph models in which nodes arrive one at
a time and link into the existing structure; like the copy-
ing model discussed above, for example, a new node creates
links by consulting the links of existing nodes. However, the
recursive process by which nodes in the Forest Fire Model
creates these links is quite different, leading to the new prop-
erties discussed in the previous section.
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Figure 1: The average node out-degree over time.
Notice that it increases, in all 4 datasets. That is,
all graphs are densifying.

3. OBSERVATIONS
We study the temporal evolution of several networks, by

observing snapshots of these networks taken at regularly
spaced points in time. We use datasets from four differ-
ent sources; for each, we have information about the time
when each node was added to the network over a period of
several years — this enables the construction of a snapshot
at any desired point in time. For each of datasets, we find
a version of the densification power law from Equation (1),
e(t) ∝ n(t)a; the exponent a differs across datasets, but re-
mains remarkably stable over time. We also find that the
effective diameter decreases in all the datasets considered.

The datasets consist of two citation graphs for different
areas in the physics literature, a citation graph for U.S.
patents, a graph of the Internet, and five bipartite affiliation
graphs of authors with papers they authored. Overall, then,
we consider 9 different datasets from 4 different sources.

3.1 Densification Laws
Here we describe the datasets we used, and our findings

related to densification. For each graph dataset, we have,
or can generate, several time snapshots, for which we study
the number of nodes n(t) and the number of edges e(t) at
each timestamp t. We denote by n and e the final number
of nodes and edges. We use the term Densification Power
Law plot (or just DPL plot) to refer to the log-log plot of
number of edges e(t) versus number of nodes n(t).

3.1.1 ArXiv citation graph
We first investigate a citation graph provided as part of

the 2003 KDD Cup [12]. The HEP–TH (high energy physics
theory) citation graph from the e-print arXiv covers all the
citations within a dataset of n=29,555 papers with e= 352,807
edges. If a paper i cites paper j, the graph contains a di-
rected edge from i to j. If a paper cites, or is cited by, a
paper outside the dataset, the graph does not contain any
information about this. We refer to this dataset as arXiv.



This data covers papers in the period from January 1993
to April 2003 (124 months). It begins within a few months
of the inception of the arXiv, and thus represents essentially
the complete history of its HEP–TH section. For each month
m (1 ≤ m ≤ 124) we create a citation graph using all papers
published before month m. For each of these graphs, we
plot the number of nodes versus the number of edges on a
logarithmic scale and fit a line.

Figure 2(a) shows the DPL plot; the slope is a = 1.68
and corresponds to the exponent in the densification law.
Notice that a is significantly higher than 1, indicating a
large deviation from linear growth. As noted earlier, when
a graph has a > 1, its average degree increases over time.
Figure 1(a) exactly plots the average degree d̄ over time,
and it is clear that d̄ increases. This means that the average
length of the bibliographies of papers increases over time.

There is a subtle point here that we elaborate next: With
almost any network dataset, one does not have data reaching
all the way back to the network’s birth (to the extent that
this is a well-defined notion). We refer to this as the problem
of the “missing past.” Due to this, there will be some ef-
fect of increasing out-degree simply because edges will point
to nodes prior to the beginning of the observation period.
We refer to such nodes as phantom nodes, with a similar
definition for phantom edges. In all our datasets, we find
that this effect is relatively minor once we move away from
the beginning of the observation period; on the other hand,
the phenomenon of increasing degree continues through to
the present. For example, in arXiv, nodes over the most
recent years are primarily referencing non-phantom nodes;
we observe a knee in Figure 1(a) in 1997 that appears to
be attributable in large part to the effect of phantom nodes.
(Later, when we consider a graph of the Internet, we will
see a case where comparable properties hold in the absence
of any “missing past” issues.)

We also experimented with a second citation graph, taken
from the HEP–PH section of the arXiv, which is about the
same size as our first arXiv dataset. It exhibits the same
behavior, with the densification exponent a = 1.56. The
plot is omitted for brevity.

3.1.2 Patents citation graph
Next, we consider a U.S. patent dataset maintained by the

National Bureau of Economic Research [13]. The data set
spans 37 years (January 1, 1963 to December 30, 1999), and
includes all the utility patents granted during that period,
totaling n=3,923,922 patents. The citation graph includes
all citations made by patents granted between 1975 and
1999, totaling e=16,522,438 citations. Because the dataset
begins in 1975, it too has a “missing past” issue, but again
the effect of this is minor as one moves away from the first
few years.

We follow the same procedure as with arXiv. For each
year Y from 1975 to 1999, we create a citation network on
patents up to year Y , and give the DPL plot, in Figure 2(b).
As with the arXiv citation network, we observe a high den-
sification exponent, in this case a = 1.66.

Figure 1(b) illustrates the increasing out-degree of patents
over time. Note that this plot does not incur any of the
complications of a bounded observation period, since the
patents in the dataset include complete citation lists, and
here we are simply plotting the average size of these as a
function of the year.
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Figure 2: Number of edges e(t) versus number of
nodes n(t), in log-log scales, for several graphs. All
4 graphs obey the Densification Power Law, with a
consistently good fit. Slopes: a = 1.68, 1.66, 1.18
and 1.15, respectively.

3.1.3 Autonomous systems graph
The graph of routers comprising the Internet can be or-

ganized into sub-graphs called Autonomous Systems (AS).
Each AS exchanges traffic flows with some neighbors (peers).
We can construct a communication network of who-talks-to-
whom from the BGP (Border Gateway Protocol) logs.

We use the the Autonomous Systems (AS) dataset from [26].
The dataset contains 735 daily instances which span an in-
terval of 785 days from November 8 1997 to January 2 2000.

In contrast to citation networks, where nodes and edges
only get added (not deleted) over time, the AS dataset also
exhibits both the addition and deletion of the nodes and
edges over time.

Figure 2(c) shows the DPL plot for the Autonomous Sys-
tems dataset. We observe a clear trend: Even in the pres-
ence of noise, changing external conditions, and disruptions
to the Internet we observe a strong super-linear growth in
the number of edges over more than 700 AS graphs. We
show the increase in the average node degree over time
in Figure 1(c). The densification exponent is a = 1.18,
lower than the one for the citation networks, but still clearly
greater than 1.

3.1.4 Affiliation graphs
Using the arXiv data, we also constructed bipartite affil-

iation graphs. There is a node for each paper, a node for
each person who authored at least one arXiv paper, and an
edge connecting people to the papers they authored. Note
that the more traditional co-authorship network is implicit
in the affiliation network: two people are co-authors if there
is at least one paper joined by an edge to each of them.

We studied affiliation networks derived from the five largest
categories in the arXiv (ASTRO–PH, HEP–TH, HEP–PH,
COND–MAT and GR–QC). We place a time-stamp on each
node: the submission date of each paper, and for each per-



son, the date of their first submission to the arXiv. The
data for affiliation graphs covers the period from April 1992
to March 2002. The smallest of the graphs (category GR–
QC) had 19,309 nodes (5,855 authors, 13,454 papers) and
26,169 edges. ASTRO–PH is the largest graph, with 57,381
nodes (19,393 authors, 37,988 papers) and 133,170 edges. It
has 6.87 authors per paper; most of the other categories also
have similarly high numbers of authors per paper.

For all these affiliation graphs we observe similar phe-
nomena, and in particular we have densification exponents
between 1.08 and 1.15. Due to lack of space we present
the complete set of measurements only for ASTRO–PH, the
largest affiliation graph. Figures 1(d) and 2(d) show the
increasing average degree over time, and a densification ex-
ponent of a = 1.15.

3.2 Shrinking Diameters
We now discuss the behavior of the effective diameter over

time, for this collection of network datasets. Following the
conventional wisdom on this topic, we expected the under-
lying question to be whether we could detect the differences
among competing hypotheses concerning the growth rates
of the diameter — for example, the difference between loga-
rithmic and sub-logarithmic growth. Thus, it was with some
surprise that we found the effective diameters to be actually
decreasing over time (Figure 3).

Let us make the definitions underlying the observations
concrete. We say that two nodes in an undirected network
are connected if there is an path between them; for each nat-
ural number d, let g(d) denote the fraction of connected node
pairs whose shortest connecting path has length at most d.
The hop-plot for the network is the set of pairs (d, g(d)); it
thus gives the cumulative distribution of distances between
connected node pairs. We extend the hop-plot to a function
defined over all positive real numbers by linearly interpolat-
ing between the points (d, g(d)) and (d+1, g(d+1)) for each
d, and we define the effective diameter of the network to be
the value of d at which this function achieves the value 0.9.
(Note that this varies slightly from an alternate definition
of the effective diameter used in earlier work: the minimum
value d such that at least 90% of the connected node pairs
are at distance at most d. Our variation smooths this defi-
nition by allowing it to take non-integer values.) The effec-
tive diameter is a more robust quantity than the diameter
(defined as the maximum distance over all connected node
pairs), since the diameter is prone to the effects of degener-
ate structures in the graph (e.g. very long chains). However,
the effective diameter and diameter tend to exhibit qualita-
tively similar behavior.

For each time t (as in the previous subsection), we create
a graph consisting of nodes up to that time, and compute
the effective diameter of the undirected version of the graph.

Figure 3 shows the effective diameter over time; one ob-
serves a decreasing trend for all the graphs. We performed
a comparable analysis to what we describe here for all 9
graph datasets in our study, with very similar results. For
the citation networks in our study, the decreasing effective
diameter has the following interpretation: Since all the links
out of a node are “frozen” at the moment it joins the graph,
the decreasing distance between pairs of nodes appears to be
the result of subsequent papers acting as “bridges” by cit-
ing earlier papers from disparate areas. Note that for other
graphs in our study, such as the AS dataset, it is possible for
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Figure 3: The effective diameter over time.

an edge between two nodes to appear at an arbitrary time
after these two nodes join the graph.

We note that the effective diameter of a graph over time is
necessarily bounded from below, and the decreasing patterns
of the effective diameter in the plots of Figure 3 are consis-
tent with convergence to some asymptotic value. However,
understanding the full “limiting behavior” of the effective
diameter over time, to the extent that this is even a well-
defined notion, remains an open question.

3.2.1 Validating the shrinking diameter conclusion
Given the unexpected nature of this result, we wanted to

verify that the shrinking diameters were not attributable to
artifacts of our datasets or analyses. We explored this issue
in a number of ways, which we now summarize; the conclu-
sion is that the shrinking diameter appears to be a robust,
and intrinsic, phenomenon. Specifically, we performed ex-
periments to account for (a) possible sampling problems, (b)
the effect of disconnected components, (c) the effect of the
“missing past” (as in the previous subsection), and (d) the
dynamics of the emergence of the giant component.

Possible sampling problems: Computing shortest paths
among all node pairs is computationally prohibitive for graphs
of our scale. We used several different approximate meth-
ods, obtaining almost identical results from all of them.
In particular, we applied the Approximate Neighborhood
Function (ANF) approach [27] (in two different implementa-
tions), which can estimate effective diameters for very large
graphs, as well as a basic sampling approach in which we ran
exhaustive breadth-first search from a subset of the nodes
chosen uniformly at random. The results using all these
methods were essentially identical.

Disconnected components: One can also ask about the ef-
fect of small disconnected components. All of our graphs
have a single giant component – a connected component (or
weakly connected component in the case of directed graphs,
ignoring the direction of the edges) that accounts for a sig-
nificant fraction of all nodes. For each graph, we computed
effective diameters for both the entire graph and for just the



giant component; again, our results are essentially the same
using these two methods.

“Missing Past” effects: A third issue is the problem of
the “missing past,” the same general issue that surfaced in
the previous subsection when we considered densification.
In particular, we must decide how to handle citations to
papers that predate our earliest recorded time. (Note that
the missing past is not an issue for the AS network data,
where the effective diameter also decreases.)

To understand how the diameters of our networks are af-
fected by this unavoidable problem, we perform the follow-
ing test. We pick some positive time t0 > 0, and determine
what the diameter would look like as a function of time, if
this were the beginning of our data. We can then put back in
the nodes and the edges from before time t0, and study how
much the diameters change. If this change is small — or at
least if it does not affect the qualitative conclusions — then
it provides evidence that the missing past is not influencing
the overall result.

Specifically, we set this cut-off time t0 to be the beginning
of 1995 for the arXiv (since we have data from 1993), and
to be 1985 for the patent citation graph (we have data from
1975). We then compared the results of three measurements:

• Diameter of full graph. We compute the effective
diameter of the graph’s giant component.

• Post-t0 subgraph. We compute the effective diameter
of the post-t0 subgraph using all nodes and edges. This
means that for each time t (t > t0) we create a graph using
all nodes dated before t. We then compute the effective
diameter of the subgraph of the nodes dated between t0
and t. To compute the effective diameter we can use all
edges and nodes (including those dated before t0). This
experiment measures the diameter of the graph if we knew
the full (pre-t0) past — the citations of the papers which we
have intentionally excluded for this test.

• Post-t0 subgraph, no past. We set t0 the same
way as in previous experiment, but then for all nodes dated
before t0 we delete all their out-links. This creates the graph
we would have gotten if we had started collecting data only
at time t0.

In Figure 3, we superimpose the effective diameters using
the three different techniques. If the missing past does not
play a large role in the diameter, then all three curves should
lie close to one another. We observe this is the case for the
arXiv citation graphs. For the arXiv paper-author affilia-
tion graph, and for the patent citation graph, the curves are
quite different right at the cut-off time t0 (where the effect
of deleted edges is most pronounced), but they quickly align
with one another. As a result, it seems clear that the contin-
ued decreasing trend in the effective diameter as time runs
to the present is not the result of these boundary effects.

Emergence of giant component: A final issue is the dynam-
ics by which the giant component emerges. For example, in
the standard Erdös-Renyi random graph model (which has
a substantially different flavor from the growth dynamics
of the graphs here), the diameter of the giant component
is quite large when it first appears, and then it shrinks as
edges continue to be added. Could shrinking diameters in
some way be a symptom of emergence of giant component?

It appears fairly clear that this is not the case. Figure 4
shows the fraction of all nodes that are part of the largest
connected component (GCC) over time. We plot the size of
the GCC for the full graph and for a graph where we had no
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Figure 4: The fraction of nodes that are part of the
giant connected component over time. We see that
after 4 years the 90% of all nodes in the graph belong
to giant component.

past — i.e., where we delete all out-links of the nodes dated
before the cut-off time t0. Because we delete the out-links of
the pre-t0 nodes the size of GCC is smaller, but as the graph
grows the effect of these deleted links becomes negligible.

We see that within a few years the giant component ac-
counts for almost all the nodes in the graph. The effective
diameter, however, continues to steadily decrease beyond
this point. This indicates that the decrease is happening in
a “mature” graph, and not because many small disconnected
components are being rapidly glued together.

Based on all this, we believe that the decreasing diameters
in our study reflect a fundamental property of the underlying
networks. Understanding the possible causes of this prop-
erty, as well as the causes of the densification power laws
discussed earlier, will be the subject of the next section.

4. PROPOSED MODELS
We have now seen that densification power laws and shrink-

ing effective diameters are properties that hold across a
range of diverse networks. Moreover, existing models do not
capture these phenomena. We would like to find some sim-
ple, local model of behavior, which could naturally lead to
the macroscopic phenomena we have observed. We present
increasingly sophisticated models, all of which naturally achieve
the observed densification; the last one (the “Forest Fire”
model) also exhibits shrinking diameter and all the other
main patterns known (including heavy-tailed in- and out-
degree distributions).

4.1 Community Guided Attachment
What are the underlying principles that drive all our ob-

served graphs to obey a densification power law, without
central control or coordination? We seek a model in which
the densification exponent arises from intrinsic features of
the process that generates nodes and edges. While one could
clearly define a graph model in which e(t) ∝ n(t)a by simply
having each node, when it arrives at time t, generate n(t)a−1

out-links — the equivalent of positing that each author of
a paper in a citation network has a rule like, “Cite na−1

other documents,” hard-wired in his or her brain — such a
model would not provide any insight into the origin of the
exponent a, as the exponent is unrelated to the operational
details by which the network is being constructed. Instead,
our goal is to see how underlying properties of the network
evolution process itself can affect the observed densification
behavior.



Table 1: Table of symbols
Symbol Description

a Densification Exponent
c Difficulty Constant

f(h) Difficulty Function
n(t) number of nodes at time t
e(t) number of edges at time t
b community branching factor
d̄ expected average node out-degree
H height of the tree

h(v, w) least common ancestor height of v, w
p forest fire forward burning probability
pb forest fire backward burning probability
r ratio of backward and forward probability

We take the following approach. Power laws often ap-
pear in combination with self-similar datasets [29]. Our
approach involves two steps, both of which are based on
self-similarity. Thus, we begin by searching for self-similar,
recursive structures. In fact, we can easily find several such
recursive sets: For example, computer networks form tight
groups (e.g., based on geography), which consist of smaller
groups, and so on, recursively. Similarly for patents: they
also form conceptual groups (“chemistry”, “communications”,
etc.), which consist of sub-groups, and so on recursively.
Several other graphs feature such “communities within com-
munities” patterns. For example, it has been argued (see
e.g. [31] and the references therein) that social structures
exhibit self-similarity, with individuals organizing their so-
cial contacts hierarchically. Moreover, pairs of individuals
belonging to the same small community form social ties
more easily than pairs of individuals who are only related by
membership in a larger community. In a different domain,
Menczer studied the frequency of links among Web pages
that are organized into a topic hierarchy such as the Open
Directory [21]. He showed that link density among pages
decreases with the height of their least common ancestor in
the hierarchy. That is, two pages on closely related topics
are more likely to be hyperlinked than are two pages on more
distantly related topics.

This is the first, qualitative step in our explanation for the
Densification Power Law. The second step is quantitative.
We will need a numerical measure of the difficulty in crossing
communities; we call this the Difficulty Constant, and we
define it more precisely below.

4.1.1 The Basic Version of the Model
We represent the recursive structure of communities-within-

communities as a tree Γ, of height H . We shall show that
even a simple, perfectly balanced tree of constant fanout b
is enough to lead to a densification power law, and so we
will focus the analysis on this basic model.

The nodes V in the graph we construct will be the leaves
of the tree; that is, n = |V |. (Note that n = bH .) Let h(v, w)
define the standard tree distance of two leaf nodes v and w:
that is, h(v, w) is the height of their least common ancestor
(the height of the smallest sub-tree containing both v and
w).

We will construct a random graph on a set of nodes V
by specifying the probability that v and w form a link as
a function f of h(v, w). We refer to this function f as the

Difficulty Function. What should be the form of f? Clearly,
it should decrease with h; but there are many forms such a
decrease could take.

The form of f that works best for our purposes comes from
the self-similarity arguments we made earlier: We would like
f to be scale-free; that is, f(h)/f(h − 1) should be level-
independent and thus constant. The only way to achieve
level-independence is to define f(h) = f(0) ∗ c−h. Setting
f(0) to 1 for simplicity, we have:

f(h) = c−h (2)

where c ≥ 1. We refer to the constant c as the Diffi-
culty Constant. Intuitively, cross-communities links become
harder to form as c increases.

This completes our development of the model, which we
refer to as Community Guided Attachment: If the nodes of
a graph belong to communities-within-communities, and if
the cost for cross-community edges is scale-free (Eq. (2)),
the Densification Power Law follows naturally. No central
control or exogenous regulations are needed to force the re-
sulting graph to obey this property. In short, self-similarity
itself leads to the Densification Power Law.

Theorem 1. In the Community Guided Attachment ran-
dom graph model just defined, the expected average out-degree
d̄ of a node is proportional to:

d̄ = n1−logb(c) if 1 ≤ c < b (3)

= logb(n) if c = b (4)

= constant if c > b (5)

Proof. For a given node v, the expected out-degree (num-
ber of links) d̄ of the node is proportional to

d̄ =
�
x �=v

f(h(x, v)) =

logb(n)�
j=1

(b − 1)bj−1c−j =
b − 1

c

logb(n)�
j=1

�
b

c

�j−1

.

(6)
There are three different cases: if 1 ≤ c < b then by

summing the geometric series we obtain

d̄ =
b − 1

c
·
�

b
c

�logb(n) − 1�
b
c

�− 1
=

�
b − 1

b − c

�
(n1−logb(c) − 1)

= Θ(n1−logb(c)).

In the case when c = b the series sums to

d̄ =
�
x �=v

f(h(x, v)) =
b − 1

b

logb(n)�
j=1

�
b

b

�j−1

=
b − 1

b
logb(n)

= Θ(logb(n)).

The last case is when Difficulty Constant c is greater than
branching factor b (c > b), then the sum in Eq. (6) converges
to a constant even if carried out to infinity, and so we obtain
d̄ = Θ(1).

Note that when c < b, we get a densification law with ex-
ponent greater than 1: the expected out-degree is n1−logb(c),
and so the total number of edges grows as na where a =
2− logb(c). Moreover, as c varies over the interval [1, b), the
exponent a ranges over all values in the interval (1, 2].



Corollary 1. If the Difficulty Function is scale-free (f(h)
= c−h, with 1 < c < b), then the Community Guided At-
tachment obeys the Densification Power Law with exponent

a = 2 − logb(c)

4.1.2 Dynamic Community Guided Attachment
So far we have discussed a model in which nodes are first

organized into a nested set of communities, and then they
start forming links. We now extend this to a setting in
which nodes are added over time, and the nested structure
deepens to accommodate them. We will assume that a node
only creates out-links at the moment it is added (and hence,
only to nodes already present); this is natural for domains
like citation networks in which a paper’s citations are written
at the same time as the paper itself.

Specifically, the model is as follows. Rather than having
graph nodes reside only at the leaves of the tree Γ, there will
now be a graph node corresponding to every internal node
of Γ as well. Initially, there is a single node v in the graph,
and our tree Γ consists just of v. In time step t, we go from
a complete b-ary tree of depth t − 1 to one of depth t, by
adding b new leaves as children of each current leaf. Each
of these new leaves will contain a new node of the graph.

Now, each new node forms out-links according to a variant
of the process in Section 4.1.1. However, since a new node
has the ability to link to internal nodes of the existing tree,
not just to other leaves, we need to extend the model to
incorporate this. Thus, we define the tree-distance d(v, w)
between nodes v and w to be the length of a path between
them in Γ — this is the length of the path from v up to
the least common ancestor of v and w, plus the length of
the path from this least common ancestor down to w. Note
that if v and w are both leaves, then d(v, w) = 2h(v, w),
following the definition of h(v, w) given previously.

The process of forming out-links is now as follows: For a
constant c, node v forms a link to each node w, indepen-
dently, with probability c−d(v,w)/2. (Note that dividing by 2
in the exponent means this model gives the same probability
as basic model in the case when both v and w are leaves.)

Like the first model, this process produces a densification
law with exponent a = 2 − logb(c) when c < b. However,
for c < b2, it also yields a heavy-tailed distribution of in-
degrees — something that the basic model did not produce.
We describe this in the following theorem; due to space lim-
itations, we omit the proof from this version of the paper.

Theorem 2. The dynamic Community Guided Attach-
ment model just defined has the following properties.

• When c < b, the average node degree is n1−logb(c) and
the in-degrees follow a Zipf distribution with exponent
1
2

logb(c).

• When b < c < b2, the average node degree is constant,
and the in-degrees follow a Zipf distribution with expo-
nent 1 − 1

2
logb(c).

• When c > b2, the average node degree is constant and
the probability of an in-degree exceeding any constant
bound k decreases exponentially in k.

Thus, the dynamic Community Guided Attachment model
exhibits three qualitatively different behaviors as the para-
meter c varies: densification with heavy-tailed in-degrees;

then constant average degree with heavy-tailed in-degrees;
and then constant in- and out-degrees with high probability.
Note also the interesting fact that the Zipf exponent is max-
imized for the value of c right at the onset of densification.

Finally, we have experimented with versions of the dy-
namic Community Guided Attachment model in which the
tree is not balanced, but rather deepens more on the left
branches than the right (in a recursive fashion). We have
also considered versions in which a single graph node can
“reside” at two different nodes of the tree Γ, allowing for
graph nodes to be members of different communities. We
do not go into further details of these extensions in this ver-
sion of the paper.

4.2 The Forest Fire Model
Community Guided Attachment and its extensions show

how densification can arise naturally, and even in conjunc-
tion with heavy-tailed in-degree distributions. However, it
is not a rich enough class of models to capture all the prop-
erties in our network datasets. In particular, we would like
to capture both the shrinking effective diameters that we
have observed, as well as the fact that real networks tend to
have heavy-tailed out-degree distributions (though generally
not as skewed as their in-degree distributions). The Com-
munity Guided Attachment models do not exhibit either of
these properties.

Specifically, our goal is as follows. Given a (possibly
empty) initial graph G, and a sequence of new nodes v1

. . . vk, we want to design a simple randomized process to
successively link vi to nodes of G (i = 1, . . . k) so that the
resulting graph Gfinal will obey all of the following patterns:
heavy-tailed distributions for in- and out-degrees, the Den-
sification Power Law, and shrinking effective diameter.

We are guided by the intuition that such a graph generator
may arise from a combination of the following components:

• some type of “rich get richer” attachment process, to
lead to heavy-tailed in-degrees;

• some flavor of the “copying” model [19], to lead to
communities;

• some flavor of Community Guided Attachment, to pro-
duce a version of the Densification Power Law;

• and a yet-unknown ingredient, to lead to shrinking di-
ameters.

Note that we will not be assuming a community hierarchy on
nodes, and so it is not enough to simply vary the Community
Guided Attachment model.

Based on this, we introduce the Forest Fire Model, which
is capable of producing all these properties. To set up this
model, we begin with some intuition that also underpinned
Community Guided Attachment: nodes arrive in over time;
each node has a “center of gravity” in some part of the net-
work; and its probability of linking to other nodes decreases
rapidly with their distance from this center of gravity. How-
ever, we add to this picture the notion that, occasionally,
a new node will produce a very large number of out-links.
Such nodes will help cause a more skewed out-degree distrib-
ution; they will also serve as “bridges” that connect formerly
disparate parts of the network, bringing the diameter down.



4.2.1 The Basic Forest Fire Model
Following this plan, we now define the most basic version

of the model. Essentially, nodes arrive one at a time and
form out-links to some subset of the earlier nodes; to form
out-links, a new node v attaches to a node w in the exist-
ing graph, and then begins “burning” links outward from
w, linking with a certain probability to any new node it
discovers. One can view such a process as intuitively corre-
sponding to a model by which an author of a paper identifies
references to include in the bibliography. He or she finds a
first paper to cite, chases a subset of the references in this
paper (modeled here as random), and continues recursively
with the papers discovered in this way. Depending on the
bibliographic aids being used in this process, it may also
be possible to chase back-links to papers that cite the paper
under consideration. Similar scenarios can be considered for
social networks: a new computer science graduate student
arrives at a university, meets some older CS students, who
introduce him/her to their friends (CS or non-CS), and the
introductions may continue recursively.

We formalize this process as follows, obtaining the Forest
Fire Model. To begin with, we will need two parameters, a
forward burning probability p, and a backward burning ratio
r, whose roles will be described below. Consider a node
v joining the network at time t > 1, and let Gt be the
graph constructed thus far. (G1 will consist of just a single
node.) Node v forms out-links to nodes in Gt according to
the following process.

(i) v first chooses an ambassador node w uniformly at ran-
dom, and forms a link to w.

(ii) We generate two random numbers: x and y that are
geometrically distributed with means (1 − p)−1 and
(1− rp)−1 respectively. Node v selects x out-links and
y in-links incident to nodes that were not yet visited.
Let w1, w2, . . . , wx+y denote the other ends of these
selected links. If not enough in- or out-links are avail-
able, v selects as many is it can.

(iii) v forms out-links to w1, w2, . . . , wx, and then applies
step (ii) recursively to each of w1, w2, . . . , wx. As the
process continues, nodes cannot be visited a second
time, preventing the construction from cycling.

Thus, the “burning” of links in Forest Fire model begins
at w, spreads to w1, . . . , wx, and proceeds recursively until it
dies out. In terms of the intuition from citations in papers,
the author of a new paper v initially consults w, follows a
subset of its references (potentially both forward and back-
ward) to the papers w1, . . . , wx, and then continues accu-
mulating references recursively by consulting these papers.
The key property of this model is that certain nodes pro-
duce large “conflagrations,” burning many edges and hence
forming many out-links before the process ends.

Despite the fact that there is no explicit hierarchy in the
Forest Fire Model, as there was in Community Guided At-
tachment, there are some subtle similarities between the
models. Where a node in Community Guided Attachment
was the child of a parent in the hierarchy, a node v in the
Forest Fire Model also has an “entry point” via its chosen
ambassador node w. Moreover, just as the probability of
linking to a node in Community Guided Attachment de-
creased exponentially in the tree distance, the probability

that a new node v burns k successive links so as to reach a
node u lying k steps away is exponentially small in k. (Of
course, in the Forest Fire Model, there may be many paths
that could be burned from v to u, adding some complexity
to this analogy.)

In fact, our Forest Fire Model combines the flavors of sev-
eral older models, and produces graphs qualitatively match-
ing their properties. We establish this by simulation, as we
describe below, but it is also useful to provide some intuition
for why these properties arise.

• Heavy-tailed in-degrees. Our model has a “rich get
richer” flavor: highly linked nodes can easily be reached by
a newcomer, no matter which ambassador it starts from.

• Communities. The model also has a “copying” fla-
vor: a newcomer copies several of the neighbors of his/her
ambassador (and then continues this recursively).

• Heavy-tailed out-degrees. The recursive nature of link
formation provides a reasonable chance for a new node to
burn many edges, and thus produce a large out-degree.

• Densification Power Law. A newcomer will have a
lot of links near the community of his/her ambassador; a
few links beyond this, and significantly fewer farther away.
Intuitively, this is analogous to the Community Guided At-
tachment, although without an explicit set of communities.

• Shrinking diameter. It is not a priori clear why the
Forest Fire Model should exhibit a shrinking diameter as it
grows. Graph densification is helpful in reducing the diame-
ter, but it is important to note that densification is certainly
not enough on its own to imply shrinking diameter. For
example, the Community Guided Attachment model obeys
the Densification Power Law, but it can be shown to have a
diameter that slowly increases.

Rigorous analysis of the Forest Fire Model appears to be
quite difficult. However, in simulations, we find that by
varying just the two parameters p and r, we can produce
graphs that densify (a > 1), exhibit heavy-tailed distribu-
tions for both in- and out-degrees (Fig. 6), and have diam-
eters that decrease. This is illustrated in Figure 5, which
shows plots for the effective diameter and the Densification
Power Law exponent as a function of time for some selec-
tions of p and r. We see from these plots that, depending on
the forward and backward burning parameters, the Forest
Fire Model is capable of generating sparse or dense graphs,
with effective diameters that either increase or decrease.

4.2.2 Extensions to the Forest Fire Model
Our basic version of the Forest Fire Model exhibits rich

structure with just two parameters. By extending the model
in natural ways, we can fit observed network data even more
closely. We propose two natural extensions: “orphans” and
multiple ambassadors.

“Orphans”: In both the Patents and arXiv citation graphs,
there are many isolated nodes, that is, documents with no
citations into the corpus. For example, many papers in the
arXiv only cite non-arXiv papers. We refer to them as or-
phans. Our basic model does not produce orphans, since
each node always links at least to its ambassador. However,
it is easy to incorporate orphans into the model in two dif-
ferent ways. We can start our graphs with n0 > 1 nodes at
time t = 1; or we can have some probability q > 0 that a
newcomer will form no links (not even to its ambassador).

We find that such variants of the model have a more pro-
nounced decrease in the effective diameter over time, with
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Figure 5: The DPL plot and diameter for Forest
Fire model. Top: sparse graph (a = 1.01 < 2), with
increasing diameter (forward burning probability:
p = 0.35, backward probability: pb = 0.20). Middle:
(most realistic case:) densifying graph (a = 1.32 < 2)
with decreasing diameter (p = 0.37, pb = 0.33). Bot-
tom: dense graph (a ≈ 2), with decreasing diameter
(p = 0.38, pb = 0.35).

large distances caused by groups of nodes linking to differ-
ent orphans gradually diminishing as further nodes arrive to
connect them together.

Multiple ambassadors: We experimented with allowing
newcomers to choose more than one ambassador with some
positive probability. That is, rather than burning links start-
ing from just one node, there is some probability that a
newly arriving node burns links starting from two or more.
This extension also accentuates the decrease in effective di-
ameter over time, as nodes linking to multiple ambassadors
serve to bring together formerly far-apart parts of the graph.

4.2.3 Phase plot
In order to understand the densification and diameter

properties of graphs produced by the Forest Fire Model, we
have explored the full parameter space of the basic model in
terms of its two underlying quantities: the forward burning
probability p and the backward burning ratio r.

Figure 7 shows how the densification exponent and the ef-
fective diameter depend on the values of these parameters.
The densification exponent a is computed as in Section 3,
by fitting a relation of the form e(t) ∝ n(t)a. For the ef-
fective diameter, we fit a logarithmic function of the form
diameter = α log t + β (where t is the current time, and
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Figure 7: Contour plots: The Densification Power
Law exponent a (left) and diameter log-fit α factor
(right) over the parameter space (forward-burning
probability and ratio).

hence the current number of vertices) to the last half of
the effective diameter plot; we then report the coefficient α.
Thus, α < 0 corresponds to decreasing effective diameter
over time.

Figure 7(a) gives the contour plot of the densification ex-
ponent a. The white color is for a = 1 (the graph maintains
constant average degree), while the black color is for a = 2
(the graph is “dense”, that is, the number of edges grows
quadratically with the number of nodes, as, e.g., in the case
of a clique). The desirable grey region is in-between; we ob-
serve that it is very narrow: a increases dramatically along
a contour line, suggesting a sharp transition.

Figure 7(b) gives the contour plot for the factor α in the
effective diameter fit, as defined above. The boundary be-
tween decreasing and increasing effective diameter is shifted
somewhat from the contour line for densification, indicating
that even the basic Forest Fire Model is able to produce
sparse graphs (with densification exponent near 1) in which
the effective diameter decreases.

For lack of space, we omit the phase plots with orphans
and multiple ambassadors, which show similar behavior.

5. CONCLUSION
Despite the enormous recent interest in large-scale net-

work data, and the range of interesting patterns identified
for static snapshots of graphs (e.g. heavy-tailed distribu-
tions, small-world phenomena), there has been relatively
little work on the properties of the time evolution of real
graphs. This is exactly the focus of this work. The main
findings and contributions follow:



• The Densification Power Law: In contrast to the stan-
dard modeling assumption that the average out-degree re-
mains constant over time, we discover that real graphs have
out-degrees that grow over time, following a natural pattern
(Eq. (1)).

• Shrinking diameters: Our experiments also show that
the standard assumption of slowly growing diameters does
not hold in a range of real networks; rather, the diame-
ter may actually exhibit a gradual decrease as the network
grows.

• We show that our Community Guided Attachment-
model can lead to the Densification Power Law, and that it
needs only one parameter to achieve it.

• Finally, we give the Forest Fire Model, based on only
two parameters, which is able to capture patterns observed
both in previous work and in the current study: heavy-tailed
in- and out-degrees, the Densification Power Law, and a
shrinking diameter.

Our results have potential relevance in multiple settings,
including ’what if’ scenarios; in forecasting of future pa-
rameters of computer and social networks; in anomaly de-
tection on monitored graphs; in designing graph sampling
algorithms; and in realistic graph generators.
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