
Mining Big Data to Extract Patterns and Predict Real-Life Outcomes

Michal Kosinski, Yilun Wang, Himabindu Lakkaraju, and Jure Leskovec
Stanford University

This article aims to introduce the reader to essential tools that can be used to obtain insights and build
predictive models using large data sets. Recent user proliferation in the digital environment has led to the
emergence of large samples containing a wealth of traces of human behaviors, communication, and social
interactions. Such samples offer the opportunity to greatly improve our understanding of individuals,
groups, and societies, but their analysis presents unique methodological challenges. In this tutorial, we
discuss potential sources of such data and explain how to efficiently store them. Then, we introduce two
methods that are often employed to extract patterns and reduce the dimensionality of large data sets:
singular value decomposition and latent Dirichlet allocation. Finally, we demonstrate how to use
dimensions or clusters extracted from data to build predictive models in a cross-validated way. The text
is accompanied by examples of R code and a sample data set, allowing the reader to practice the methods
discussed here. A companion website (http://dataminingtutorial.com) provides additional learning
resources.

Keywords: computational social science, big data, digital footprints, R, personality

Human activities are increasingly mediated by digital prod-
ucts and services (Lambiotte & Kosinski, 2014). Individuals use
social networking sites and messaging apps to communicate,
make payments using online platforms and credit cards, and
stream digital media. Additionally, they are virtually insepara-
ble from wearable devices such as fitness trackers and smart-
phones. The growing immersion in digital environments and
dependence on digital devices imply that people’s behaviors,
communication, geographical location, and even physiological
states can be easily recorded, producing large samples of digital
footprints. Such footprints include web browsing logs, records
of transactions from online and offline marketplaces, photos
and videos, global positioning system location logs, media
playlists, voice and video call logs, language used in Tweets or
e-mails, and much more.
The unprecedented availability of large samples of digital

footprints, combined with computing power and modern statis-
tical tools, offers great opportunities for social science (Lazer et
al., 2009). Big data samples facilitate the discovery of patterns
that might not be apparent in smaller samples, thereby helping
to reduce sampling errors typical in social science studies.

Additionally, many online environments provide access to dig-
ital footprints produced by diverse populations. This can ad-
dress another major challenge in social science, namely its
overreliance on samples that are small, composed of (largely
female) students, and disproportionately WEIRD (i.e., Western,
educated, industrialized, rich, and democratic; Henrich, Heine,
& Norenzayan, 2010). Finally, the high statistical power typical
of big data analyses offers an opportunity to address the repli-
cability crisis in psychological sciences (Open Science Collab-
oration, 2015).
Recent research demonstrates that digital footprints can be suc-

cessfully employed to study important psychological outcomes
ranging from personality (Youyou, Kosinski, & Stillwell, 2015),
language (Schwartz et al., 2013), and emotions (Kramer, Guillory,
& Hancock, 2014) to cultural fit (Danescu-Niculescu-Mizil, West,
Jurafsky, Leskovec, & Potts, 2013) and social networking (Ugan-
der, Karrer, Backstrom, & Marlow, 2011). Unfortunately, an in-
terest in studying digital footprints, as well as the necessary skills
to do so, are relatively rare among social scientists. Consequently,
such research is increasingly ceded to computer scientists and
engineers, who often lack the theoretical background in social science

Michal Kosinski, Graduate School of Business, Stanford University;
Yilun Wang, Himabindu Lakkaraju, and Jure Leskovec, Department of
Computer Science, Stanford University.
We thank the editor and reviewers for their excellent advice. Also, we

would like to thank Jose Hernandez-Orallo, Thore Graepel, Annalyn
Ng, Isabelle Anne Abraham, Robert Wilson, Sam Gosling, Gabriela
Harari, and Steffen Fohr for providing us with very useful feedback on
the previous versions of this article. MyPersonality.org has generously
provided the sample data set used in this article. This work was
supported by a Robert Bosch Stanford Graduate Fellowship, a Google
Faculty Research Award, the National Science Foundation, the Defense
Advanced Research Projects Agency (DARPA), and the Stanford Cen-

ter for the Study of Language and Information. This article is accom-
panied by a companion website (http://dataminingtutorial.com) contain-
ing the sample data set used here, examples of code, and additional
resources. Methods used to preprocess the data and build prediction
models are similar to those employed by Kosinski, Stillwell, and
Graepel (2013) to predict a broad range of psychological traits and
real-life outcomes from a large sample of digital footprints.
Conflict of interest statement: Michal Kosinski co-owns the rights to the

myPersonality.org database.
Correspondence concerning this article should be addressed to Michal

Kosinski, Graduate School of Business, Stanford University, 655 Knight
Way, Stanford, CA 94305. E-mail: michalk@stanford.edu

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

Psychological Methods © 2016 American Psychological Association
2016, Vol. 21, No. 4, 493–506 1082-989X/16/$12.00 http://dx.doi.org/10.1037/met0000105

493

and training in ethical standards pertaining to human subjects research
(Buchanan, Aycock, Dexter, Dittrich, & Hvizdak, 2011; Hall &
Flynn, 2001).
This article aims to address this issue by providing an accessible

tutorial for social scientists seeking to benefit from the availability
of big data sets. We focus on two complementary analytical
approaches. First, we show how to employ cluster analysis and
dimensionality reduction to extract patterns from large data sets.
Second, we use the extracted patterns to build models aimed at
predicting psychological outcomes. We argue that these methods
can be used to study human psychology and behavior in the same
manner in which similar techniques are used to extract insights
from small data sets. Additionally, predictive models based on
digital footprints can be used to develop diagnostic tools and
psychometric measures useful for psychological research and prac-
tice (Kosinski, Stillwell, & Graepel, 2013).
The following sections describe the typical steps involved in

studying big data sets: data preprocessing, dimensionality reduc-
tion, and construction of predictive models. We put particular
emphasis on the issues rarely encountered when working with
small data, such as the challenges related to computation time and
memory requirements. To enable the readers to practice the meth-
ods discussed here, the text is accompanied by the examples of R
code (R Core Team, 2015) and a sample data set. A companion
website (http://dataminingtutorial.com) contains the sample data
set, code used to generate the figures included in this article,
additional examples of R code, and links to other useful resources.
This text is aimed at readers who have a basic familiarity with R;
if you have not previously used R, we recommend that you start by
reading the official introduction to this powerful language for
statistical programming (http://cran.r-project.org/doc/manuals/R-
intro.pdf).

Big Data Sets of Digital Footprints

This section focuses on importing, storing, and preprocessing
large samples of digital footprints. Many big data sets are freely
available online or can be obtained from the companies and
institutions collecting and storing them. A popular example, the
myPersonality.org database1 (Kosinski, Matz, Gosling, Popov, &
Stillwell, 2015), stores the scores from dozens of psychological
questionnaires as well as the Facebook profile data of over six
million participants. The Stanford Network Analysis Project web-
site2 (Leskovec & Krevl, 2014) hosts a wide range of data sets,
including social networks, Tweets, and product reviews. Addition-
ally, journal articles are now often accompanied by a publicly
available data set. A recent article by Eichstaedt et al. (2015), for
instance, is supplemented by a data set of U.S. users’ Tweets
aggregated at the county level.3 Moreover, many online platforms
(e.g., Twitter) contain large amounts of publicly available data that
can be easily recorded. The companion website provides a collec-
tion of links to other potentially interesting data sets. The follow-
ing hands-on subsection introduces the sample data set used in this
tutorial, which was obtained from the myPersonality.org database.

Hands-On: Sample Big Data Set

The sample data set used in this article contains psychodemo-
graphic profiles of nu � 110,728 Facebook users and their Face-

book Likes.4 For simplicity and manageability, the sample is
limited to U.S. users. The following three files can be downloaded
from the companion website:

1. users.csv: contains psychodemographic user profiles. It
has nu � 110,728 rows (excluding the row holding col-
umn names) and nine columns: anonymized user ID,
gender (“0” for male and “1” for female), age, political
views (“0” for Democrat and “1” for Republican), and
five scores on a 100-item-long International Personality
Item Pool questionnaire measuring the five-factor (i.e.,
Openness, Conscientiousness, Extroversion, Agreeable-
ness, and Neuroticism) model of personality (Goldberg et
al., 2006).

2. likes.csv: contains anonymized IDs and names of nL �
1,580,284 Facebook Likes. It has two columns: ID and
name.

3. users-likes.csv: contains the associations between users
and their Likes, stored as user–Like pairs. It has nu-L �
10,612,326 rows and two columns: user ID and Like ID.
An existence of a user–Like pair implies that a given user
had the corresponding Like on their profile.

To load these files into R, use the following code:

users <- read.csv("users.csv")
likes <- read.csv("likes.csv")
ul <- read.csv("users-likes.csv")
You can inspect the dimensions of the resulting R objects and their
first and last rows by using the following commands:

dim(ul)
head(ul)
tail(ul)
Note that Facebook users can like a given object only once. Thus,
all of the user–Like associations have the same strength. Conse-
quently, object ul (an R representation of the users-likes.csv file),
storing the information about users’ Likes, contains only two
columns: user ID and Like ID. In the context of other types of
digital footprints, a third column describing the strength of the
user–footprint relationship might be necessary. A data set describ-
ing language use, for example, may require a third column record-
ing the total number of times that a given person used a given
word.

Constructing a User–Footprint Matrix

Most types of digital footprints (such as web browsing logs,
purchase records, playlists from online radios, or Facebook Likes)
can be conveniently represented as a user–footprint matrix. A
hypothetical example of a user–footprint matrix—the user–movie

1 See http://mypersonality.org/.
2 See http://snap.stanford.edu/data/.
3 See https://osf.io/rt6w2/.
4 Facebook users employ Likes to display positive associations with

entities such as products, sports, musicians, books, restaurants, websites,
photos, or friends’ status updates. Likes represent a generic class of digital
footprints, similar to web search queries, web browsing histories, or credit
card purchases.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

494 KOSINSKI, WANG, LAKKARAJU, AND LESKOVEC

Matrix X representing the movie preferences of six users—is
displayed in Figure 1. The rows of the user–footprint matrix
represent users, columns represent digital footprints, and cells
record the association between users and footprints. (We often
refer to digital footprints as variables in this article.)
User–footprint matrices can also be used for storing language

data (e.g., Tweets, e-mails, or Facebook status updates). In such
matrices, columns represent words or n-grams,5 and cell values
represent the frequency of particular words or n-grams per each
user.
In most cases, each individual user is associated with only a

small fraction of all possible footprints. Even a keen buyer, for
instance, will only purchase a small fraction of the products
available in an online marketplace. Thus, user–footprint matrices
are usually very sparse or, in other words, a great majority of cells
have a value of zero. As user–footprint matrices are often also
extremely large, it is more practical to store them in a sparse
format retaining only nonzero values to minimize required com-
puter memory. Sparse matrices can be constructed using the R
library Matrix (Bates & Maechler, 2015) or the Python library
SciPy (Jones, Oliphant, & Peterson, 2001). The following
hands-on section demonstrates how to convert the data into a
sparse user–footprint matrix in R.

Hands-On: Constructing a User–Like Matrix

In this hands-on section, we proceed to constructing a user–Like
matrix, which we denote as M. For the sake of convenience, we
want to match the location of the users and Likes, in the rows and
columns of MatrixM, with their location in users and likes objects,
respectively. In other words, the user stored in the ith row of the
object users is being put in the ith row of Matrix M, and the Like
stored in the jth row of the object likes is being put in the jth
column of Matrix M. To achieve that, we first use the function
match6 to match the user and Like IDs in the ul object with the
appropriate rows in the users and likes objects:

ul$user_row <- match(ul$userid,users$userid)
ul$like_row <- match(ul$likeid,likes$likeid)
Next, we use the pointers to rows in the users and likes objects to
build a user–Like matrix using the sparseMatrix function
from the Matrix library:7

require(Matrix)
M <- sparseMatrix(i=ul$user_row, j=ul$like_row,
x=1)

Parameters i and j of the sparseMatrix function indicate the
locations (rows and columns, respectively) of the nonzero cells of
the matrix. Parameter x indicates the values of the respective cells.
As discussed before, Facebook users can issue each Like only
once, and thus we set all the nonzero cells to x � 1.
Finally, the row names of the user–Like Matrix M are set to

contain the IDs of the respective users, and M’s column names are
set to contain the names of the respective Likes. We also display
the dimensions of Matrix M:

rownames(M) <- users$userid
colnames(M) <- likes$name
dim(M)
As the objects ul and likes will not be necessary at the next stages
of this analysis, they can be removed to free the computer memory:
rm(ul, likes)
The Raw Matrix M column in Table 1 presents descriptive

statistics of the resulting user–Like Matrix M. It contains nu �
110,728 users and nL � 1,580,284 Likes. While the maximum
possible number of user–Like pairs is about 174 billion (nu � nL �
110,728 � 1,580,284), the total number of such pairs present in
this data set equals nu-L � 10,612,326, or less than 0.006% of the
maximum possible value. In other words, Matrix M is highly
sparse. The benefit of storing Matrix M in a sparse format can be
illustrated by the fact that it only occupies about 270 MB of
memory, whereas saving it as a regular matrix would require 1.4
TB of memory.

Trimming the User–Footprint Matrix

Descriptive statistics provided in Table 1 highlight an issue that
arises frequently when working with big data sets: a large number
of footprints (i.e., variables) and users only appear a few times in
the data set. Such data points are of little significance for model
building and subsequent inferences; therefore, they can be re-
moved to reduce the data set size and minimize analysis time
(Schein, Popescul, Ungar, & Pennock, 2002).
There is no single, or simple, correct method to select the

minimum frequency below which a given user or footprint should
be removed, but the following rules can be used to reach a
decision. First, remove single instances of users and footprints
from the data, as they are not useful for extracting patterns.
Second, consider the available hardware and computation time.
Retaining too many data points may exponentially increase the
required time and memory. Removing too many data points, on the
other hand, may significantly reduce the amount of information
available for the analyses. Thus, it is advisable to first conduct

5 N-gram is a contiguous sequence of n words. For example, a tri-gram
“to be or” can be extracted from the excerpt, “to be or not to be.”
6 Command match(a,b) finds the locations of the elements contained in

a within b. For example, match(c("y","h"), c("h","e","y"))
returns (3, 1), as letters y and h in the first object occupy the 3rd and the 1st

positions, respectively, in the second object.
7 Before using R library for the first time, you have to install it on your

computer. Use the following command to install Matrix library: install
.packages("Matrix"). Note that R code is case-sensitive.

Figure 1. A hypothetical user–movie Matrix X. Cells are set to one if a
given user has a preference for a given movie; zeros are replaced with “.”
for clarity.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

495MINING BIG DATA

the planned analyses on several small, randomly selected sub-
samples of different sizes to approximate the relationship be-
tween the data size and the time and memory required for the
analysis. This would not only inform the decision of how much
data to retain, but also expedite the code writing by reducing the
time required to test it.

Hands-On: Trimming the User–Like Matrix

Here, we demonstrate how to remove the least frequent data
points from the user–Like Matrix M built in the previous hands-on
section. Removing rare users and Likes from a matrix is relatively
straightforward: one has to discard rows and columns that have
fewer nonzero entries than chosen thresholds. However, as remov-
ing users can push some Likes below the threshold (and vice
versa), this process has to be iterated repeatedly until all users and
Likes in the matrix are above the corresponding thresholds.
We use relatively high thresholds of a minimum of 50 Likes per

user and a minimum of 150 users per Like to reduce the time
required for further analyses:8

repeat {
i <- sum(dim(M))
M <- M[rowSums(M) >= 50, colSums(M) >= 150]
if (sum(dim(M)) == i) break

}
This code employs a repeat loop that runs until it is interrupted
with the command break. Inside the loop, we first set i to contain
the sum of dimensions of M (i.e., the total count of its rows and
columns). Next, we retain only rows and columns containing at
least as many elements as the preset thresholds of 50 and 150,
respectively. Finally, we check if the size ofM has changed. If it did,
the loop is interrupted; otherwise, it continues.
Next, users deleted from M are removed from the users object:

users <- users[match(rownames(M),
users$userid),]

The Trimmed Matrix M column in Table 1 presents descriptive
statistics of the trimmed user–Like Matrix M. Its size has been
significantly reduced—it now contains only nu � 19,724 users and

nL � 8,523 Likes. In the next section, we turn our attention to
extracting patterns from the trimmed user–Like Matrix M.

Extracting Patterns from Big Data Sets

This section focuses on extracting patterns from a user–footprint
matrix via two methods representative of two broad families: (a)
singular value decomposition (SVD; Golub & Reinsch, 1970), repre-
senting eigendecomposition-based methods, projecting a set of data
points into a set of dimensions; and (b) latent Dirichlet allocation
(LDA; Blei, Ng, & Jordan, 2003), representing cluster analytical
approaches. The main advantage of LDA and other cluster ana-
lytical approaches is the ease of their interpretation. However,
they also tend to be computationally expensive and work with
only non-negative data. (Fortunately, negative data are rare in
the context of digital footprints.) The main strengths of SVD
and many other eigendecomposition-based methods are their
simplicity and computational speed. As a result, they are often
used when developing predictive models. In contrast to LDA,
eigendecomposition-based methods can also be applied to data
sets including negative data points.
Reducing the dimensionality of the data (or extracting clusters)

has many advantages. First, in the context of big data sets, there are
often more variables than users. In such cases, reducing dimen-
sionality is essential, as most of the statistical analyses require that
there are more (and preferably many more) users than variables.
Second, even when there are more users than variables, further
reducing their numbers reduces the risk of overfitting and may
increase the statistical power of the results. Third, reducing dimen-
sionality removes multicollinearity and redundancy in the data by
grouping the correlated variables into a single dimension or clus-
ter. Fourth, a small set of dimensions or clusters subsuming the
data is easier to interpret than hundreds or thousands of separate
variables. Finally, reducing dimensionality decreases the compu-
tation time and memory required for further analyses.

Selecting the Number of Dimensions or Clusters
to Extract

One of the main considerations regarding data dimensionality
reduction is selecting the right number (denoted by k) of dimen-
sions or clusters to extract. Unfortunately, there is no single (or
simple) correct way of doing so. Moreover, the desirable value of
k depends on the intended application. If the goal is to gain insights
from the data, a small number of dimensions or clusters might be
easier to interpret and visualize. On the other hand, if the aim is to
build predictive models, a larger number of dimensions or clusters
will retain more information from the original matrix, thus en-
abling more accurate predictions. Set k too high, however, and the
benefits of dimensionality reduction discussed earlier are lost, and
the prediction accuracy may decrease. The following subsections
discuss SVD and LDA in more detail and introduce a few simple
methods of selecting the right value of k.

8 Studies based on similar data may employ lower thresholds to retain
more information. Kosinski et al. (2013), for example, used thresholds of
a minimum of two Likes per user and a maximum of 20 users per Like.

Table 1
Descriptive Statistics of the User–Like Matrix M

Descriptive Statistic Raw Matrix M Trimmed Matrix M

of users 110,728 19,724
of unique Likes 1,580,284 8,523
of user–Like pairs 10,612,326 3,817,840
Matrix density 0.006% 2.27%
Likes per User
Mean 22 193
Median 96 106
Minimum 1 50
Maximum 7,973 2,487

Users per Like
Mean 7 448
Median 1 290
Minimum 1 150
Maximum 19,998 8,445

Note: See text for details.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

496 KOSINSKI, WANG, LAKKARAJU, AND LESKOVEC

Singular Value Decomposition

SVD is a popular dimensionality reduction technique widely
employed in various contexts, spanning computational social sci-
ences, machine learning, signal processing, natural language pro-
cessing, and computer vision (Wall, Rechtsteiner, & Rocha, 2003).
Social scientists are often more acquainted with a similar ap-
proach: principal component analysis (PCA). In fact, PCA can be
considered a special case of SVD (Madsen, Hansen, & Winther,
2004): SVD performed on a centered matrix produces V and �,
which are an equivalent of eigenvectors and square roots of eigen-
values produced by PCA. Unfortunately, PCA requires multiply-
ing a matrix by its transpose, which is computationally inefficient
for large matrices.
SVD represents a given matrix (of size m rows � n columns) as

a product of three matrices: a Matrix U (of size m � k) containing
left singular vectors; a non-negative square diagonal Matrix � (of
size k) containing singular values; and a Matrix V (of size n � k)
containing right singular vectors, where k is the number of dimen-
sions that the researcher chose to extract. For simplicity, we will
refer to the left and right singular values as SVD dimensions.
If k � r, where r is the rank9 of the matrix, the product U�VT10

reproduces the original matrix exactly. When k is smaller (i.e., k �
r), the product U�VT approximates the matrix. In other words,
selecting a smaller k reduces the dimensionality of the matrix.

Selecting the k. A popular approach to selecting the right
number k of SVD dimensions to extract is plotting the singular
values against k. The optimum k lies at the “knee” of the resulting
scree plot (Zhang, Marron, Shen, & Zhu, 2007). An alternative
approach suggests retaining dimensions accounting for 70% of the
variance in the original data (the variance explained by a given
SVD dimension is proportional to the square of the corresponding
singular value; Madsen et al., 2004). As it is often computationally
expensive to search for an optimum k on the complete data set, a
randomly selected subset of the data might be used instead.

Centering the data. It is a common practice to center the data
(i.e., decrease the entries in matrix columns by column means)
before conducting SVD to improve the interpretability of the SVD
dimensions. This is because the first SVD dimension extracted
from noncentered data is strongly correlated with the frequencies
of the objects in rows and columns.11 As the remaining dimensions
have to be orthogonal to the first one, the resulting SVD dimen-
sions may not represent the data well.
Centering, however, is often impossible in the context of large

data sets, as it does not preserve the sparsity of the matrix.
Centering converts most of the zeros (which are skipped in sparse
matrices) into other values, thus greatly increasing the required
memory. Fortunately, SVD dimensions based on noncentered data,
although more difficult to interpret, still offer effective predictive
performance. Furthermore, the interpretability of the dimensions
extracted from both centered and noncentered data can be im-
proved by applying factor rotation techniques.

Rotation. SVD aims at maximizing the variance accounted
for by the first and subsequent orthogonal dimensions. Conse-
quently, early SVD dimensions relate highly to many users and
footprints. Additionally, many users and footprints relate to many
SVD dimensions, making the SVD results difficult to interpret.
Factor rotation techniques can be used to simplify SVD dimen-

sions and increase their interpretability by mapping the original

multidimensional space into a new, rotated space. Rotation ap-
proaches can be orthogonal (i.e., producing uncorrelated dimen-
sions) or oblique (i.e., allowing for correlations between rotated
dimensions).
Varimax is one of the most popular orthogonal rotations. It mini-

mizes both the number of dimensions related to each variable and the
number of variables related to each dimension, thus improving the
interpretability of the data. Other commonly used rotation techniques
include quartimax, equimax, direct oblimin, and promax.

Computing SVD. Most programming languages provide off-
the-shelf packages for computing SVD: the svd function of Python’s
SciPy library (Jones et al., 2001), eigen library (Guennebaud & Jacob,
2010) in C��, PROPACK library (Larsen, 2005) forMatlab, and the
irlba package (Baglama & Reichel, 2012) for R. For sparse or very
large matrices, it is advisable to use a sparse variant of SVD available
in most of the aforementioned packages. Factor rotation can be
conducted using a variety of functions available in R (e.g., varimax
or promax), Matlab, and other languages. For more details on
rotation techniques, see Abdi (2003).

Example of SVD. Let us examine the results of the SVD
analysis applied to user–movie Matrix X presented in Figure 1. A
visual examination of Matrix X reveals several clear patterns.
Looking columnwise, it can be seen that users who like True
Romance also tend to like Pretty Woman. Similarly, users who like
Aliens also like Star Wars and, finally, both comedies (Due Date
and The Hangover) piqued the interest of the same set of users.
Examining the rows of Matrix X reveals that all of the users, except
Tom and William, have a preference for movies belonging to a
single genre.
Figure 2 shows k � 3 SVD dimensions extracted from the

noncentered Matrix X. The resulting Matrix U contains users’
scores on the SVD dimensions, while Matrix V shows movies’
scores on the SVD dimensions. As discussed before, the interpre-
tation of the SVD results based on the noncentered data is not
straightforward. Both users and movies score highly on all three
dimensions. Also, the first unrotated SVD dimension (SVD1)
relates substantially to the frequency of the users and movies:
Popular movies (e.g., Pretty Woman) and users expressing most
preferences (e.g., Tom) score highly on this dimension.
To improve SVD’s interpretability, Matrix X could have been

centered. Centering, however, is usually not feasible in the context
of big data sets. Instead, the interpretability can be improved by
rotating SVD dimensions. Figure 3 shows the result of varimax-
rotating the SVD dimensions presented in Figure 2. The results are
much clearer. The first rotated SVD dimension (SVDrot1) could be
described as a “romantic dimension.” Both romantic movies (True
Romance and Pretty Woman) and users liking romantic movies
(Mason, Sophia, Tom, and William) score high on this dimension.
Note that as William likes only one romantic movie, he scores
lower on this dimension than users who like both romantic movies.
The second rotated dimension (SVDrot2) could be labeled as a
“disliking sci-fi” dimension (i.e., the higher the score, the lower
the preference for sci-fi movies). The third rotated SVD dimension

9 The rank of a matrix captures the number of linearly independent rows
or columns in nondegenerate matrices. See Strang (2016) for more details.
10 VT denotes the transposed matrix V.
11 An object’s frequency is, in this case, equivalent to the mean, because

column means in a binary data set are proportional to frequencies.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

497MINING BIG DATA

(SVDrot3) could be dubbed a “comedy dimension,” as both com-
edy movies and both comedy fans (William and James) score high
on it. Additionally, as one of the comedy fans (William) liked
Pretty Woman, but not True Romance, the former has a low yet
positive score on the comedy dimension, while the latter scores
negatively on it.

Latent Dirichlet Allocation

We now turn our attention to LDA—a popular cluster analysis
approach in the context of big data sets (Blei et al., 2003). While
it is commonly used to study patterns in language, it can be readily
applied to nontextual data as well, as long as the data is composed
exclusively of positive integers (e.g., counts of words used by
bloggers or counts of products purchased by consumers). LDA is
one of the most readily interpretable dimensionality reduction
techniques, as it produces probabilities unambiguously quantifying
the associations between users, footprints, and underlying clusters.
LDA posits that each user and each footprint in the matrix (in

the context of LDA, users are referred to as documents, and
footprints as words) belong, with some probability, to a set of k
clusters (referred to as topics). Applied to a matrix of size m
rows � n columns, LDA produces matrix � of size m � k,
describing the probabilities of each of the users belonging to each
of the clusters; and matrix � of size k � n, describing the proba-
bilities of each of the footprints belonging to each of the clusters.

Selecting the k. As is the case with other methods, there is no
single or simple way of selecting the correct number k of LDA
clusters to be extracted. The commonly used approach employs the
model’s log-likelihood estimates, which can be plotted against the
number of extracted clusters k. This requires producing several
models for different values of k. Typically, the log-likelihood
grows rapidly for lower ranges of k, flattens at higher k values, and

may start decreasing once the number of clusters becomes very
large. Selecting a k that marks the end of a rapid growth of
log-likelihood values usually offers decent interpretability of the
topics. Larger k values usually offer better predictive power.
Alternatively, interpretability of the topics could be supported by
the application of hierarchical LDA (Chang & Blei, 2010).

Dirichlet distribution parameters. Another important deci-
sion for LDA analysis is the selection of concentration parameters
	 and
 of the Dirichlet distribution. For symmetric Dirichlet
distributions (used by most LDA implementations), high 	 values
result in users belonging to many clusters. Using low 	 values
results in users belonging to either one or a few clusters. Similarly,
higher
 values result in clusters containing many footprints, and
lower
 values produce more distinct clusters, each containing
fewer footprints.
The common approach is to set 	 � 50/k and
 � 0.1, or
 �

200/n (where n is the number of variables in M, and k the
number of clusters to be extracted; Griffiths & Steyvers, 2004).
Higher 	 and
 values are useful in the context of prediction, as
they impose fewer constraints on the distribution and may
enhance the amount of information retained in the LDA output.
Lower values, on the other hand, produce more distinct and
easily interpretable clusters, where each user and each footprint
relate to very few clusters. There are several data-driven meth-
ods that can be used to fine-tune LDA parameters, but they are
beyond the scope of this tutorial (see Asuncion, Welling,
Smyth, & Teh, 2009 for a good introduction).

Computing LDA. Most programming languages provide off-
the-shelf implementations of LDA: topicmodels package (Grün &
Hornik, 2011) for R, scikit-learn package (Pedregosa et al., 2011)
for Python, GibbsLDA�� (Phan & Nguyen, 2007) for C��, and
topic modeling toolbox (Steyvers, 2011) for Matlab.

Example of LDA. Let us extract k � 3 LDA clusters from
user–movie Matrix X presented in Figure 1. Due to the unrealis-
tically small size of X, we do not apply the recommended values
of 	 and
, and set them to 	 � 0.01 and
 � 0.01 instead. The
results presented in Figure 4 are very clear and LDA clusters are
easily interpretable. Associations between the movies and LDA
clusters presented in matrix � indicate that LDA1 contains sci-fi
movies, LDA2 contains romantic movies, and LDA3 contains
comedies. Matrix � is similarly clear. Note that William, who liked
one of the romantic movies in addition to two comedy movies,
belongs to the romantic (LDA2) and comedy (LDA3) clusters.
Furthermore Tom, who liked both of the sci-fi movies and both of
the romantic movies, belongs to both of the respective clusters
(LDA1 and LDA2).

Figure 2. Users’ (U) and movies’ (V) scores on k � 3 singular value
decomposition dimensions extracted from the user–movie Matrix X.

Figure 3. Singular value decomposition dimensions from Figure 2 ro-
tated using varimax rotation; zeros are replaced with “.” for clarity.

Figure 4. Latent Dirichlet allocation topics extracted from user–movie
Matrix X using 	 � 0.01 and
 � 0.01; zeros are replaced with “.” for
clarity.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

498 KOSINSKI, WANG, LAKKARAJU, AND LESKOVEC

The importance of parameters 	 and
 for the interpretability
of the LDA topics can be illustrated by rerunning the analysis
using different 	 and
 values. Figure 5 presents the results of
LDA analysis employing a higher value of 	 � 16.66 and a
higher value of
 � 0.1. The resulting matrices � and � are
difficult to interpret. (Note, however, that the lower interpret-
ability of these matrices does not necessarily imply that the
accuracy of the predictive models based upon them would also
be lower).

Hands-On: Reducing the Dimensionality of the
User–Like Matrix Using SVD and LDA

In this section, we use SVD and LDA to extract patterns from
the user–Like Matrix M constructed in the previous hands-on
section. For the sake of simplicity, we select a relatively small
value of k � 5, but encourage the readers to explore different
values of k, as discussed in the Selecting the Number of
Dimensions or Clusters to Extract section.

SVD. We use the irlba package (Baglama & Reichel, 2012) to
compute (or rather approximate) SVD dimensions of the user–
Like Matrix M. As SVD approximation is nondeterministic, we
preset R’s random number generator to a fixed value of seed � 68
to ascertain that the results presented here and computed by the
readers are the same:

set.seed(seed = 68)
library(irlba)
Msvd <- irlba(M, nv = 5)
u <- Msvd$u
v <- Msvd$v
Parameter nv � 5 corresponds to k, or the number of the SVD
dimensions to be extracted. Note that we do not center the data
prior to conducting the SVD to maintain the sparse format of
Matrix M. Centering could be achieved by using the following
command: M <- scale(M, scale = F).
The scree plot representing the singular values of the consecu-

tive SVD dimensions (matrix �) can be displayed using the fol-
lowing command. As discussed before, this plot is helpful when
selecting number k of dimensions to extract:

plot(Msvd$d)
Next, we use the varimax function to rotate the SVD dimen-
sions. The following code produces Vrot and Urot, the varimax-
rotated equivalents of matrices U and V:

v_rot <- unclass(varimax(Msvd$v)$loadings)
u_rot <- as.matrix(M %�% v_rot)

LDA. We use the topicmodels package (Grün & Hornik,
2011) to extract LDA topics from the user–Like Matrix M. We set
Dirichlet distribution parameters to 	 � 10 and
 � 0.1 (see the
Dirichlet Distribution Parameters section for information on set-
ting these parameters). As in the case of the SVD analysis, we
preset R’s random number generator to seed � 68 to ascertain that
the results presented here and computed by the readers are the
same:

library(topicmodels)
Mlda <- LDA(M, k = 5, control = list(alpha =
10, delta = .1, seed = 68), method =
"Gibbs")

gamma <- Mlda@gamma
beta <- exp(Mlda@beta)
As discussed before, the fit of the LDA model is expressed by

its log-likelihood. The following code can be used to compute
the log-likelihoods across different values of k. We use the for
loop to cycle through increasing values of i, train the LDA
model while setting the k � i, and then extract the model’s
log-likelihood and its degrees of freedom using the logLik
function. The results are saved in the lg object. Consider
widening the range of ks to be tested, but be aware that this code
may take a very long time to run (depending on the speed of
your computer):

lg <- list()
for (i in 2:5) {
Mlda <- LDA(M, k = i, control =
list(alpha = 10, delta = .1, seed = 68),
method = "Gibbs")
lg[[i]] <- logLik(Mlda)

}
plot(2:5, unlist(lg))

Interpreting Dimensions and Clusters

This section focuses on interpreting dimensions and clusters ex-
tracted from the user–footprint matrix. Such interpretations are cer-
tainly not trivial, yet may offer important insights. Several major
psychological models and theories originated from analyses not un-
like the one presented here. Lexical hypothesis, for instance, postu-
lates that important interpersonal psychological differences become
part of the language. This theory is a major foundation of much of the
personality psychology, and was used to develop major personality
frameworks, such as HEXACO or Big Five (Goldberg, 1992).12 It is
reasonable to expect that interpersonal psychological differences and
other psychological phenomena might be also reflected in the patterns of
digital footprints.
Several strategies can be employed to interpret the nature of pat-

terns extracted from large data sets. First, one can explore the foot-
prints most strongly associated with a given dimension or cluster. This
approach was employed to interpret dimensions and clusters extracted
from the user–movie Matrix X in the section Extracting Patterns From
Big Data Sets. Second, one can examine the relationships between
dimensions and clusters and some known properties of the users (e.g.,

12 The six dimensions of HEXACO include Honesty-Humility (H),
Emotionality (E), Extraversion (X), Agreeableness (A), Conscientiousness
(C), and Openness to Experience (O).

Figure 5. Latent Dirichlet allocation topics extracted from user–movie
Matrix X using 	 � 16.66 and
 � 0.1.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

499MINING BIG DATA

demographic information, psychological traits, answers to individual
questions on psychological questionnaires, etc.). Finally, the interpre-
tation of the dimensions or clusters can be supported by exploring their
hierarchical structure across different levels of k. An interesting approach
suitable for SVD has been discussed by Goldberg (2006). An equivalent
for LDA is provided by hierarchical LDA (Chang & Blei, 2010).

Hands-On: Interpreting Clusters and Dimensions

This hands-on section shows how to extract information helpful
in interpreting clusters and dimensions. For simplicity, we use the
k � 5 LDA clusters and k � 5 SVD dimensions extracted from
Matrix M in the previous hands-on section, though we encourage
the reader to experiment with different values of k.

LDA clusters. We start by computing the correlations be-
tween user scores on LDA clusters (stored in the R object gamma)
and psychodemographic user traits. Note that the first column of
the object users is excluded from the correlation because it con-
tains the user IDs:

cor(gamma, users[,-1], use = "pairwise")
For ease of interpretation, the resulting correlation matrix is

presented as a heat map in Figure 6.13 (The companion website
contains the code used to generate this heat map.) The pattern of
correlations reveals that gender, age, political views, and person-
ality trait of openness are most strongly correlated with Like
clusters.
The membership in cluster LDA1 correlates negatively with

age and positively with gender (which takes the value of 0 for
males and 1 for females) and political views (where 0 denotes
Democrats and 1 denotes Republicans), suggesting that this
cluster is dominated by young, conservative females. Cluster
LDA2 is similar, but does not correlate strongly with gender.
Cluster LDA3 contains older, open-minded, and politically lib-
eral males. LDA4 is weakly related to psychodemographic traits
included in this sample, compared with other clusters. The last
cluster, LDA5, is most strongly related to personality dimen-
sions. It groups emotionally stable, agreeable, extroverted, con-

scientious, conservative (both in terms of personality and po-
litical views), old, and female users.
Next, we investigate which Likes are most representative of

these k � 5 LDA clusters. The strength of the relationship between
Likes and clusters is stored in the R object beta. The following
code can be used to extract the top 10 Likes most strongly
associated with each of the clusters:

top <- list()
for (i in 1:5) {

f <- order(beta[i,])
temp <- tail(f, n = 10)
top[[i]] <- colnames(M)[temp]

}
top
In this code, we first create an empty list top to store the results.
Next, we start a for loop assigning consecutive values from 1 to
5 to i. Inside the loop, we use the order function to order the
Likes in ascending order based on their scores on the ith LDA
cluster. Next, we use the tail function to extract the indexes of
the last 10 Likes (i.e., Likes with the highest LDA scores) and save
their names as the ith element of list top.
Table 2 presents the top 10 Likes associated with each of the

k � 5 LDA clusters extracted using the above code. An examina-
tion of these Likes provides additional insights into the character
of the clusters and their members. Relatively young and female
cluster LDA2 is best represented by the Likes containing hu-
morous and juvenile statements, such as “I hate it when I’m
taking a drink and all the ice attacks my face.” LDA2 contains
some of the most popular commercial Facebook Likes (e.g.,
YouTube, Oreo, Skittles, and Reese’s), suggesting that this is a
cluster grouping Likes advertised to Facebook users. The fact
that young users are overrepresented in the LDA1 cluster sug-
gests that this audience is either most inclined to interact with
adverts and commercial content, most targeted by advertise-
ments, or both. The Likes associated with cluster LDA3 (e.g.,
Barack Obama or The Colbert Report) confirm its more mature
and liberal character. Clusters LDA4 and LDA5 seem to be
related to music: the Former could be labeled a rock music
cluster (e.g., Pink Floyd or Metallica), while the latter, contain-
ing more conservative and female users, seems focused on pop
(e.g., Taylor Swift and Lady Gaga).

SVD dimensions. A similar approach can be employed in the
context of SVD dimensions. The correlations between user scores
on the varimax-rotated SVD dimensions (Urot) and psychodemo-
graphic user traits could be obtained using the following code:

cor(u_rot, users[,-1], use = "pairwise")
The results can be found in Figure 7. As is the case with LDA

clusters, gender, age, and the personality trait of openness are most
strongly related to varimax-rotated SVD dimensions. Dimension
SVDrot2, for example, correlates negatively with age and positively
with being female. Dimension SVDrot4 is positively correlated
with openness and age, and negatively with being Republican and
being female.

13 A heat map is a graphical representation of data in which the indi-
vidual values contained in a matrix are represented using color scales.

gender

age

political

ope

con

ext

agr

neu

1 2 3 4 5
LDA

−0.29

0.00

0.30r

Figure 6. The heat map presenting correlations between users’ member-
ship in k � 5 latent Dirichlet allocation clusters and their psychodemo-
graphic traits.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

500 KOSINSKI, WANG, LAKKARAJU, AND LESKOVEC

As in the case of LDA clusters, one can also investigate the
associations between Likes and varimax-rotated SVD dimensions.
In the interest of space, we do not include these results here, but
encourage the reader to produce them. Note that Vrot is an equiv-
alent of � in LDA. Also, as SVD produces both negative and

positive associations, it is convenient to separately consider foot-
prints associated most positively and most negatively with a given
SVD dimension.
The loop used previously to extract the Likes most representa-

tive of the LDA clusters could be adapted to extract the Likes with
the 10 highest and 10 lowest scores on the SVD dimensions. To
order the Likes according to their scores on the ith SVD dimen-
sion, use the following command:

f <- order(v_rot[,i])
To extract the indexes of the Likes with the extreme scores, use the
tail and head functions providing the n last or first elements of
an object, respectively:

colnames(M)[tail(f, n = 10)]
colnames(M)[head(f, n = 10)]

Predicting Real-Life Outcomes

This section focuses on building prediction models based on the
dimensions and clusters extracted from the user–footprint ma-
trix.14 There is an abundance of methods that can be used to build
prediction models based on large data sets, ranging from relatively
sophisticated approaches, such as deep learning, neural networks,
probabilistic graphical models, or support vector machines, to
much simpler approaches, such as linear and logistic regressions.
In practice, it is sensible to start with the simpler prediction
methods. They are computationally faster and easier to implement,
and can offer a good baseline for judging quality and for debug-
ging more sophisticated approaches. Furthermore, in our experi-
ence, simple models, such as linear and logistic regressions, often
offer accuracy similar to that of more sophisticated approaches—
while being more readily interpretable. Finally, employing simpler

14 Some prediction models, such as least absolute shrinkage and selec-
tion operator regression (Tibshirani, 2011), can be applied directly to the
user–footprint matrix. However, as discussed before, reducing dimension-
ality of the data before building the model can benefit the quality and the
accuracy of the results.

Table 2
Likes Most Strongly Associated With the k � 5 Latent Dirichlet
Allocation (LDA) Clusters

LDA Cluster Top 10 Facebook Likes

LDA1 I’d rather do nothing at your house than at mine
If you remember the L’Oreal kids FISH SHAPED
SHAMPOO BOTTLE!

Open fridge, nothing. Freezer? nothing. Might as well try
the fridge again.

Comebacks that make the whole room go
OOOOOHHHHHH

My level of maturity changes depending on who im with.
I hate it when i’m taking a drink and all the ice attacks
my face

Telling inanimate objects to STAY when they look like
they’re going to fall

I feel stupid when I say what? a thousand times because
I can’t hear

i finally stop laughing . . . look back over at you and
start all over again

Ok, If we get caught here’s the story . . .
LDA2 Reese’s

Disney Pixar
Facebook
Owl City
Duck Tape
Music
YouTube
Oreo
Starburst
Skittles

LDA3 Futurama
The Onion
Barack Obama
The Lord of the Rings Trilogy (Official Page)
Harry Potter
Music
The Daily Show
The Colbert Report
Queen
The Beatles

LDA4 House
Disturbed
Music
Pink Floyd
Metallica
The Beatles
Red Hot Chili Peppers
Nirvana
Linkin Park
Family Guy

LDA5 Usher
Adam Sandler
Taylor Swift
Katy Perry
Lady Gaga
Victoria’s Secret
The Hangover
Rihanna
Eminem
Lil Wayne

gender

age

political

ope

con

ext

agr

neu

1 2 3 4 5
SVDrot

−0.16

0.00

0.19
r

Figure 7. The heat map presenting correlations between k � 5 varimax-
rotated singular value decomposition dimensions and users’ psychodemo-
graphic traits.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

501MINING BIG DATA

approaches reduces the risk of errors, maximizes methodological
transparency, and facilitates the replicability of the results. In this
work, we employ linear and logistic regressions, well known to
most social scientists. We encourage the reader, however, to re-
view more advanced methods; a good introduction can be found in
James, Witten, Hastie, and Tibshirani (2013); Bishop (2006); and
Bengio and Courville (2016).

Cross-Validation

Overfitting is one of the main risks associated with training
predictive models. Any data set contains both signal (i.e., under-
lying effect) and noise (i.e., random error). Overfitting occurs
when a model describes a random error instead of or beyond the
underlying effect. One way of avoiding overfitting is to reduce the
number of variables in the data, as discussed in the Extracting
Patterns From Big Data Sets section. Another is to employ cross-
validation (James et al., 2013). In the most basic cross-validation
setting, the data set is split into two independent subsets: training
and test subsets. The model is built on the training subset, and its
accuracy is validated on the independent test subset.
To reduce the variability of the results, multiple rounds of

cross-validation are usually performed, employing different parti-
tions of the data. For example, k-fold cross-validation splits the
data into k (usually k � 10) equal-sized subsets (referred to as
folds). The model is built on a training subset composed of
all-but-one (k – 1) folds and validated on the excluded, testing
subset. This process is repeated k times for each subset, and the
accuracy is averaged across all trials.
Cross-validation can be easily conducted in R and other statis-

tical languages using, for example, a for loop, but excellent
designated libraries exist as well. Popular R libraries supporting
cross-validation include boot (Canty & Ripley, 2016) and caret
(Kuhn, 2015). For Python users, we recommend the cross-
validation module in scikit-learn (Pedregosa et al., 2011).

Hands-On: Predicting Real-Life Outcomes With
Facebook Likes

In this hands-on section, we demonstrate how to build a predic-
tion model based on the SVD dimensions extracted from the
user–Like MatrixM. We start by assigning a random number from
1 to 10 to each user in the sample as a way of splitting the users
into 10 independent subsets (or folds) that will be used for cross-
validation. The following code produces vector folds of a length
equal to the number of users, composed of randomly selected
numbers ranging from 1 to 10:

folds <- sample(1:10, size = nrow(users),
replace = T)
Next, the users for whom the value of folds equals 1 are assigned

to the test subset, and the remaining users are assigned to the
training subset. The following code produces a logical vector15 test
that takes the value of TRUE when object folds equals 1 and
FALSE otherwise:

test <- folds == 1
Logical vectors can be used to extract desired elements from R

objects, such as other vectors or matrices. For example, the com-
mand mean(users$age[test]) can be used to compute the

average age of the users in the test subset. Moreover, the true/false
elements of the logical vector can be easily reversed using the
logical operator not, denoted by “!” Thus, instead of creating a
separate logical vector indicating the membership in the training
subset, one can simply use the reverse of test vector, or !test. In the
following code, test and !test vectors are used to access test and
training subsets, respectively.
In the next step, we extract k � 50 SVD dimensions from a

training subset of Facebook Likes (i.e., M[!test,]). SVD scores of
Likes are varimax-rotated and used to compute varimax-rotated
user SVD scores for the entire sample. Consequently, the SVD
scores for the users in the test subset are based on the analysis
conducted solely on the training subset, preserving the indepen-
dence of the results obtained from the training and test subsets:

Msvd <- irlba(M[!test,], nv = 50)
v_rot <- unclass(varimax(Msvd$v)$loadings)
u_rot <- as.data.frame(as.matrix(M %�%
v_rot))
Next, we apply the function glm to build regression models

predicting variables ope (openness) and gender from the user SVD
scores in the training subset. By default, glm employs the linear
regression model. The logistic regression model, suitable for di-
chotomous variables such as gender, can be obtained by specifying
the parameter family � “binomial”. Additionally, we indicate that
the object u_rot is the source of the independent variables (data �
u_rot), and stipulate that the model should be built on only the
training subset (subset � !test). Finally, we indicate that the
variable ope in the object users should be predicted using all
independent variables (“.” in “users$ope � .” stands for “use all
independent variables”):

fit_o <- glm(users$ope�., data = u_rot,
subset = !test)

fit_g <- glm(users$gender�., data = u_rot,
subset = !test, family = "binomial")
Next, we estimate the predictions for the testing sample using

the function predict. Predictions are produced using the models
developed in a previous step (fit_o and fit_g) and varimax-rotated
SVD scores for the users in the test subset (u_rot[test,]):

pred_o <- predict(fit_o, u_rot[test,])
pred_g <- predict(fit_g, u_rot[test,], type =
"response")
Finally, we proceed to estimate the accuracy of the predictions

for this particular cross-validation fold. The accuracy of the linear
predictions (e.g., for openness) can be conveniently expressed as a
Pearson product–moment correlation:

cor(users$ope[test], pred_o)
The resulting accuracy should be about r � 0.43.
In the case of dichotomous variables, such as gender, we suggest

reporting prediction accuracy using the area under the receiver-
operating characteristic curve coefficient (AUC), which can be
computed using the ROCR library (Sing, Sander, Beerenwinkel, &
Lengauer, 2005):

library(ROCR)
temp <- prediction(pred_g, users$gender

15 Logical vector is a vector composed of TRUE and FALSE values.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

502 KOSINSKI, WANG, LAKKARAJU, AND LESKOVEC

[test])
performance(temp,"auc")@y.values
In this example, accuracy should be about AUC � 0.94. AUC is
an equivalent of the probability of correctly ranking two ran-
domly selected participants, one from each class. An AUC �
0.94, for example, indicates that in 94% of randomly selected
pairs containing a male and a female, the female will be ranked
as more likely to be female. (Note that for dichotomous vari-
ables, the random guessing baseline corresponds to an AUC �
0.50.)
So far, we have estimated prediction performance based on

all k � 50 SVD dimensions. Here, we will investigate the
relationship between the cross-validated prediction accuracy
and the number k of SVD dimensions. In the following snippet
of code, we first define a set ks containing the values of k that
we want to test. It includes all values from 2 to 10, 15, 20, 30,
40, and 50. Next, we create an empty list rs that is used to store
the results. We then start a for loop that reruns the code
surrounded by the curly brackets while changing the value of i
to consecutive elements stored in ks. The code within the
brackets is similar to the one used before, but only i first of the
k � 50 SVD dimensions are used (Msvd$v�,1 : i�). The results
are saved as a new element on the list rs (rs[[as.character(k)]]).
Once again, we fix R’s random number generator to make sure
that our results match those obtained by the readers:

set.seed(seed = 68)
ks<-c(2:10,15,20,30,40,50)
rs <- list()
for (i in ks){

v_rot <- unclass(varimax(Msvd$v[,
1:i])$loadings)
u_rot <- as.data.frame(as.matrix(M%�%

v_rot))
fit_o <- glm(users$ope�., data = u_rot,

subset = !test)
pred_o <- predict(fit_o, u_rot[test,])
rs[[as.character(i)]] <- cor(users$ope

[test], pred_o)
}
The results of this analysis are presented in Figure 8 (the code

used to generate this figure can be obtained from the companion
website). It is clear that the accuracy grows steeply with the
number k of the SVD dimensions used in prediction, from r � .09
for k � 2 to r � .44 for k � 50. The results suggest that employing
k � 20 SVD dimensions might be a good choice for building
models predicting openness, as it offers accuracy that is close to
what seems like the higher asymptote for this data. Another inter-
esting observation relates to the sudden increases in the accuracy
that can be observed when including the third and eighth SVD
dimension in the model. It suggests that these dimensions contain
information useful for predicting openness. A more detailed pic-
ture could be offered by exploring the coefficients of the regres-
sion model, that is, coef(fit_o).
Finally, we compute the cross-validated predictions of open-

ness for the entire sample. To this end, we build models and
compute the predicted values using each of the 10 folds of data.
First, we create a vector pred_o to store the prediction results
for the entire sample. It is filled with missing values (NA) and

has as many elements as the number of users. Next, we use the
for loop to rerun the code introduced before, while selecting
consecutive cross-validation folds. Each time, the predicted
openness values are saved as the elements of the pred_o vector.
After the loop is complete, we compute the correlation between
the actual and predicted openness scores for all users in the
sample:

set.seed(seed = 68)
pred_o <- rep(NA, n = nrow(users))
for (i in 1:10){

test <- folds == i
Msvd <- irlba(M[!test,], nv = 50)
v_rot <- unclass(varimax(Msvd$v)$loadings)
u_rot <- as.data.frame(as.matrix(M %�%
v_rot))

fit_o <- glm(users$ope�., data = u_rot,
subset = !test)

pred_o[test] <- predict(fit_o, u_rot[test,])
}

cor(users$ope, pred_o)
The prediction accuracy for openness, estimated on the entire
sample, is r � .44.
We encourage the readers to use the examples above to develop

prediction models based on the LDA cluster memberships. (Con-
sult the companion website for the code required to conduct such
analysis.) Note that users’ LDA cluster scores are stored in the
object gamma (which is an equivalent of the object u_rot used in
the SVD analysis). The following example of code shows how to
develop the LDA model on the training subset and then use it to
estimate LDA cluster scores for all users using the function pos-
terior. Try wrapping it within a for loop, similar to the one
used for producing SVD-based predictions:

Figure 8. Relationship between the accuracy of predicting openness and
the number of the varimax-rotated singular value decomposition dimen-
sions used.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

503MINING BIG DATA

Mlda <- LDA(M[!test,], control =
list(alpha = 1, delta = .1, seed = 68),
k = 50, method = "Gibbs")

temp<-posterior(Mlda, M)
gamma <- as.data.frame(temp$topics)
Note that the LDA algorithm is significantly slower than SVD.
Thus, both LDA and posterior functions may take a long time to
run.
As an exercise, try to independently develop the models aimed

at the remaining traits. You can compare your results with the ones
presented in Table 3 and verify your code by comparing it with the
one published on the companion website.

Conclusion and Discussion

This work aims at introducing the reader to crucial tools that can
be used to study large data sets of digital footprints. Those inspired
by this tutorial to further their knowledge in the area may be
interested in the additional resources and exercises included in the
companion website. We also recommend two great textbooks:
Field, Miles, and Field’s (2012) introduction to statistical analysis
in R and James, Witten, Hastie, and Tibshirani’s (2013) introduc-
tion to statistical learning in R.
Previous sections list multiple advantages of large digital

footprint samples, such as their longitudinal character and the
inclusion of individuals often underrepresented in traditional
studies. Importantly, however, studying large samples of digital
footprints may also present large risks related to privacy and
scientific misconduct (Kosinski et al., 2015; Hall & Flynn,
2001; Barchard & Williams, 2008). This issue is, unfortunately,
exacerbated by the lack of clear guidelines; the protocols re-
lated to designing large-scale online studies, storing data, and
analyzing results are scarce and often contradictory (Solberg,
2010; Wilson, Gosling, & Graham, 2012). This situation is
further complicated by the speed of technological progress and
constant changes in digital platforms and environments. As a
result, both researchers and ethical boards are prone to either
over or underestimating the threats.
One major challenge relates to the vague boundary between

public and private information. Massive amounts of data are pub-
licly available and can be freely scraped from online platforms and
environments. Some researchers argue that mining such public

data is equivalent to conducting archival research, a method fre-
quently employed in disciplines like history, art criticism, and
literature, which rarely involve rules for the protection of human
subjects (Bruckman, 2002; Herring, 1996). Others, however, point
out that the border between public and private is not determined by
accessibility, but by social norms and practices. Take, for instance,
a small village, where people know most of the intimate details
about each other. Despite the public knowledge of such details,
people implicitly assume that certain intimate facts are personal
and should not be discussed or, even less so, studied (Schultze &
Mason, 2012).
Another challenge relates to participants’ consent. Data donated

by the participants often contain information related to or contrib-
uted by other people (e.g., comments on the participant’s profile).
Deciding if and to what extent such data could be used in research
is not straightforward (Kosinski et al., 2015).
Finally, researchers should be extremely careful when working

with data obtained from third parties. At a minimum, one should
review the conditions of the consent obtained by a third party and
consider the implications of the research for the users. A good
illustration of risks related to such research is provided by an
overwhelmingly negative public reception of the emotional con-
tagion study conducted on Facebook (Kramer et al., 2014). The
sheer availability of the data does not mean that its study is ethical
or appropriate.

References

Abdi, H. (2003). Factor rotations in factor analyses. In M. Lewis-Beck,
A. E. Bryman, & T. F. Liao (Eds.), The SAGE encyclopedia of social
science research methods (pp. 792–795). Thousand Oaks, CA: SAGE.

Asuncion, A., Welling, M., Smyth, P., & Teh, Y. W. (2009). On smoothing
and inference for topic models. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence (pp. 27–34). Arling-
ton, VA: AUAI Press.

Baglama, J., & Reichel, L. (2012). irlba: Fast partial SVD by implicitly-
restarted Lanczos bidiagonalization (R package Version 2.0.0) [Com-
puter Software]. Retrieved from https://cran.r-project.org/package�irlba

Barchard, K. A., & Williams, J. (2008). Practical advice for conducting
ethical online experiments and questionnaires for United States psychol-
ogists. Behavior Research Methods, 40, 1111–1128. http://dx.doi.org/10
.3758/BRM.40.4.1111

Bates, D., & Maechler, M. (2015). Matrix: Sparse and dense matrix classes
and methods (R package Version 1.2–6) [Computer Software]. Re-
trieved from https://cran.r-project.org/package�Matrix

Bengio, I. G. Y., & Courville, A. (2016). Deep learning. Manuscript in
preparation. Retrieved from http://www.deeplearningbook.org/

Bishop, C. M. (2006). Pattern recognition and machine learning. New
York, NY: Springer.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation.
Journal of Machine Learning Research, 3, 993–1022. http://dx.doi.org/
10.1162/jmlr.2003.3.4-5.993

Bruckman, A. (2002). Studying the amateur artist: A perspective on dis-
guising data collected in human subjects research on the Internet. Ethics
and Information Technology, 4, 217–231. http://dx.doi.org/10.1023/A:
1021316409277

Buchanan, E., Aycock, J., Dexter, S., Dittrich, D., & Hvizdak, E. (2011).
Computer science security research and human subjects: Emerging
considerations for research ethics boards. Journal of Empirical Research
on Human Research Ethics, 6, 71–83. http://dx.doi.org/10.1525/jer.2011
.6.2.71

Table 3
Approximate Prediction Accuracy Based on k � 50 Singular
Value Decomposition (SVD) Dimensions and k � 50 Latent
Dirichlet Allocation (LDA) Clusters

Variable SVD LDA

Gender (AUC) .94 .88
Political views (AUC) .88 .84
Age .61 .68
Openness .44 .42
Conscientiousness .26 .22
Extroversion .30 .25
Agreeableness .24 .18
Neuroticism .29 .24

Note. AUC � area under the receiver-operating characteristic curve
coefficient.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

504 KOSINSKI, WANG, LAKKARAJU, AND LESKOVEC

Canty, A., & Ripley, B. D. (2016). boot: Bootstrap R (S-Plus) functions (R
package Version 1.3–18) [Computer Software]. Retrieved from https://
cran.r-project.org/package�boot

Chang, J., & Blei, D. M. (2010). Hierarchical relational models for docu-
ment networks. The Annals of Applied Statistics, 4, 124–150. http://dx
.doi.org/10.1214/09-AOAS309

Danescu-Niculescu-Mizil, C., West, R., Jurafsky, D., Leskovec, J., & Potts,
C. (2013). No country for old members: User lifecycle and linguistic
change in online communities. Proceedings of the 22nd International
Conference on World Wide Web (pp. 307–318). New York, NY: ACM.
http://dx.doi.org/10.1145/2488388.2488416

Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R.,
Merchant, R. M., . . . Seligman, M. E. P. (2015). Psychological language
on Twitter predicts county-level heart disease mortality. Psychological
Science, 26, 159–169. http://dx.doi.org/10.1177/0956797614557867

Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. Los
Angeles, CA: Sage. http://dx.doi.org/10.1111/insr.12011_21

Goldberg, L. R. (1992). The development of markers for the Big-five factor
structure. Psychological Assessment, 4, 26–42. http://dx.doi.org/10
.1037/1040-3590.4.1.26

Goldberg, L. R. (2006). Doing it all bass-ackwards: The development of
hierarchical factor structures from the top down. Journal of Research
in Personality, 40, 347–358. http://dx.doi.org/10.1016/j.jrp.2006.01
.001

Goldberg, L. R., Johnson, J. A., Eber, H. W., Hogan, R., Ashton, M. C.,
Cloninger, C. R., & Gough, H. G. (2006). The International Personality
Item Pool and the future of public-domain personality measures. Journal
of Research in Personality, 40, 84–96. http://dx.doi.org/10.1016/j.jrp
.2005.08.007

Golub, G. H., & Reinsch, C. (1970). Singular value decomposition and
least squares solutions. Numerische Mathematik, 14, 403–420. http://dx
.doi.org/10.1007/BF02163027

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceed-
ings of the National Academy of Sciences of the United States of
America, 101, 5228–5235. http://dx.doi.org/10.1073/pnas.0307752101

Grün, B., & Hornik, K. (2011). topicmodels: An R package for fitting topic
models. Journal of Statistical Software, 40, 1–30. http://dx.doi.org/10
.18637/jss.v040.i13

Guennebaud, G., & Jacob, B. (2010). Eigen v3 [Computer Software].
Retrieved from http://eigen.tuxfamily.org

Hall, T., & Flynn, V. (2001). Ethical issues in software engineering
research: A survey of current practice. Empirical Software Engineering,
6, 305–317. http://dx.doi.org/10.1023/A:1011922615502

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in
the world? Behavioral and Brain Sciences, 33, 61–135. http://dx.doi.org/
10.1017/S0140525X0999152X

Herring, S. (1996). Linguistic and critical analysis of computer-mediated
communication: Some ethical and scholarly considerations. The Infor-
mation Society, 12, 153–168. http://dx.doi.org/10.1080/911232343

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An intro-
duction to statistical learning: with applications in R. New York,
NY: Springer.

Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scien-
tific tools for Python [Computer software]. Retrieved from http://www
.scipy.org/

Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D.
(2015). Facebook as a research tool for the social sciences: Oppor-
tunities, challenges, ethical considerations, and practical guidelines.
American Psychologist, 70, 543–556. http://dx.doi.org/10.1037/
a0039210

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and
attributes are predictable from digital records of human behavior.
Proceedings of the National Academy of Sciences of the United States

of America, 110, 5802–5805. http://dx.doi.org/10.1073/pnas
.1218772110

Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental
evidence of massive-scale emotional contagion through social networks.
Proceedings of the National Academy of Sciences of the United States of
America, 111, 8788–8790. http://dx.doi.org/10.1073/pnas.1320040111

Kuhn, M. (2015). caret: Classification and Regression Training (R package
Version 6.0–68) [Computer Software]. Retrieved from https://cran
.r-project.org/package�caret

Lambiotte, R., & Kosinski, M. (2014). Tracking the digital footprints of
personality. Proceedings of the Institute of Electrical and Electronics
Engineers, 102, 1934–1939. http://dx.doi.org/10.1109/JPROC.2014
.2359054

Larsen, R. M. (2005). PROPACK 2.1. Retrieved from http://sun.stanford
.edu/rmunk/PROPACK/

Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D.,
. . . Alstyne, M. V. (2009). Life in the network: The coming age of
computational social science. Science, 323, 721–723. http://dx.doi.org/
10.1126/science.1167742

Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford Large Network
Dataset Collection. Retrieved from http://snap.stanford.edu/data

Madsen, R. E., Hansen, L. K., & Winther, O. (2004). Singular value
decomposition and principal component analysis. Retrieved from http://
www2.imm.dtu.dk/pubdb/p.php?4000

Open Science Collaboration. (2015). Estimating the reproducibility of
psychological science. Science, 349, aac4716. http://dx.doi.org/10.1126/
science.aac4716

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825–2830.

Phan, X.-H., & Nguyen, C.-T. (2007). A C/C�� implementation of latent
Dirichlet allocation. Retrieved from http://gibbslda.sourceforge.net/

R Core Team. (2015). R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing.
Retrieved from http://www.R-project.org/

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002).
Methods and metrics for cold-start recommendations. In Proceedings of
the 25th Annual International Conference on Research and Develop-
ment in Information Retrieval (pp. 253–260). New York, NY: ACM.
http://dx.doi.org/10.1145/564418.564421

Schultze, U., & Mason, R. O. (2012). Studying cyborgs: Re-examining
Internet studies as human subjects research. Journal of Information
Technology, 27, 301–312. http://dx.doi.org/10.1057/jit.2012.30

Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones,
S. M., Agrawal, M., . . . Ungar, L. H. (2013). Personality, gender, and
age in the language of social media: The open-vocabulary approach.
PLOS ONE, 8, e73791. http://dx.doi.org/10.1371/journal.pone.0073791

Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR:
Visualizing classifier performance in R. Bioinformatics, 21, 3940–3941.
http://dx.doi.org/10.1093/bioinformatics/bti623

Solberg, L. (2010). Data mining on Facebook: A free space for researchers
or an IRB nightmare? Journal of Law, Technology & Policy, 2, 311–
433.

Steyvers, M. (2011). Matlab topic modeling toolbox 1.4. Retrieved from
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

Strang, G. (2016). Introduction to linear algebra, fifth edition. Wellesley,
MA: Wellesley-Cambridge Press.

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: A
retrospective. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 73, 273–282. http://dx.doi.org/10.1111/j.1467-9868
.2011.00771.x

Ugander, J., Karrer, B., Backstrom, L., & Marlow, C. (2011). The anatomy
of the Facebook social graph. Computing Research Repository, 1–17.
Retrieved from http://arxiv.org/abs/1111.4503

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

505MINING BIG DATA

Wall, M. E., Rechtsteiner, A., & Rocha, L. M. (2003). Singular value
decomposition and principal component analysis. In D. Berrar, W.
Dubitzky, & M. Granzow (Eds.), A practical approach to microarray
data analysis (pp. 91–109). Norwell, MA: Kluwer.

Wilson, R. E., Gosling, S. D., & Graham, L. T. (2012). A review of
Facebook research in the social sciences. Perspectives on Psychological
Science, 7, 203–220.

Youyou, W., Kosinski, M., & Stillwell, D. J. (2015). Computer-based
personality judgements are more accurate than those made by humans.
Proceedings of the National Academy of Sciences of the United States of
America, 112, 1036–1040.

Zhang, L., Marron, J., Shen, H., & Zhu, Z. (2007). Singular value decom-
position and its visualization. Journal of Computational and Graphical
Statistics, 16, 833–854.

Received June 9, 2015
Revision received July 10, 2016

Accepted July 12, 2016 �

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

506 KOSINSKI, WANG, LAKKARAJU, AND LESKOVEC

