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Abstract

Markov random fields (MRFs) are a use-
ful tool for modeling relationships present
in large and high-dimensional data. Of-
ten, this data comes from various sources
and can have diverse distributions, for ex-
ample a combination of numerical, binary,
and categorical variables. Here, we define
the pairwise exponential Markov random field

(PE-MRF), an approach capable of model-
ing exponential family distributions in het-
erogeneous domains. We develop a scalable
method of learning the graphical structure
across the variables by solving a regularized
approximated maximum likelihood problem.
Specifically, we first derive a tractable up-
per bound on the log-partition function. We
then use this upper bound to derive the group
graphical lasso, a generalization of the classic
graphical lasso problem to heterogeneous do-
mains. To solve this problem, we develop a
fast algorithm based on the alternating direc-
tion method of multipliers (ADMM). We also
prove that our estimator is sparsistent, with
guaranteed recovery of the true underlying
graphical structure, and that it has a polyno-
mially faster runtime than the current state-
of-the-art method for learning such distribu-
tions. Experiments on synthetic and real-
world examples demonstrate that our ap-
proach is both e�cient and accurate at un-
covering the structure of heterogeneous data.
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1 Introduction

Markov random fields (MRFs) are a fundamental tool
for many applications in machine learning [5, 20]. Of-
ten, it is necessary to model MRFs between heteroge-
neous entities, where the nodes in the graphical model
can refer to di↵erent types of objects. For example,
modeling medical patients may require joint reasoning
about the relationship between categorical and contin-
uous variables (i.e., age, gender and medical history
events) [1]. Or, when analyzing protein interactions,
data about di↵erent types of proteins might be cap-
tured using di↵erent experimental methods [17]. In
order to faithfully model such heterogeneous domains
using graphical models, nodes of the model must follow
di↵erent types of distributions (Gaussian, Poisson, Bi-
nary, etc.). While the structure of such heterogeneous
graphical models is typically learned through obser-
vational data, estimating them is challenging for both
computational and mathematical reasons, and scalable
inference methods have not yet been developed.

In this paper, we propose a class of multivariate ex-
ponential family distributions, which we call the pair-

wise exponential Markov random field (PE-MRF). PE-
MRFs explicitly reveal the Markov structure across
di↵erent variables and can cover many common dis-
tributions, such as Ising models, Gaussian MRFs, and
mixed (heterogeneous) models. Our approach extends
previous methods of graphical inference [15, 21, 25]
by using a di↵erent representation of the joint dis-
tribution. This allows for a compact representation
of heterogeneous variables, which eventually leads to
a much faster structure/parameter learning method
(O(p3), compared to O(p4), to learn a p node distri-
bution with O(p2) unknown parameters).

After formally defining the PE-MRF model, we pro-
pose a method of estimating its parameters. Because
solving the exact maximum likelihood problem is com-
putationally intractable in general high-dimensional
settings, we extend an approach known as the ap-
proximated maximum likelihood, which previously has
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only been used for solving Ising models [2, 22]. This
approach relies on deriving a tractable upper bound
on the (intractable) log-partition function of the PE-
MRF. We then show that the estimator can be sim-
plified into solving a convex problem, minimizing the
log-determinant divergence [19] plus a group sparsity
penalty [10]. We call this the group graphical lasso for
PE-MRFs, since it turns out to be a generalization of
the well-known graphical lasso [9], a popular method
of learning Gaussian MRFs. The graphical lasso is just
a special case of our method, which is more generally
able to reveal the Markov structure in heterogeneous
settings. Furthermore, we prove that our estimator is
sparsistent [19, 25], meaning that, under some math-
ematical assumptions, we are asymptotically guaran-
teed to recover the true underlying Markov structure
of the distribution.

By converting the problem into the group graphical

lasso, we are able to infer the structure in a scal-
able way. In contrast to the pseudo-likelihood, a
commonly-used alternative approach which in the gen-
eral case requires Newton-type methods [4, 14, 21, 25],
we develop an algorithm based on the alternating di-
rection method of multipliers (ADMM) [6], and we
solve for closed-form updates for each of the ADMM
subproblems. These fast updates speed up the solver
and make ADMM more scalable than other methods.
Finally, we test our approach’s accuracy and scalabil-
ity on both synthetic and real datasets.

Summary of Contributions. The main contribu-
tions of this paper are as follows:

• We propose a pairwise exponential family dis-
tribution (PE-MRF), explicitly revealing the
Markov structure across heterogeneous variables.

• We formulate an approximated maximum like-
lihood problem by deriving a tractable upper
bound on the log-partition function.

• We develop a scalable ADMM algorithm with
closed-form updates.

• We prove that our estimator is sparsistent.

1.1 Related Work on Pairwise Models

The PE-MRF is related to several recently suggested
models for inferring Markov random fields. Our pri-
mary contribution is that the PE-MRF model presents
the most scalable method to date for learning the
Markov structure of heterogeneous distributions. Fur-
thermore, there have been proposed approaches which
satisfy up to two of our three desired conditions (gen-
erality, scalability, and sparsistency), but PE-MRFs
are the first to attain all three. We examine several
alternative methods in more detail below.

Limited Heterogeneous Distributions. When the
distributions at every node are uniparameter, Yang et
al. [25] proposed learning the parameters via a pseudo-
likelihood approach, solved by Newton’s method, and
provided sparsistency guarantees. However, their
model is unable to generalize to multiparameter set-
tings. Consider the case of a Gaussian MRF. Here,
for example, this approach cannot model the problem
unless either the mean or the variance is known at ev-
ery node beforehand. Similarly, Lee et al. [14] used a
pseudo-likelihood approach to learn the Markov struc-
ture of discrete-Gaussian mixed models. However,
their model did not provide any sparsistency guaran-
tee, nor did it generalize to other exponential fam-
ily distributions. Our PE-MRFs, on the other hand,
provide sparsistency and can also solve for distribu-
tions with multiparameter and multivariate variables
at each node, a much broader class of problems.

Vector-Space MRFs (VS-MRFs). A separate ap-
proach, VS-MRF [21], is capable of learning general
heterogeneous distributions. In fact, their approach
and ours can cover the same classes of pairwise ex-
ponential families. However, there is a significant con-
trast between VS-MRF and PE-MRF in terms of scala-
bility. By modeling the problem di↵erently, we can de-
rive an approximated maximum likelihood, which al-
lows for a very scalable algorithm (but had previously
only been used in homogeneous settings [2, 22]). In-
stead, VS-MRFs rely on the pseudo-likelihood. From
an algorithmic perspective, to learn a p-node graphi-
cal model in k ADMM iterations [6], our algorithm has
a runtime of O(kp3) whereas VS-MRF takes O(kp4).
Note that there are on the order of p2 unknown param-
eters. We leverage this speedup in Section 6, running
our algorithm on large models, where we empirically
discover that VS-MRF is several orders of magnitude
slower.

Node-wise Regression. In node-wise regression,
each node estimates the associated edge structure of
its local neighborhood. For Gaussian MRFs and dis-
crete models, this method has been used to learn the
Markov structure in a scalable way [15, 16, 18]. In ad-
dition, Banerjee et al. [2] developed a block coordinate
descent method for solving such homogeneous models,
which can be viewed as iterative node-wise regressions
with a penalty. This type of method, however, has
only been suggested for a limited class of homogeneous
distributions, and not for broader problems in general
heterogeneous domains. As such, there is no known
method of using node-wise regression to learn hetero-
geneous distributions, or to guarantee sparsistency in
these cases.
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2 Problem Setup

Consider a set of n independent multivariate obser-
vations {x1, x2, . . . , xn}. We assume that these are
sampled i.i.d. from an exponential family distribution
p(x;✓) represented by a p-node graphical model with
natural parameter ✓. Here, the p nodes may have het-
erogeneous domains. For example, some elements may
be defined over the set of real numbers, while others
may have a finite discrete domain (i.e., {1, 2, . . . ,m})
or a countably infinite one. We use these samples to
estimate the underlying distribution. More specifi-
cally we infer a Markov Random Field described by
G = (V,E) with |V | = p. This structure can be en-
coded in the exponential family parameter ✓.

2.1 Pairwise Exponential Markov Random
Fields

We define the pairwise exponential Markov random field

(PE-MRF), a subclass of the multivariate exponential
family distribution that can explicitly reveal the
Markov structure across heterogeneous variables.

Here, we denote hA,Bi
F

= Tr(AB) as the
Frobenius inner product between two matrices and
vec[a

1

, . . . , a
k

] = [aT
1

, . . . , aT
k

]T as the concatenation
of a set of vectors.

Definition For a random vector X = {X
1

, . . . , X
p

}
defined over (heterogeneous) domains1 X =
⌦{X

r

}p
r=1

, suppose the conditional distribution
of each variable X

r

given the remaining p�1 variables
X\r, follows a (known) exponential family distribution
on the domain X

r

. This distribution is specified by
an m

r

-dimensional node-potential B
r

(X
r

) and scalar
base measure C

r

(X
r

). Then, a random vector X is
defined as a PE-MRF if, for x = {x

1

, . . . , x
p

} 2 X , it
follows the joint distribution

p(x;✓) = exp{
pX

r=1

✓T
r

B
r

(x
r

) +
pX

s,t=1

⌦
⇥

st

, B
t

(x
t

)B
s

(x
s

)T
↵
F

+
pX

r=1

C
r

(x
r

)�A(✓)}. (1)

Here ✓ = {✓
1

, . . . , ✓
p

,⇥
11

,⇥
12

, . . . ,⇥
pp

} is
the natural parameter, consisting of node-
parameter ✓

r

2 Rm

r and edge-parameter
⇥

st

2 Rm

s

⇥m

t . A(✓) is the (finite-valued) log-
partition function2 log

R
X exp

�P
p

r=1

✓T
r

B
r

(x
r

) +P
p

s,t=1

⌦
⇥

st

, B
t

(x
t

)B
s

(x
s

)T
↵
F

+
P

p

r=1

C
r

(x
r

)
 
⌫(dx).

Note that the edge-parameters {⇥
st

}p
s,t=1

explicitly re-

veal the Markov structure because ⇥
st

2 Rm

s

⇥m

t is a

1Here, ⌦ refers to the Kronecker product.
2
⌫ is a proper measure on X . Refer to [23].

zero matrix if and only if X
s

and X
r

are conditionally
independent given all other variables [12].

Exponential Family Expression. Distribution (1)
can be written as

p(x;✓) = exp {h✓,B(x)i+ C(x)�A(✓)} , (2)

with base measure C(x) =
P

p

r=1

C
r

(x
r

), su�cient
statistic B(x), and inner product

⌦
✓,B(x)

↵
given by

B(x) =
�
{B

r

(x
r

)}p
r=1, {Bs

(x
s

)B
t

(x
t

)T }p
s,t=1

 
,

⌦
✓,B(x)

↵
=

pX

r=1

✓

T

r

B

r

(x
r

) +
pX

s,t=1

D
⇥

st

, B

t

(x
t

)B
s

(x
s

)T
E

F

.

Alternative Quadratic Expression. The model in
(1) can also be written in quadratic form, as

p(x;✓) = exp{b(x)T⇥b(x) + C(x)�A(✓)},

where we introduce the (extended) node-potential vec-
tor b(x) = vec[1, B

1

(x
1

), . . . , B
p

(x
p

)] with base mea-
sure C(x) =

P
p

r=1

C
r

(x
r

)� 1, where

⇥ =

2

6664

1 ✓

T

1 /2 · · · ✓

T

p

/2
✓1/2 ⇥11 · · · ⇥1p

...
...

. . .
✓

p

/2 ⇥
p1 ⇥

pp

3

7775
.

Node-Conditional Distribution. The conditional
distribution of X

r

given X\r follows

p(x
r

|x\r;✓) / exp

⇢
(✓

r

+
X

t 6=r

⇥
rt

B

t

(x
t

))TB
r

(x
r

)

+
D
⇥

rr

, B

r

(x
r

)B
r

(x
r

)T
E

F

+ C

r

(x
r

)

�
.

(3)

This is just an exponential family with su�cient statis-
tic {B

r

(x
r

), B
r

(x
r

)B(x
r

)T } and base measure C(x
r

).

2.2 Examples of PE-MRFs

PE-MRFs can model many popular distributions,
ranging from homogeneous pairwise models (exponen-
tial, Poisson, gamma, etc. . . ) to general mixed ones.
From the node-conditional distribution in Equation
(3), we can design PE-MRFs on a node-by-node basis,
by choosing the desired potential B

r

and base measure
C

r

. Note that, in order to get a valid joint distribu-
tion, we must consider domain constraints D on the
parameter ✓ to guarantee a finite log-partition func-
tion A(✓).

Gaussian MRF (GMRF). PE-MRFs can model
GMRFs by setting the node-potential B

r

(x
r

) = x
r

,



Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random
Fields

so that the corresponding su�cient statistic at each
node becomes {x

r

, x2

r

}. This is a valid joint distribu-
tion under the (negative definite) domain constraints
D = {(✓

node

,⇥
edge

) | ⇥
edge

� 0}. For a zero mean
GMRF, we put additional the restrictions ✓

node

= 0.
If a variable X

r

has known variance �2

r

, then we can
additionally assign ⇥

rr

= � 1

2�

2

r

.

Ising and Discrete Models. PE-MRFs can
also model a discrete distribution with domain
X

r

= {0, 1, . . . ,m
r

}, by choosing the node-
potential B

r

(x
r

) = [I(x
r

= 1), . . . , I(x
r

,= m
r

)]T .
Moreover, restricting ✓

r

= 0 and ⇥
rr

=
diag([⇥

rr:11

, . . . ,⇥
rr:m

r

m

r

]) gives the minimal repre-
sentation of a discrete model.

Mixed Models. Likewise, by choosing suitable node
potentials, we can design any associated mixed model
using a PE-MRF. The exponential family distributions
that PE-MRFs can cover include, but are not limited
to, Poisson, quadratic Poisson [26] (which can capture
both positive and negative correlations), lognormal,
gamma, Dirichlet, and any combination thereof, under
proper domain constraints.

3 Learning the Structure:
Approximate Maximum Likelihood
Approach

In order to learn the Markov structure of a PE-MRF
distribution, we formulate the following (negative)
maximum likelihood problem with regularization,

minimize
✓

� l(✓) +R

�

(✓). (4)

Here, l(✓) = h✓, µ̂i � A(✓) is the log likelihood of ✓
(up to scale and constant), where µ̂ = 1

n

P
n

k=1

B(xk)
is the empirical mean parameter, or averaged su�cient
statistic B(xk) over the samples {xk}n

k=1

,

µ̂ =
�
{ 1
n

nX

k=1

B

r

(xk

r

)}p
r=1, {

1
n

nX

k=1

B(xk

s

)B(xk

t

)T }p
s,t=1

 
.

Regularization. R
�

(✓) is a regularization function

with tuning parameter � that encourages structural
sparsity. We use the `

1

/`
2

group lasso penalty [11],

R

�

(✓) = �

X

s 6=t

w

st

k⇥
st

k
F

, (5)

where k·k
F

is the Frobenius norm, i.e., kAk
F

=qP
m

i

,m

j

i,j=1

a
ij

. This encourages the st-th block, for

every s 6= t, to be a zero matrix. Note that if the ⇥
st

’s
are all scalar parameters, then this becomes a stan-
dard lasso penalty. Here, {w

st

}p
s,t=1

is a set of scalar

values typically depending on the size and variance of
an associated B

s

(X
s

)B
t

(X
t

)T , in order to balance the
weights on {k⇥

st

k
F

}p
s,t=1

[14].

3.1 Approximated Maximum Likelihood

When the exponential family has a tractable A(✓),
for example with a Gaussian MRF, we can attempt
to exactly solve the maximum likelihood in Problem
(4). However, in the general case, A(✓) involves a
high-dimensional integral and is typically intractable
to compute. In order to overcome this, we use an ap-
proximated maximum likelihood approach [2], where
we replace A(✓) in Problem (4) with a tractable (con-
vex) upper bound U(✓),

minimize
✓

�
⌦
✓, µ̂

↵
+ U(✓) +R

�

(✓). (6)

3.1.1 Upper Bound on Log-Partition
Function

In this section, we use the notion of mean parameter

and variational analysis [23]. These allow us to have
an alternative expression for A(✓), which we use to
eventually derive the upper bound U(✓).

Notation. Recall that the natural parameter ✓ and
su�cient statistic B(x) of PE-MRFs are defined over
the domain Y = Rm

1 ⇥ · · ·Rm

p ⇥Rm

1

m

1 ⇥Rm

1

m

2 ⇥
· · ·Rm

p

m

p . Here, we define the inner product over the
domain as ha, bi =

P
p

r=1

aT
r

b
r

+
P

p

s,t=1

hA
st

, B
st

i
F

for elements a, b 2 Y, which is consistent with the
definition in (2).

We define a set of realizable expected su�cient
statistics B(·) over all valid distributions, the
mean parameters [23], as

M(B) =

⇢
µ := {{µ

r

}p
r=1

, {µ
st

}p
s,t=1

} 2 Y | 9p(·) 2 �
d

s.t. E[B
r

(X
r

)] = µ
r

,E[B
s

(x
s

)B
t

(x
t

)T ] = µ
st

�
,

where d =
P

p

r=1

m
r

is the sum of dimensions of the
node potentials and �

d

is a probability simplex in Rd.

Let ⌫ 2 R be a fixed scalar. We define a map M
⌫

:
Y ! R(d+1)⇥(d+1), for µ =2 Y, as

M

⌫

[µ] =

2

66664

⌫ µ

T

1 µ

T

2 . . . µ

T

p

µ1 µ11 µ12 . . . µ1p

µ2 µ21 µ22 µ2p

...
...

...
. . .

...
µ

p

µ

p1 µ2p . . . µ

pp

3

77775
.

With these notations, we now derive an upper bound.
Assume that a PE-MRF is regular [23] and the condi-
tional distribution on each node comes from a known
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exponential family. Let each node r have the distance
c
r

= inf
a 6=b2X

r

kB
r

(a)�B
r

(b)k1 in the domain of its

su�cient statistic B
r

(X
r

). We assume c
r

= 0 for con-
tinuous nodes and that discrete nodes I

D

are separable
with respect to su�cient statistic, meaning c

r

> 0.

Theorem 3.1 For a PE-MRF, the log partition func-

tion A(✓) has the following upper bound,

A(✓)  max
µ2M(B)

⇢⌦
µ,✓

↵
+

1
2
log det

✓
M1[µ] +D

◆�
+ f1,

where D = diag([0, l
1

, . . . , l
p

]), l
r

= c

3

r

12

[

m

rz }| {
1, . . . , 1], and

f
1

= d

2

log(2⇡e)�
P

r2I
D

(m
r

log c
r

).

The proof follows from Wainwright et al. [22], where
the problem is alternatively represented as the Shan-

non entropy H(X) over the mean parameter. In par-
ticular, we attain the upper bound from the relation-
ship between the entropy H(X) and the entropy of
node-potentials H({B

r

(X
r

)}p
r=1

), in addition to a dif-
ferent choice of {l

r

}p
r=1

for heterogeneous domains.

By taking the relaxation of the dual, we can convert
the high-dimensional problem from Theorem 3.1 into
the following tractable form.

Corollary 3.2 The log partition function A(✓) has

the following upper bound

A(✓)  1
2
min
⌫2R

⇢
� 1

2
log det

�
�M

1+⌫

[✓0]
�
� ⌫

�

� 1

2

⌦
M

1

[✓0], D
↵
F

+ f
2

,

where ✓0 = {✓
1

/2, . . . , ✓
p

/2,⇥
11

,⇥
12

, . . . ,⇥
pp

} 2 Y,

and f
2

= 3

2

+ d+ d

2

log(2⇡e)�
P

r2I
D

(m
r

log c
r

).

3.1.2 Approximated Maximum Likelihood:
Graphical Group Lasso

By plugging the upper bound from Corollary 3.2 into
the approximated maximum likelihood from Equation
(6), we attain the following optimization problem.

Theorem 3.3 For a PE-MRF, the approximated neg-

ative maximum log-likelihood problem is equivalent to

min
⇥2S

d+1

++

�
h⇥,M1[µ̂] +Di

F

� log det⇥+R

�

(⇥)
 
, (7)

with parameter matrix ⇥ = �M
⌫✓ [✓

0], where ⌫✓ 2 R
is a dummy parameter, and R

�

(⇥) = R
�

(✓).

Note that there may be additional parameter con-
straints for some PE-MRF distributions, which can
easily be incorporated into (7). We can view this

problem as a `
1

/`
2

regularized log-determinant diver-
gence with respect to the empirical average of su�cient
statistics, defined by the Bregman divergence corre-
sponding to the log-determinant function3 [19]. We
call problem (7) the group graphical lasso for a PE-
MRF, since it is an extension of the classic graphical
lasso problem [9, 15, 19] to heterogeneous settings.

3.2 Gaussianization of the Group Graphical
Lasso

For a zero-mean Gaussian MRF, we set additional con-
straints [✓

1

, . . . , ✓
p

]T = 0. In fact, in this case our
problem becomes equivalent to the graphical lasso. In
the general case, however, the naive graphical lasso
optimizes with respect to the empirical covariance ma-
trix, whereas our approach optimizes by using the sam-
ple average of su�cient statistics of a PE-MRF. Still,
the following Corollary shows how the group graphi-
cal lasso in (7) can be interpreted as a generalization
of the classic graphical lasso model to heterogeneous
domains.

Corollary 3.4 The group graphical lasso (7) is equiv-
alent to the (exact) maximum likelihood problem with

a group lasso penalty for a GMRF Z ⇠ N (µ⇤,⌃⇤),

⌃⇤ = Cov[b
node

(X)] + diag([l
1

, . . . , l
p

]),

µ⇤ = [⌃⇤]�1 E[b
node

(X)],

where b
node

(X) = vec[B
1

(X
1

), . . . , B
p

(X
p

)].

The proof is immediate from the fact that the (log)
likelihood function of N (µ⇤,⌃⇤) can be expressed as
g(⇥) = h⇥,M

1

[E[B(X)]] + Di � log det⇥ by using
the Schur complement.

Therefore, Corollary 3.4 implies that the estimator of
the group graphical lasso for a PE-MRF is equiva-
lent to solving a distinct graphical lasso problem for
b
node

(X) (instead of X), where the lasso regulariza-
tion term is replaced by a group lasso penalty. Here,
we treat b

node

(X) as following a Gaussian distribution
with specified mean and covariance.

4 Optimization Algorithm

Here, we propose an algorithm to solve the group
graphical lasso (7) for PE-MRFs. Our approach is
based on the alternating direction method of multipli-
ers (ADMM) [6]. To solve, we introduce a consensus
variable Z = ⇥ and rewrite (7) as its equivalent prob-
lem, for A =

�
M

1

[µ̂] +D
�

min
Z=⇥,⇥2S

d+1

++

h⇥, Ai
F

� log det⇥+ �
n

X

i 6=j

w
ij

kZ
ij

k
F

.

3
D

log det(·)(⇥|| ¯B) = � log det⇥+log det

¯B+

D
¯B�1

, (⇥ � ¯

B)

E

F



Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random
Fields

ADMM solves the corresponding augmented La-
grangian in an iterative manner with respect to the
primal variable ⇥, the consensus variable Z, and the
(scaled) dual variable U . For iteration k + 1, closed-
form updates for each of three subproblems are pro-
vided below. ADMM is guaranteed to converge to the
global optimal for convex problems, with a standard
(primal and dual residual) stopping criterion [6].

⇥ Update. The ⇥ update is

⇥k+1 :=
1

2⌘
Q
�
⇤+

p
⇤2 + 4⌘I

�
QT ,

where ⌘ = ⇢

n

and Q⇤QT is the eigendecomposition of

⌘(Zk �Uk)�
�
M

1

[µ̂] +D
�
[24].

Z-Update. The Zk+1 update is
M

⌫

k+1

z
[{zk+1

1

, . . . , zk+1

p

, Zk+1

11

, Zk+1

12

, . . . , Zk+1

pp

}]
where for i, j 2 {1, . . . , p}

⌫

k+1
z = ⌫

k+1
✓

+ ⌫

k

u,

z

i

= ✓

k+1
i

+ u

k

i

, Z

ii

= ⇥k+1
ii

+ U

k

ii

,

Z

ij,i 6=j

=

(⇣
1� ⌘

ij

�

ij

⌘ �
⇥k+1

ij

+ U

k

ij

�
�

ij

� ⌘

ij

0 otherwise
,

with ⌘
ij

= �

n

w

ij

⇢

and �
ij

=
��⇥k+1

ij

+ Uk

ij

��
F

[6].

U-Update. The U update is

Uk+1 := Uk +⇥k+1 �Zk+1.

Algorithmic Complexity. Note that the eigende-

composition of the ⇥ update is the main computa-
tional task in our algorithm, with a runtime of O(p3).
For k ADMM iterations, the computational cost is
O(kp3), which is very e�cient considering the fact that
the total number of parameters to estimate is O(p2).
On the other hand, the pseudo-likelihood approach re-
quiring Newton-type methods [14, 21] needs to com-
pute O(p3) operations every ADMM iteration at each
of the p nodes, requiring O(kp4) in total. We will see
in Section 6 how this leads to a significant di↵erence
in scalability on large problems.

5 Sparsistency

In this section, we present the conditions under which
we are guaranteed to recover the underlying graph-
ical structure embedded in the true parameter ma-
trix ⇥true. From Corollary 3.4, recall that the so-
lution of the group graphical lasso (7) is equivalent
to the estimator of a (distinct) Gaussian MRF regu-
larized by a group lasso penalty. This implies that
our estimate ⇥̂ of (7) may have a di↵erent value

from ⇥true, unless the node potential b
node

(X) fol-
lows a proper normal distribution, which happens for
example in GMRFs and lognormal MRFs. Nonethe-
less, under some mathematical assumptions for gen-
eral PE-MRFs, we can demonstrate that the estima-
tor of group graphical lasso (7) is su�cient to re-
cover the underlying Markov structure represented by
E(⇥true) = {(s, t) |

��⇥true

ij

��
2

> 0 for 1  s 6= t  p}.

Notation. We introduce several norms. We let
kMk1 = max

i,j

|M
ij

|. For a group of vectors {g
i

}k
i=1

and its concatenation g = vec[g
1

, . . . , g
k

], we define a
(group) norm kgk1,2

= k[kg
1

k
2

, . . . , kg
k

k
2

]k1. Then,
this norm induces an operator norm |||A|||1,2

.

Additionally, we introduce some parameters related
to the group graphical lasso. For the log likeli-
hood function g(⇥) = h⇥,M

1

[µ̂] + Di � log det⇥
in (7), we define its (asymptotic) estimator as ⇥⇤ =
[E[M

1

[B(X)]] + D]�1. The corresponding gradient
and Hessian are denoted as ⌃⇤ := rg(⇥⇤) = (⇥⇤)�1,
�⇤ = r2g(⇥⇤) := (⇥⇤)�1 ⌦ (⇥⇤)�1 respectively [7].
Here, ⌃⇤ and �⇤ are not necessarily the covariance and
Fischer information.

We denote S as the edge set of ⇥true (including
all self-edges), as Sc as its complement. Then,

�⇤
SS

c

2 R|S|⇥(p

2�|S|) is defined as its the subma-
trix indexed by S and Sc. We define {} =
{

⌃

⇤ ,
�

⇤ ,
Cov[B]

,
Cov

min

} with 
⌃

⇤ := |||⌃⇤|||1,2

,

�

⇤ = |||�⇤|||1,2

, 
Cov[B]

= kCov[B(X)]k1, and

Cov

min

as the minimum value among non-zero el-
ements of (Cov[b

node

(X)])�1. We denote m
max

=
max

r

m
r

, w
max

= max
s,t

w
st

, and w
min

= min
s,t

w
st

.

Assumptions. We make three assumptions

1. The PE-MRF has an underlying graphical struc-
ture with singleton separator sets with the maxi-
mum degree d.

2. Incoherence condition:
���
���
����

S

c

S

(�
SS

)�1

���
���
���
1,2


w

min

w

max

(1� ↵) for some ↵ 2 (0, 1].

3. Boundedness condition: E[B(X)] and
Cov[B(X)] are bounded.

Intuitively, the incoherence condition limits the corre-
lation between edges variables and and non-edge vari-
ables; see Loh et al. [15] and Ravikumar et al. [19].

Lemma 5.1 Suppose the boundedness condition

holds. Then, for �
n

� 2m
max

p

Cov[B]

q
log(m

max

p)

n

,

there exists an universal constant c
1

> 0 satisfying

Pr
h
kM1[µ̂]� (M1[E[B(X)]])k1,2 < �

n

i
� 1� e

�c

1

n

.
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Theorem 5.2 Suppose a PE-MRF satisfies all three

assumptions. For a regularization parameter �
n

>
8(w

max

+w

min

)

↵w

max

w

min

p

Cov[B]

q
log(m

max

p)

n

, let ⇥̂ be the

unique solution of the group graphical lasso (7).
If the number of samples is given by n >
c
2

({}, {w
st

},m
max

, d,↵) log(m
max

p), then the fol-

lowing two statements about ⇥̂ hold with probability

at least 1� e�c

1

n

:

1.

���⇥̂�⇥⇤
���
1,2

< 2
⌃

⇤

⇣
w

max

w

max

↵

4(w

max

+w

min

)

+ w
max

⌘
�
n

,

where ⇥⇤ = (M
1

[E[B(X)]] +D)�1

.

2. The recovered edge E(⇥̂) = {(s, t) |
���⇥̂

ij

���
2

>

2
⌃

⇤

⇣
w

max

w

max

↵

4(w

max

+w

min

)

+ w
max

⌘
�
n

} becomes the

same as the real edge set E(⇥true).

Here c2({}, {wst

},m
max

, d,↵) = 162
�⇤(1+ 4w

max

+w

min

w
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↵
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Cov[B] max{92
⌃⇤d

2
m

max

, 96
⌃⇤

2
�⇤d

2
m

2
max

,

2
Cov

min

/4}.

The first statement about an error bound can be de-
rived from Lemma 5.1 and the primal-dual witness ap-
proach [19], albeit with di↵erent inequalities due to the
group lasso penalty. The second is based on the rela-
tionship between the graphical structure with single-
ton separator sets and the generalized inverse covari-
ance matrix [15], with an additional constraint that
the error is less than the threshold 

Cov

min

/2 for a
large n.

From Theorem 5.2, for any PE-MRF satisfying our
three assumptions, we are asymptotically guaranteed
to recover the true underlying Markov structure. Note
that the first two assumptions are likely to hold for
sparse graphs with well-balanced weights {w

st

}, and
the last one holds for PE-MRFs consisting of known
exponential family distributions at each node. More-
over, even if all parts of a graph are not separated by
singleton sets, we can still recover the graphical struc-
ture of the sub-parts that are separated [15].

6 Experiments

Synthetic Data. We analyze performance4 on a
heterogeneous synthetic network containing 32 nodes:
eight Bernoulli, eight gamma, eight Gaussian, and
eight Dirichlet (k=3). We consider two cases: sparse
(10% of all potential edges exist) and dense (50% ex-
ist). For both cases, we run 30 independent trials, with
random edge weights, each time taking 1000 samples
from the distribution via Gibbs sampling. We compare
with VS-MRF [21], which is the only other approach

4All code is available at https://github.com/

youngsuk0723/PE-MRF-Code.

that can explicitly model such a diverse distribution.
In our algorithm, we choose w

st

=
p
m

s

⇥m
t

and nor-
malize the raw data so that the rows are numerically
well-balanced. We plot the ROC curves for edge re-
covery percentage (since we care more about capturing
the structure than the precise weights of each edge) in
Figure 1a. As shown, both are better able to recover
sparse graphs than dense ones. Overall, the two meth-
ods attain similar accuracies, and as shown in Fig-
ure 2, our PE-MRF model scales much better to large
datasets. In this experiment, we keep the same pro-
portion of Bernoulli, gamma, Gaussian, and Dirichlet
nodes, but vary the total problem size. We compare
the runtimes of PE-MRF and VS-MRF on the same
machine. As shown, PE-MRF is several orders of mag-
nitude faster, opening up new applications that previ-
ously could not be modeled in a heterogeneous way.
Our PE-MRF solver can learn a 100-node distribution
in just 5 minutes. In contrast, VS-MRF [21] takes
over 31 hours to converge.

Heterogeneous Genomic Networks. Inferring the
structure of genomic regulatory networks from experi-
mental data is a fundamental task in computational bi-
ology. Gaussian graphical models are particularly pop-
ular and well-suited for this task, as gene expression
measurements generated by microarray technology ap-
proximately follows a Gaussian distribution. How-
ever, new technologies for DNA sequencing can pro-
duce data with heterogeneous distributions that vio-
late the Gaussianity assumption. Here, we use PE-
MRF to infer a genomic regulatory network. We use
Level III public data from The Cancer Genome At-
las (TCGA) [17] for 290 breast cancer patients. The
data consists of miRNA sequencing counts mapped
back to a reference genome, which follow a Poisson
distribution, and microarray gene expression profiles,
which are Gaussian. We employ three common steps
to process the data: adjust for sequencing depth, re-
move genes whose mutations are known to have low
functional impact on cancer progression, and filter out
miRNAs with low variance across samples. In total,
the dataset contains expression profiles for 500 genes
and 314 miRNAs. Our goal is to infer a heterogeneous
MRF with a total of 814 nodes, 500 of which are Gaus-
sian (genes) and 314 of which are Poisson (miRNAs).

We infer a PE-MRF, choosing the regularization pa-
rameter � that minimizes the Akaike information cri-
terion (AIC), and plot the resulting network in Figure
1b. The network contains three types of edges: be-
tween two genes, between two miRNAs, and between
one of each. All three edge types are interesting and
potentially worth exploring further, but we demon-
strate here the utility of the gene-gene subnetwork
due to the availability of comprehensive gene data.

https://github.com/youngsuk0723/PE-MRF-Code
https://github.com/youngsuk0723/PE-MRF-Code
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Figure 1: (a) ROC curves comparing our PE-MRF method with VS-MRF, (b) Inferred multi-modal network of
miRNAs and genes, (c) Known interactions from biomedical database of the k-core of the inferred network.

In particular, we consider a k-core of the gene-gene
subnetwork, the subnetwork of genes whose inferred
degree within the selected subnetwork is at least k (we
choose k = 65). To validate our model, we use external
data and observe how many gold standard edges ex-
ist between genes from the tightly connected 65-core.
Using GeneMANIA [27], we find the core of the in-
ferred gene subnetwork is well supported by many es-
tablished interactions as shown in Figure 1c. We infer
this network from only the 290 patient samples, yet
we notice the abundance of interaction edges in Figure
1c, which match the connectivity of the inferred gene
subnetwork. The many genetic interactions (in green)
between genes from the core are particularly encour-
aging for our model, since genetic interactions corre-
spond closely with partial correlations [3, 13], which is
precisely what our PE-MRF attempts to model.

7 Conclusion

In this paper, we have proposed a method of learn-
ing Markov networks from observational data. Our
approach models an underlying distribution as a pair-
wise exponential Markov random field (PE-MRF), a
class of multivariate exponential families that is well-
suited for heterogeneous distributions. To estimate the
parameters in a scalable way, we derive the approxi-
mated maximum likelihood problem and develop an
ADMM algorithm with closed-form updates. We then
prove sparsistency, or guaranteed recovery of the true
Markov structure, of our method. Our promising re-
sults, as well as the widespread applications with het-

Figure 2: Scalability comparison between our PE-
MRF model and VS-MRF [21] on heterogeneous data
(Bernoulli, gamma, Gaussian, and Dirichlet nodes).

erogeneous data sources, lead to many potential ex-
tensions of this work. For example, if the the Markov
structure changes over time, we could use the times-
tamped observations to estimate a time-varying net-
work, instead of inferring a single network. Simi-
larly, one could learn multiple heterogeneous distri-
butions (separate yet coupled) at once, similar to the
joint graphical lasso [8]. Moreover, PE-MRFs can be
extended to include higher-order interactions, which
open up new applications and can help increase the
potential impact of our work.
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