
Graph Convolutional Neural Networks for Web-Scale
Recommender Systems

Rex Ying
∗†
, Ruining He

∗
, Kaifeng Chen

∗†
, Pong Eksombatchai

∗
,

William L. Hamilton
†
, Jure Leskovec

∗†

∗
Pinterest,

†
Stanford University

{rhe,kaifengchen,pong}@pinterest.com,{rexying,wleif,jure}@stanford.edu

ABSTRACT

Recent advancements in deep neural networks for graph-structured

data have led to state-of-the-art performance on recommender

system benchmarks. However, making these methods practical and

scalable to web-scale recommendation tasks with billions of items

and hundreds of millions of users remains a challenge.

Here we describe a large-scale deep recommendation engine

that we developed and deployed at Pinterest. We develop a data-

efficient Graph Convolutional Network (GCN) algorithm PinSage,

which combines efficient random walks and graph convolutions

to generate embeddings of nodes (i.e., items) that incorporate both

graph structure as well as node feature information. Compared to

prior GCN approaches, we develop a novel method based on highly

efficient random walks to structure the convolutions and design a

novel training strategy that relies on harder-and-harder training

examples to improve robustness and convergence of the model.

We deploy PinSage at Pinterest and train it on 7.5 billion exam-

ples on a graph with 3 billion nodes representing pins and boards,

and 18 billion edges. According to offline metrics, user studies and

A/B tests, PinSage generates higher-quality recommendations than

comparable deep learning and graph-based alternatives. To our

knowledge, this is the largest application of deep graph embed-

dings to date and paves the way for a new generation of web-scale

recommender systems based on graph convolutional architectures.

ACM Reference Format:

Rex Ying
∗†
, Ruining He

∗
, Kaifeng Chen

∗†
, Pong Eksombatchai

∗
, William L.

Hamilton
†
, Jure Leskovec

∗†
. 2018. Graph Convolutional Neural Networks

for Web-Scale Recommender Systems. In KDD ’18: The 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, August
19–23, 2018, London, United Kingdom. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3219819.3219890

1 INTRODUCTION

Deep learning methods have an increasingly critical role in rec-

ommender system applications, being used to learn useful low-

dimensional embeddings of images, text, and even individual users

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3219890

[9, 12]. The representations learned using deep models can be used

to complement, or even replace, traditional recommendation algo-

rithms like collaborative filtering. and these learned representations

have high utility because they can be re-used in various recom-

mendation tasks. For example, item embeddings learned using a

deep model can be used for item-item recommendation and also to

recommended themed collections (e.g., playlists, or “feed” content).
Recent years have seen significant developments in this space—

especially the development of new deep learning methods that are

capable of learning on graph-structured data, which is fundamen-

tal for recommendation applications (e.g., to exploit user-to-item
interaction graphs as well as social graphs) [6, 19, 21, 24, 29, 30].

Most prominent among these recent advancements is the suc-

cess of deep learning architectures known as Graph Convolutional

Networks (GCNs) [19, 21, 24, 29]. The core idea behind GCNs is

to learn how to iteratively aggregate feature information from lo-

cal graph neighborhoods using neural networks (Figure 1). Here a

single “convolution” operation transforms and aggregates feature

information from a node’s one-hop graph neighborhood, and by

stacking multiple such convolutions information can be propagated

across far reaches of a graph. Unlike purely content-based deep

models (e.g., recurrent neural networks [3]), GCNs leverage both
content information as well as graph structure. GCN-basedmethods

have set a new standard on countless recommender system bench-

marks (see [19] for a survey). However, these gains on benchmark

tasks have yet to be translated to gains in real-world production

environments.

The main challenge is to scale both the training as well as in-

ference of GCN-based node embeddings to graphs with billions of

nodes and tens of billions of edges. Scaling up GCNs is difficult

because many of the core assumptions underlying their design are

violated when working in a big data environment. For example,

all existing GCN-based recommender systems require operating

on the full graph Laplacian during training—an assumption that

is infeasible when the underlying graph has billions of nodes and

whose structure is constantly evolving.

Present work. Here we present a highly-scalable GCN framework

that we have developed and deployed in production at Pinterest. Our

framework, a random-walk-based GCN named PinSage, operates

on a massive graph with 3 billion nodes and 18 billion edges—a

graph that is 10, 000× larger than typical applications of GCNs.

PinSage leverages several key insights to drastically improve the

scalability of GCNs:

https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890

h
(1)
A

h
(1)
N (A)

h
(2)
A

h
(1)
B

h
(1)
C

h
(1)
D

INPUT GRAPH

TARGET NODE B

D

E

F

BATCH OF NETWORKS

�
C

A

B

C

D

A

A

A

C

F

B

E

A

(See Algorithm 1)
convolve(2) convolve(1)

Figure 1: Overview of our model architecture using depth-2 convolutions (best viewed in color). Left: A small example input

graph. Right: The 2-layer neural network that computes the embedding h(2)A of nodeA using the previous-layer representation,

h(1)A , of node A and that of its neighborhood N(A) (nodes B,C,D). (However, the notion of neighborhood is general and not all

neighbors need to be included (Section 3.2).) Bottom: The neural networks that compute embeddings of each node of the input

graph. While neural networks differ from node to node they all share the same set of parameters (i.e., the parameters of the

convolve
(1)

and convolve
(2)

functions; Algorithm 1). Boxes with the same shading patterns share parameters; γ denotes an

importance pooling function; and thin rectangular boxes denote densely-connected multi-layer neural networks.

• On-the-fly convolutions: Traditional GCN algorithms per-

form graph convolutions by multiplying feature matrices by

powers of the full graph Laplacian. In contrast, our PinSage algo-

rithm performs efficient, localized convolutions by sampling the

neighborhood around a node and dynamically constructing a

computation graph from this sampled neighborhood. These dy-

namically constructed computation graphs (Fig. 1) specify how

to perform a localized convolution around a particular node, and

alleviate the need to operate on the entire graph during training.

• Producer-consumer minibatch construction: We develop a

producer-consumer architecture for constructing minibatches

that ensures maximal GPU utilization during model training. A

large-memory, CPU-bound producer efficiently samples node

network neighborhoods and fetches the necessary features to

define local convolutions, while a GPU-bound TensorFlowmodel

consumes these pre-defined computation graphs to efficiently

run stochastic gradient decent.

• Efficient MapReduce inference: Given a fully-trained GCN

model, we design an efficient MapReduce pipeline that can dis-

tribute the trained model to generate embeddings for billions of

nodes, while minimizing repeated computations.

In addition to these fundamental advancements in scalability, we

also introduce new training techniques and algorithmic innova-

tions. These innovations improve the quality of the representations

learned by PinSage, leading significant performance gains in down-

stream recommender system tasks:

• Constructing convolutions via random walks: Taking full

neighborhoods of nodes to perform convolutions (Fig. 1) would

result in huge computation graphs, so we resort to sampling.

However, random sampling is suboptimal, and we develop a new

technique using short random walks to sample the computa-

tion graph. An additional benefit is that each node now has an

importance score, which we use in the pooling/aggregation step.

• Importance pooling: A core component of graph convolutions

is the aggregation of feature information from local neighbor-

hoods in the graph. We introduce a method to weigh the impor-

tance of node features in this aggregation based upon random-

walk similarity measures, leading to a 46% performance gain in

offline evaluation metrics.

• Curriculum training:We design a curriculum training scheme,

where the algorithm is fed harder-and-harder examples during

training, resulting in a 12% performance gain.

We have deployed PinSage for a variety of recommendation

tasks at Pinterest, a popular content discovery and curation appli-

cation where users interact with pins, which are visual bookmarks

to online content (e.g., recipes they want to cook, or clothes they

want to purchase). Users organize these pins into boards, which con-
tain collections of similar pins. Altogether, Pinterest is the world’s

largest user-curated graph of images, with over 2 billion unique

pins collected into over 1 billion boards.

Through extensive offline metrics, controlled user studies, and

A/B tests, we show that our approach achieves state-of-the-art

performance compared to other scalable deep content-based rec-

ommendation algorithms, in both an item-item recommendation

task (i.e., related-pin recommendation), as well as a “homefeed”

recommendation task. In offline ranking metrics we improve over

the best performing baseline by more than 40%, in head-to-head

human evaluations our recommendations are preferred about 60%

of the time, and the A/B tests show 30% to 100% improvements in

user engagement across various settings.

To our knowledge, this is the largest-ever application of deep

graph embeddings and paves the way for new generation of rec-

ommendation systems based on graph convolutional architectures.

2 RELATEDWORK

Our work builds upon a number of recent advancements in deep

learning methods for graph-structured data.

The notion of neural networks for graph data was first outlined

in Gori et al. (2005) [15] and further elaborated on in Scarselli et

al. (2009) [27]. However, these initial approaches to deep learning

on graphs required running expensive neural “message-passing”

algorithms to convergence and were prohibitively expensive on

large graphs. Some limitations were addressed by Gated Graph

Sequence Neural Networks [22]—which employs modern recurrent

neural architectures—but the approach remains computationally

expensive and has mainly been used on graphs with <10, 000 nodes.

More recently, there has been a surge of methods that rely on

the notion of “graph convolutions” or Graph Convolutional Net-

works (GCNs). This approach originated with the work of Bruna et

al. (2013), which developed a version of graph convolutions based

on spectral graph thery [7]. Following on this work, a number of

authors proposed improvements, extensions, and approximations

of these spectral convolutions [6, 10, 11, 13, 18, 21, 24, 29, 31], lead-

ing to new state-of-the-art results on benchmarks such as node

classification, link prediction, as well as recommender system tasks

(e.g., the MovieLens benchmark [24]). These approaches have con-

sistently outperformed techniques based upon matrix factorization

or random walks (e.g., node2vec [17] and DeepWalk [26]), and

their success has led to a surge of interest in applying GCN-based

methods to applications ranging from recommender systems [24] to

drug design [20, 31]. Hamilton et al. (2017b) [19] and Bronstein et al.

(2017) [6] provide comprehensive surveys of recent advancements.

However, despite the successes of GCN algorithms, no previous

works have managed to apply them to production-scale data with

billions of nodes and edges—a limitation that is primarily due to

the fact that traditional GCN methods require operating on the

entire graph Laplacian during training. Here we fill this gap and

show that GCNs can be scaled to operate in a production-scale

recommender system setting involving billions of nodes/items. Our

work also demonstrates the substantial impact that GCNs have on

recommendation performance in a real-world environment.

In terms of algorithm design, our work is most closely related to

Hamilton et al. (2017a)’s GraphSAGE algorithm [18] and the closely

related follow-up work of Chen et al. (2018) [8]. GraphSAGE is

an inductive variant of GCNs that we modify to avoid operating

on the entire graph Laplacian. We fundamentally improve upon

GraphSAGE by removing the limitation that the whole graph be

stored in GPU memory, using low-latency random walks to sample

graph neighborhoods in a producer-consumer architecture. We

also introduce a number of new training techniques to improve

performance and a MapReduce inference pipeline to scale up to

graphs with billions of nodes.

Lastly, also note that graph embedding methods like node2vec

[17] and DeepWalk [26] cannot be applied here. First, these are

unsupervised methods. Second, they cannot include node feature

information. Third, they directly learn embeddings of nodes and

thus the number of model parameters is linear with the size of the

graph, which is prohibitive for our setting.

3 METHOD

In this section, we describe the technical details of the PinSage archi-

tecture and training, as well as a MapReduce pipeline to efficiently

generate embeddings using a trained PinSage model.

The key computational workhorse of our approach is the notion

of localized graph convolutions.
1
To generate the embedding for

a node (i.e., an item), we apply multiple convolutional modules

that aggregate feature information (e.g., visual, textual features)
from the node’s local graph neighborhood (Figure 1). Each module

learns how to aggregate information from a small graph neighbor-

hood, and by stacking multiple such modules, our approach can

gain information about the local network topology. Importantly,

parameters of these localized convolutional modules are shared

across all nodes, making the parameter complexity of our approach

independent of the input graph size.

3.1 Problem Setup

Pinterest is a content discovery application where users interact

with pins, which are visual bookmarks to online content (e.g., recipes
they want to cook, or clothes they want to purchase). Users organize

these pins into boards, which contain collections of pins that the

user deems to be thematically related. Altogether, the Pinterest

graph contains 2 billion pins, 1 billion boards, and over 18 billion

edges (i.e., memberships of pins to their corresponding boards).

Our task is to generate high-quality embeddings or representa-

tions of pins that can be used for recommendation (e.g., via nearest-
neighbor lookup for related pin recommendation, or for use in a

downstream re-ranking system). In order to learn these embed-

dings, we model the Pinterest environment as a bipartite graph

consisting of nodes in two disjoint sets, I (containing pins) and

C (containing boards). Note, however, that our approach is also

naturally generalizable, with I being viewed as a set of items and

C as a set of user-defined contexts or collections.

In addition to the graph structure, we also assume that the

pins/items u ∈ I are associated with real-valued attributes, xu ∈

Rd . In general, these attributes may specify metadata or content

information about an item, and in the case of Pinterest, we have

that pins are associated with both rich text and image features.

Our goal is to leverage both these input attributes as well as the

structure of the bipartite graph to generate high-quality embed-

dings. These embeddings are then used for recommender system

1
Following a number of recent works (e.g., [13, 20]) we use the term “convolutional”

to refer to a module that aggregates information from a local graph region and to

denote the fact that parameters are shared between spatially distinct applications of

this module; however, the architecture we employ does not directly approximate a

spectral graph convolution (though they are intimately related) [6].

candidate generation via nearest neighbor lookup (i.e., given a pin,

find related pins) or as features in machine learning systems for

ranking the candidates.

For notational convenience and generality, when we describe

the PinSage algorithm, we simply refer to the node set of the full

graph withV = I ∪ C and do not explicitly distinguish between

pin and board nodes (unless strictly necessary), using the more

general term “node” whenever possible.

3.2 Model Architecture

We use localized convolutional modules to generate embeddings

for nodes. We start with input node features and then learn neural

networks that transform and aggregate features over the graph to

compute the node embeddings (Figure 1).

Forward propagation algorithm.We consider the task of gener-

ating an embedding, zu for a node u, which depends on the node’s

input features and the graph structure around this node.

Algorithm 1: convolve

Input :Current embedding zu for node u; set of neighbor
embeddings {zv |v ∈ N(u)}, set of neighbor weights
α ; symmetric vector function γ (·)

Output :New embedding znewu for node u

1 nu ← γ ({ReLU (Qhv + q) | v ∈ N(u)} ,α);
2 znewu ← ReLU (W · concat(zu ,nu) +w);
3 znewu ← znewu /∥znewu ∥2

The core of our PinSage algorithm is a localized convolution

operation, where we learn how to aggregate information from u’s
neighborhood (Figure 1). This procedure is detailed in Algorithm 1

convolve. The basic idea is that we transform the representations

zv ,∀v ∈ N(u) of u’s neighbors through a dense neural network

and then apply a aggregator/pooling fuction (e.g., a element-wise

mean or weighted sum, denoted as γ) on the resulting set of vectors

(Line 1). This aggregation step provides a vector representation,

nu , of u’s local neighborhood, N(u). We then concatenate the ag-

gregated neighborhood vector nu with u’s current representation
hu and transform the concatenated vector through another dense

neural network layer (Line 2). Empirically we observe significant

performance gains when using concatenation operation instead of

the average operation as in [21]. Additionally, the normalization in

Line 3 makes trainingmore stable, and it is more efficient to perform

approximate nearest neighbor search for normalized embeddings

(Section 3.5). The output of the algorithm is a representation of u
that incorporates both information about itself and its local graph

neighborhood.

Importance-based neighborhoods. An important innovation in

our approach is how we define node neighborhoodsN(u), i.e., how
we select the set of neighbors to convolve over in Algorithm 1.

Whereas previous GCN approaches simply examine k-hop graph

neighborhoods, in PinSage we define importance-based neighbor-

hoods, where the neighborhood of a nodeu is defined as theT nodes

that exert the most influence on node u. Concretely, we simulate

randomwalks starting from nodeu and compute the L1-normalized

visit count of nodes visited by the random walk [14].
2
The neigh-

borhood of u is then defined as the top T nodes with the highest

normalized visit counts with respect to node u.
The advantages of this importance-based neighborhood defi-

nition are two-fold. First, selecting a fixed number of nodes to

aggregate from allows us to control the memory footprint of the

algorithm during training [18]. Second, it allows Algorithm 1 to

take into account the importance of neighbors when aggregating

the vector representations of neighbors. In particular, we imple-

ment γ in Algorithm 1 as a weighted-mean, with weights defined

according to the L1 normalized visit counts. We refer to this new

approach as importance pooling.
Stacking convolutions. Each time we apply the convolve opera-

tion (Algorithm 1) we get a new representation for a node, and we

can stack multiple such convolutions on top of each other in order

to gain more information about the local graph structure around

node u. In particular, we use multiple layers of convolutions, where

the inputs to the convolutions at layer k depend on the representa-

tions output from layer k − 1 (Figure 1) and where the initial (i.e.,
“layer 0”) representations are equal to the input node features. Note

that the model parameters in Algorithm 1 (Q, q, W, and w) are

shared across the nodes but differ between layers.

Algorithm 2 details how stacked convolutions generate embed-

dings for a minibatch set of nodes,M. We first compute the neigh-

borhoods of each node and then apply K convolutional iterations

to generate the layer-K representations of the target nodes. The

output of the final convolutional layer is then fed through a fully-

connected neural network to generate the final output embeddings

zu ,∀u ∈ M.

The full set of parameters of our model which we then learn

is: the weight and bias parameters for each convolutional layer

(Q(k), q(k),W(k),w(k),∀k ∈ {1, ...,K}) as well as the parameters of

the final dense neural network layer, G1, G2, and g. The output di-
mension of Line 1 in Algorithm 1 (i.e., the column-space dimension

of Q) is set to bem at all layers. For simplicity, we set the output

dimension of all convolutional layers (i.e., the output at Line 3 of
Algorithm 1) to be equal, and we denote this size parameter by d .
The final output dimension of the model (after applying line 18 of

Algorithm 2) is also set to be d .

3.3 Model Training

We train PinSage in a supervised fashion using a max-margin rank-

ing loss. In this setup, we assume that we have access to a set of

labeled pairs of items L, where the pairs in the set, (q, i) ∈ L, are
assumed to be related—i.e., we assume that if (q, i) ∈ L then item i
is a good recommendation candidate for query item q. The goal of
the training phase is to optimize the PinSage parameters so that the

output embeddings of pairs (q, i) ∈ L in the labeled set are close

together.

We first describe our margin-based loss function in detail. Follow-

ing this, we give an overview of several techniques we developed

that lead to the computation efficiency and fast convergence rate

of PinSage, allowing us to train on billion node graphs and billions

training examples. And finally, we describe our curriculum-training

2
In the limit of infinite simulations, the normalized counts approximate the Personal-

ized PageRank scores with respect to u .

Algorithm 2: minibatch

Input :Set of nodesM ⊂ V; depth parameter K ;

neighborhood function N : V → 2
V

Output :Embeddings zu ,∀u ∈ M
/* Sampling neighborhoods of minibatch nodes. */

1 S(K) ←M;

2 for k = K , ..., 1 do

3 S(k−1) ← S(k);

4 for u ∈ S(k) do

5 S(k−1) ← S(k−1) ∪ N(u);

6 end

7 end

/* Generating embeddings */

8 h(0)u ← xu ,∀u ∈ S(0);
9 for k = 1, ...,K do

10 for u ∈ S(k) do

11 H ←

{
h(k−1)v ,∀v ∈ N(u)

}
;

12 h(k)u ← convolve
(k)

(
h(k−1)u ,H

)
13 end

14 end

15 for u ∈ M do

16 zu ← G2 · ReLU

(
G1h

(K)
u + g

)
17 end

scheme, which improves the overall quality of the recommenda-

tions.

Loss function. In order to train the parameters of the model, we

use a max-margin-based loss function. The basic idea is that we

want to maximize the inner product of positive examples, i.e., the
embedding of the query item and the corresponding related item.

At the same time we want to ensure that the inner product of

negative examples—i.e., the inner product between the embedding

of the query item and an unrelated item—is smaller than that of the

positive sample by some pre-defined margin. The loss function for

a single pair of node embeddings (zq , zi) : (q, i) ∈ L is thus

JG(zqzi) = Enk∼Pn (q)max{0, zq · znk − zq · zi + ∆}, (1)

where Pn (q) denotes the distribution of negative examples for item

q, and ∆ denotes the margin hyper-parameter. We shall explain the

sampling of negative samples below.

Multi-GPU training with large minibatches. To make full use

of multiple GPUs on a single machine for training, we run the for-

ward and backward propagation in a multi-tower fashion. With

multiple GPUs, we first divide eachminibatch (Figure 1 bottom) into

equal-sized portions. Each GPU takes one portion of the minibatch

and performs the computations using the same set of parameters. Af-

ter backward propagation, the gradients for each parameter across

all GPUs are aggregated together, and a single step of synchronous

SGD is performed. Due to the need to train on extremely large

number of examples (on the scale of billions), we run our system

with large batch sizes, ranging from 512 to 4096.

We use techniques similar to those proposed by Goyal et al. [16]
to ensure fast convergence andmaintain training and generalization

accuracy when dealing with large batch sizes. We use a gradual

warmup procedure that increases learning rate from small to a

peak value in the first epoch according to the linear scaling rule.

Afterwards the learning rate is decreased exponentially.

Producer-consumer minibatch construction. During training,

the adjacency list and the feature matrix for billions of nodes are

placed in CPU memory due to their large size. However, during the

convolve step of PinSage, each GPU process needs access to the

neighborhood and feature information of nodes in the neighbor-

hood. Accessing the data in CPU memory from GPU is not efficient.

To solve this problem, we use a re-indexing technique to create a

sub-graphG ′ = (V ′,E ′) containing nodes and their neighborhood,

which will be involved in the computation of the current minibatch.

A small feature matrix containing only node features relevant to

computation of the current minibatch is also extracted such that

the order is consistent with the index of nodes inG ′. The adjacency
list ofG ′ and the small feature matrix are fed into GPUs at the start

of each minibatch iteration, so that no communication between

the GPU and CPU is needed during the convolve step, greatly

improving GPU utilization.

The training procedure has alternating usage of CPUs and GPUs.

The model computations are in GPUs, whereas extracting features,

re-indexing, and negative sampling are computed on CPUs. In ad-

dition to parallelizing GPU computation with multi-tower training,

and CPU computation using OpenMP [25], we design a producer-

consumer pattern to run GPU computation at the current iteration

and CPU computation at the next iteration in parallel. This further

reduces the training time by almost a half.

Sampling negative items. Negative sampling is used in our loss

function (Equation 1) as an approximation of the normalization

factor of edge likelihood [23]. To improve efficiency when training

with large batch sizes, we sample a set of 500 negative items to be

shared by all training examples in each minibatch. This drastically

saves the number of embeddings that need to be computed during

each training step, compared to running negative sampling for each

node independently. Empirically, we do not observe a difference

between the performance of the two sampling schemes.

In the simplest case, we could just uniformly sample negative

examples from the entire set of items. However, ensuring that the

inner product of the positive example (pair of items (q, i)) is larger
than that of theq and each of the 500 negative items is too “easy” and

does not provide fine enough “resolution” for the system to learn.

In particular, our recommendation algorithm should be capable

of finding 1,000 most relevant items to q among the catalog of

over 2 billion items. In other words, our model should be able to

distinguish/identify 1 item out of 2 million items. But with 500

random negative items, the model’s resolution is only 1 out of

500. Thus, if we sample 500 random negative items out of 2 billion

items, the chance of any of these items being even slightly related

to the query item is small. Therefore, with large probability the

learning will not make good parameter updates and will not be able

to differentiate slightly related items from the very related ones.

To solve the above problem, for each positive training example

(i.e., item pair (q, i)), we add “hard” negative examples, i.e., items

Figure 2: Random negative examples and hard negative ex-

amples. Notice that the hard negative example is signifi-

cantly more similar to the query, than the random negative

example, though not as similar as the positive example.

that are somewhat related to the query item q, but not as related
as the positive item i . We call these “hard negative items”. They

are generated by ranking items in a graph according to their Per-

sonalized PageRank scores with respect to query item q [14]. Items

ranked at 2000-5000 are randomly sampled as hard negative items.

As illustrated in Figure 2, the hard negative examples are more

similar to the query than random negative examples, and are thus

challenging for the model to rank, forcing the model to learn to

distinguish items at a finer granularity.

Using hard negative items throughout the training procedure

doubles the number of epochs needed for the training to con-

verge. To help with convergence, we develop a curriculum training

scheme [4]. In the first epoch of training, no hard negative items are

used, so that the algorithm quickly finds an area in the parameter

space where the loss is relatively small. We then add hard negative

items in subsequent epochs, focusing the model to learn how to

distinguish highly related pins from only slightly related ones. At

epoch n of the training, we add n − 1 hard negative items to the set

of negative items for each item.

3.4 Node Embeddings via MapReduce

After the model is trained, it is still challenging to directly apply the

trained model to generate embeddings for all items, including those

that were not seen during training. Naively computing embeddings

for nodes using Algorithm 2 leads to repeated computations caused

by the overlap between K-hop neighborhoods of nodes. As illus-

trated in Figure 1, many nodes are repeatedly computed at multiple

layers when generating the embeddings for different target nodes.

To ensure efficient inference, we develop a MapReduce approach

that runs model inference without repeated computations.

We observe that inference of node embeddings very nicely lends

itself to MapReduce computational model. Figure 3 details the data

flow on the bipartite pin-to-board Pinterest graph, where we assume

the input (i.e., “layer-0”) nodes are pins/items (and the layer-1 nodes

are boards/contexts). The MapReduce pipeline has two key parts:

(1) One MapReduce job is used to project all pins to a low-

dimensional latent space, where the aggregation operation

will be performed (Algorithm 1, Line 1).

(2) Another MapReduce job is then used to join the resulting pin

representations with the ids of the boards they occur in, and

the board embedding is computed by pooling the features of

its (sampled) neighbors.

Note that our approach avoids redundant computations and that

the latent vector for each node is computed only once. After the em-

beddings of the boards are obtained, we use two more MapReduce

jobs to compute the second-layer embeddings of pins, in a similar

fashion as above, and this process can be iterated as necessary (up

to K convolutional layers).
3

3.5 Efficient nearest-neighbor lookups

The embeddings generated by PinSage can be used for a wide range

of downstream recommendation tasks, and in many settings we

can directly use these embeddings to make recommendations by

performing nearest-neighbor lookups in the learned embedding

space. That is, given a query item q, the we can recommend items

whose embeddings are the K-nearest neighbors of the query item’s

embedding. Approximate KNN can be obtained efficiently via lo-

cality sensitive hashing [2]. After the hash function is computed,

retrieval of items can be implemented with a two-level retrieval pro-

cess based on the Weak AND operator [5]. Given that the PinSage

model is trained offline and all node embeddings are computed via

MapReduce and saved in a database, the efficient nearest-neighbor

lookup operation enables the system to serve recommendations in

an online fashion,

4 EXPERIMENTS

To demonstrate the efficiency of PinSage and the quality of the

embeddings it generates, we conduct a comprehensive suite of

experiments on the entire Pinterest object graph, including offline

experiments, production A/B tests as well as user studies.

4.1 Experimental Setup

We evaluate the embeddings generated by PinSage in two tasks:

recommending related pins and recommending pins in a user’s

home/news feed. To recommend related pins, we select the K near-

est neighbors to the query pin in the embedding space. We evaluate

performance on this related-pin recommendation task using both

offline ranking measures as well as a controlled user study. For the

homefeed recommendation task, we select the pins that are closest

in the embedding space to one of the most recently pinned items by

the user. We evaluate performance of a fully-deployed production

system on this task using A/B tests to measure the overall impact

on user engagement.

Training details and data preparation. We define the set, L,

of positive training examples (Equation (1)) using historical user

engagement data. In particular, we use historical user engagement

data to identify pairs of pins (q, i), where a user interacted with pin

i immediately after she interacted with pin q. We use all other pins

as negative items (and sample them as described in Section 3.3).

Overall, we use 1.2 billion pairs of positive training examples (in

addition to 500 negative examples per batch and 6 hard negative

examples per pin). Thus in total we use 7.5 billion training examples.

Since PinSage can efficiently generate embeddings for unseen

data, we only train on a subset of the Pinterest graph and then

generate embeddings for the entire graph using the MapReduce

pipeline described in Section 3.4. In particular, for training we use

3
Note that since we assume that only pins (and not boards) have features, we must

use an even number of convolutional layers.

Figure 3: Node embedding data flow to compute the first layer representation usingMapReduce. The second layer computation

follows the same pipeline, except that the inputs are first layer representations, rather than raw item features.

a randomly sampled subgraph of the entire graph, containing 20%

of all boards (and all the pins touched by those boards) and 70% of

the labeled examples. During hyperparameter tuning, a remaining

10% of the labeled examples are used. And, when testing, we run

inference on the entire graph to compute embeddings for all 2

billion pins, and the remaining 20% of the labeled examples are

used to test the recommendation performance of our PinSage in the

offline evaluations. Note that training on a subset of the full graph

drastically decreased training time, with a negligible impact on final

performance. In total, the full datasets for training and evaluation

are approximately 18TB in size with the full output embeddings

being 4TB.

Features used for learning. Each pin at Pinterest is associated

with an image and a set of textual annotations (title, description). To

generate feature representation xq for each pin q, we concatenate
visual embeddings (4,096 dimensions), textual annotation embed-

dings (256 dimensions), and the log degree of the node/pin in the

graph. The visual embeddings are the 6-th fully connected layer of

a classification network using the VGG-16 architecture [28]. Tex-

tual annotation embeddings are trained using a Word2Vec-based

model [23], where the context of an annotation consists of other

annotations that are associated with each pin.

Baselines for comparison.We evaluate the performance of Pin-

Sage against the following state-of-the-art content-based, graph-

based and deep learning baselines that generate embeddings of

pins:

(1) Visual embeddings (Visual): Uses nearest neighbors of deep

visual embeddings for recommendations. The visual features

are described above.

(2) Annotation embeddings (Annotation): Recommends based

on nearest neighbors in terms of annotation embeddings. The

annotation embeddings are described above.

(3) Combined embeddings (Combined): Recommends based on

concatenating visual and annotation embeddings, and using

a 2-layer multi-layer perceptron to compute embeddings that

capture both visual and annotation features.

(4) Graph-based method (Pixie): This random-walk-based method

[14] uses biased random walks to generate ranking scores by

simulating random walks starting at query pin q. Items with

top K scores are retrieved as recommendations. While this

approach does not generate pin embeddings, it is currently the

state-of-the-art at Pinterest for certain recommendation tasks

[14] and thus an informative baseline.

The visual and annotation embeddings are state-of-the-art deep

learning content-based systems currently deployed at Pinterest to

generate representations of pins. Note that we do not compare

against other deep learning baselines from the literature simply

due to the scale of our problem. We also do not consider non-deep

learning approaches for generating item/content embeddings, since

other works have already proven state-of-the-art performance of

deep learning approaches for generating such embeddings [9, 12,

24].

We also conduct ablation studies and consider several variants

of PinSage when evaluating performance:

• max-pooling uses the element-wisemax as a symmetric aggre-

gation function (i.e., γ = max) without hard negative samples;

• mean-pooling uses the element-wise mean as a symmetric

aggregation function (i.e., γ = mean);

• mean-pooling-xent is the same as mean-pooling but uses the

cross-entropy loss introduced in [18].

• mean-pooling-hard is the same as mean-pooling, except that

it incorporates hard negative samples as detailed in Section 3.3.

• PinSage uses all optimizations presented in this paper, includ-

ing the use of importance pooling in the convolution step.

The max-pooling and cross-entropy settings are extensions of the

best-performing GCN model from Hamilton et al. [18]—other vari-

ants (e.g., based on Kipf et al. [21]) performed significantly worse

in development tests and are omitted for brevity.
4
For all the above

variants, we used K = 2, hidden dimension sizem = 2048, and set

the embedding dimension d to be 1024.

Computation resources. Training of PinSage is implemented in

TensorFlow [1] and run on a single machine with 32 cores and

16 Tesla K80 GPUs. To ensure fast fetching of item’s visual and

annotation features, we store them in main memory, together with

the graph, using Linux HugePages to increase the size of virtual

memory pages from 4KB to 2MB. The total amount of memory used

in training is 500GB. Our MapReduce inference pipeline is run on

a Hadoop2 cluster with 378 d2.8xlarge Amazon AWS nodes.

4
Note that the recent GCN-based recommender systems of Monti et al. [24] and Berg

et al. [29] are not directly comparable because they cannot scale to the Pinterest size

data.

Method Hit-rate MRR

Visual 17% 0.23

Annotation 14% 0.19

Combined 27% 0.37

max-pooling 39% 0.37

mean-pooling 41% 0.51

mean-pooling-xent 29% 0.35

mean-pooling-hard 46% 0.56

PinSage 67% 0.59

Table 1: Hit-rate and MRR for PinSage and content-based

deep learning baselines. Overall, PinSage gives 150% im-

provement in hit rate and 60% improvement in MRR over

the best baseline.
5

4.2 Offline Evaluation

To evaluate performance on the related pin recommendation task,

we define the notion of hit-rate. For each positive pair of pins (q, i)
in the test set, we use q as a query pin and then compute its top

K nearest neighbors NNq from a sample of 5 million test pins. We

then define the hit-rate as the fraction of queries q where i was
ranked among the top K of the test sample (i.e., where i ∈ NNq).

This metric directly measures the probability that recommendations

made by the algorithm contain the items related to the query pin q.
In our experiments K is set to be 500.

We also evaluate the methods using Mean Reciprocal Rank

(MRR), which takes into account of the rank of the item j among

recommended items for query item q:

MRR =
1

n

∑
(q,i)∈L

1⌈
Ri,q/100

⌉ . (2)

Due to the large pool of candidates (more than 2 billion), we use a

scaled version of the MRR in Equation (2), where Ri,q is the rank

of item i among recommended items for query q, and n is the total

number of labeled item pairs. The scaling factor 100 ensures that,

for example, the difference between rank at 1, 000 and rank at 2, 000

is still noticeable, instead of being very close to 0.

Table 1 compares the performance of the various approaches

using the hit rate as well as the MRR.
5
PinSage with our new

importance-pooling aggregation and hard negative examples achieves

the best performance at 67% hit-rate and 0.59 MRR, outperforming

the top baseline by 40% absolute (150% relative) in terms of the

hit rate and also 22% absolute (60% relative) in terms of MRR. We

also observe that combining visual and textual information works

much better than using either one alone (60% improvement of the

combined approach over visual/annotation only).

Embedding similarity distribution. Another indication of the

effectiveness of the learned embeddings is that the distances be-

tween random pairs of item embeddings are widely distributed. If

all items are at about the same distance (i.e., the distances are tightly
clustered) then the embedding space does not have enough “resolu-

tion” to distinguish between items of different relevance. Figure 4

5
Note that we do not include the Pixie baseline in these offline comparisons because the

Pixie algorithm runs in production and is “generating” labeled pairs (q, j) for us—i.e.,
the labeled pairs are obtained from historical user engagement data in which the Pixie

algorithm was used as the recommender system. Therefore, the recommended item j
is always in the recommendations made by the Pixie algorithm. However, we compare

to the Pixie algorithm using human evaluations in Section 4.3.

Figure 4: Probability density of pairwise cosine similarity

for visual embeddings, annotation embeddings, and Pin-

Sage embeddings.

plots the distribution of cosine similarities between pairs of items

using annotation, visual, and PinSage embeddings. This distribution

of cosine similarity between random pairs of items demonstrates

the effectiveness of PinSage, which has the most spread out distribu-

tion. In particular, the kurtosis of the cosine similarities of PinSage

embeddings is 0.43, compared to 2.49 for annotation embeddings

and 1.20 for visual embeddings.

Another important advantage of having such a wide-spread in

the embeddings is that it reduces the collision probability of the

subsequent LSH algorithm, thus increasing the efficiency of serving

the nearest neighbor pins during recommendation.

4.3 User Studies

We also investigate the effectiveness of PinSage by performing head-

to-head comparison between different learned representations. In

the user study, a user is presented with an image of the query pin,

together with two pins retrieved by two different recommendation

algorithms. The user is then asked to choose which of the two

candidate pins is more related to the query pin. Users are instructed

to find various correlations between the recommended items and

the query item, in aspects such as visual appearance, object category

and personal identity. If both recommended items seem equally

related, users have the option to choose “equal”. If no consensus is

reached among 2/3 of users who rate the same question, we deem

the result as inconclusive.

Table 2 shows the results of the head-to-head comparison be-

tween PinSage and the 4 baselines. Among items for which the user

has an opinion of which is more related, around 60% of the pre-

ferred items are recommended by PinSage. Figure 5 gives examples

of recommendations and illustrates strengths and weaknesses of the

different methods. The image to the left represents the query item.

Each row to the right corresponds to the top recommendations

made by the visual embedding baseline, annotation embedding

baseline, Pixie, and PinSage. Although visual embeddings gener-

ally predict categories and visual similarity well, they occasionally

make large mistakes in terms of image semantics. In this example,

visual information confused plants with food, and tree logging with

war photos, due to similar image style and appearance. The graph-

based Pixie method, which uses the graph of pin-to-board relations,

Methods Win Lose Draw Fraction of wins

PinSage vs. Visual 28.4% 21.9% 49.7% 56.5%

PinSage vs. Annot. 36.9% 14.0% 49.1% 72.5%

PinSage vs. Combined 22.6% 15.1% 57.5% 60.0%

PinSage vs. Pixie 32.5% 19.6% 46.4% 62.4%

Table 2: Head-to-head comparison of which image is more

relevant to the recommended query image.

correctly understands that the category of query is “plants” and it

recommends items in that general category. However, it does not

find the most relevant items. Combining both visual/textual and

graph information, PinSage is able to find relevant items that are

both visually and topically similar to the query item.

In addition, we visualize the embedding space by randomly

choosing 1000 items and compute the 2D t-SNE coordinates from

the PinSage embedding, as shown in Figure 6.
6
We observe that the

proximity of the item embeddings corresponds well with the simi-

larity of content, and that items of the same category are embedded

into the same part of the space. Note that items that are visually

different but have the same theme are also close to each other

in the embedding space, as seen by the items depicting different

fashion-related items on the bottom side of the plot.

4.4 Production A/B Test

Lastly, we also report on the production A/B test experiments,

which compared the performance of PinSage to other deep learning

content-based recommender systems at Pinterest on the task of

homefeed recommendations. We evaluate the performance by ob-

serving the lift in user engagement. The metric of interest is repin
rate, which measures the percentage of homefeed recommendations

that have been saved by the users. A user saving a pin to a board

is a high-value action that signifies deep engagement of the user.

It means that a given pin presented to a user at a given time was

relevant enough for the user to save that pin to one of their boards

so that they can retrieve it later.

We find that PinSage consistently recommends pins that are

more likely to be re-pinned by the user than the alternative methods.

Depending on the particular setting, we observe 10-30% improve-

ments in repin rate over the Annotation and Visual embedding

based recommendations.

4.5 Training and Inference Runtime Analysis

One advantage of GCNs is that they can be made inductive [19]:

at the inference (i.e., embedding generation) step, we are able to

compute embeddings for items that were not in the training set.

This allows us to train on a subgraph to obtain model parameters,

and then make embed nodes that have not been observed during

training. Also note that it is easy to compute embeddings of new

nodes that get added into the graph over time. This means that

recommendations can be made on the full (and constantly grow-

ing) graph. Experiments on development data demonstrated that

training on a subgraph containing 300 million items could achieve

the best performance in terms of hit-rate (i.e., further increases in

6
Some items are overlapped and are not visible.

Figure 5: Examples of Pinterest pins recommended by differ-

ent algorithms. The image to the left is the query pin. Rec-

ommended items to the right are computed using Visual em-

beddings, Annotation embeddings, graph-based Pixie, and

PinSage.

the training set size did not seem to help), reducing the runtime by

a factor of 6 compared to training on the full graph.

Table 3 shows the the effect of batch size of the minibatch SGD

on the runtime of PinSage training procedure, using the mean-

pooling-hard variant. For varying batch sizes, the table shows: (1)

the computation time, in milliseconds, for each minibatch, when

varying batch size; (2) the number of iterations needed for themodel

to converge; and (3) the total estimated time for the training proce-

dure. Experiments show that a batch size of 2048 makes training

most efficient.

When training the PinSage variant with importance pooling,

another trade-off comes from choosing the size of neighborhood

T . Table 3 shows the runtime and performance of PinSage when

T = 10, 20 and 50. We observe a diminishing return as T increases,

and find that a two-layer GCN with neighborhood size 50 can best

capture the neighborhood information of nodes, while still being

computationally efficient.

After training completes, due to the highly efficient MapReduce

inference pipeline, the whole inference procedure to generate em-

beddings for 3 billion items can finish in less than 24 hours.

Figure 6: t-SNE plot of item embeddings in 2 dimensions.

Batch size Per iteration (ms) # iterations Total time (h)

512 590 390k 63.9

1024 870 220k 53.2

2048 1350 130k 48.8

4096 2240 100k 68.4

Table 3: Runtime comparisons for different batch sizes.

neighbors Hit-rate MRR Training time (h)

10 60% 0.51 20

20 63% 0.54 33

50 67% 0.59 78

Table 4: Performance tradeoffs for importance pooling.

5 CONCLUSION

We proposed PinSage, a random-walk graph convolutional network

(GCN). PinSage is a highly-scalable GCN algorithm capable of learn-

ing embeddings for nodes in web-scale graphs containing billions

of objects. In addition to new techniques that ensure scalability, we

introduced the use of importance pooling and curriculum training

that drastically improved embedding performance. We deployed

PinSage at Pinterest and comprehensively evaluated the quality

of the learned embeddings on a number of recommendation tasks,

with offline metrics, user studies and A/B tests all demonstrating

a substantial improvement in recommendation performance. Our

work demonstrates the impact that graph convolutional methods

can have in a production recommender system, and we believe

that PinSage can be further extended in the future to tackle other

graph representation learning problems at large scale, including

knowledge graph reasoning and graph clustering.

Acknowledgments

The authors acknowledge Raymond Hsu, Andrei Curelea and Ali

Altaf for performing various A/B tests in production system, Jerry

Zitao Liu for providing data used by Pixie[14], and Vitaliy Kulikov

for help in nearest neighbor query of the item embeddings.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.

Davis, J. Dean, M. Devin, et al. 2016. Tensorflow: Large-scale machine learning

on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016).

[2] A. Andoni and P. Indyk. 2006. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. In FOCS.
[3] T. Bansal, D. Belanger, and A. McCallum. 2016. Ask the GRU: Multi-task learning

for deep text recommendations. In RecSys. ACM.

[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. 2009. Curriculum learning.

In ICML.
[5] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. 2003. Efficient

query evaluation using a two-level retrieval process. In CIKM.

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017.

Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing
Magazine 34, 4 (2017).

[7] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2014. Spectral networks and

locally connected networks on graphs. In ICLR.
[8] J. Chen, T. Ma, and C. Xiao. 2018. FastGCN: Fast Learning with Graph Convolu-

tional Networks via Importance Sampling. ICLR (2018).

[9] P. Covington, J. Adams, and E. Sargin. 2016. Deep neural networks for youtube

recommendations. In RecSys. ACM.

[10] H. Dai, B. Dai, and L. Song. 2016. Discriminative Embeddings of Latent Variable

Models for Structured Data. In ICML.
[11] M. Defferrard, X. Bresson, and P. Vandergheynst. 2016. Convolutional neural

networks on graphs with fast localized spectral filtering. In NIPS.
[12] A. Van den Oord, S. Dieleman, and B. Schrauwen. 2013. Deep content-based

music recommendation. In NIPS.
[13] D. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-

Guzik, and R. P. Adams. 2015. Convolutional networks on graphs for learning

molecular fingerprints. In NIPS.
[14] C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet, M. Ulrich, and

J. Leskovec. 2018. Pixie: A System for Recommending 3+ Billion Items to 200+

Million Users in Real-Time. WWW (2018).

[15] M. Gori, G. Monfardini, and F. Scarselli. 2005. A new model for learning in graph

domains. In IEEE International Joint Conference on Neural Networks.
[16] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,

Y. Jia, and K. He. 2017. Accurate, Large Minibatch SGD: Training ImageNet in 1

Hour. arXiv preprint arXiv:1706.02677 (2017).

[17] A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks.

In KDD.
[18] W. L. Hamilton, R. Ying, and J. Leskovec. 2017. Inductive Representation Learning

on Large Graphs. In NIPS.
[19] W. L. Hamilton, R. Ying, and J. Leskovec. 2017. Representation Learning on

Graphs: Methods and Applications. IEEE Data Engineering Bulletin (2017).

[20] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley. 2016. Molecular

graph convolutions: moving beyond fingerprints. CAMD 30, 8.

[21] T. N. Kipf and M. Welling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[22] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. 2015. Gated graph sequence

neural networks. In ICLR.
[23] T. Mikolov, I Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed

representations of words and phrases and their compositionality. In NIPS.
[24] F. Monti, M. M. Bronstein, and X. Bresson. 2017. Geometric matrix completion

with recurrent multi-graph neural networks. In NIPS.
[25] OpenMP Architecture Review Board. 2015. OpenMP Application Program Inter-

face Version 4.5. (2015).

[26] B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. DeepWalk: Online learning of social

representations. In KDD.
[27] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2009. The

graph neural network model. IEEE Transactions on Neural Networks 20, 1 (2009),
61–80.

[28] K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[29] R. van den Berg, T. N. Kipf, and M. Welling. 2017. Graph Convolutional Matrix

Completion. arXiv preprint arXiv:1706.02263 (2017).
[30] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. 2018. GraphRNN:

Generating Realistic Graphs using Deep Auto-regressive Models. ICML (2018).

[31] M. Zitnik, M. Agrawal, and J. Leskovec. 2018. Modeling polypharmacy side

effects with graph convolutional networks. Bioinformatics (2018).

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Problem Setup
	3.2 Model Architecture
	3.3 Model Training
	3.4 Node Embeddings via MapReduce
	3.5 Efficient nearest-neighbor lookups

	4 Experiments
	4.1 Experimental Setup
	4.2 Offline Evaluation
	4.3 User Studies
	4.4 Production A/B Test
	4.5 Training and Inference Runtime Analysis

	5 Conclusion
	References

